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Abstract

Background: Orthologs inference is the starting point of most comparative genomics studies, and a plethora of
methods have been designed in the last decade to address this challenging task. In this paper we focus on the
problems of deciding consistency with a species tree (known or not) of a partial set of orthology/paralogy
relationships C on a collection of n genes.

Results: We give the first polynomial algorithm – more precisely a O(n3) time algorithm – to decide whether C is
consistent, even when the species tree is unknown. We also investigate a biologically meaningful optimization version
of these problems, in which we wish to minimize the number of duplication events; unfortunately, we show that all
these optimization problems are NP-hard and are unlikely to have good polynomial time approximation algorithms.

Conclusions: Our polynomial algorithm for checking consistency has been implemented in Python and is available
at https://github.com/UdeM-LBIT/OrthoPara-ConstraintChecker.

Keywords: Orthology detection, Polynomial-time algorithms, Para-NP hardness, Inapproximability

Background
Two genes from two different species are said to be orthol-
ogous if they derived from a single gene present in the
last common ancestor of the two species via a speci-
ation event, and paralogous if they were created by a
duplication event [1]. Orthologs inference is the start-
ing point of most comparative genomics studies, and is
also a key instrument for functional annotation of new
genomes. A plethora of methods have been designed in
the last decade to address this challenging task, and can be
roughly divided in two groups [2]. The first group ofmeth-
ods use clustering algorithms to detect homologous genes,
i.e., genes sharing a common ancestry, and then recon-
struct a gene tree describing the evolutionary history of
this set of genes; orthology relationships are then deduced
from this tree by comparing it with the species tree, i.e.,
the tree depicting the history of the species containing
those genes, via reconciliation algorithms (see [3], among
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others, and [4] for a review of reconciliation algorithms).
The second group of methods use other sources of infor-
mation, e.g. sequence similarity or synteny, to directly
estimate orthology relationships [5, among others]. The
first set of methods are considered to be more accurate,
but they require a prior knowledge of the species tree,
and are very dependent on the accuracy of the gene trees.
Unfortunately, the species phylogeny is not always known
and gene trees can be highly inaccurate as a result of
several kinds of reconstruction artifact, e.g. long-branch
attraction (LBA) [6].
The second set of methods does not suffer from these

drawbacks but still has an important weakness: given a
set of genes V, the set of inferred orthology/paralogy
relationships C for V may fail to be satisfiable, i.e., to
simultaneously co-exist in any evolutionary history for V,
or consistent i.e., such that all displayed triplet phylogenies
are included in a species tree (formal definitions are given
in the next section).
In the last years, the decision problems associated with

these questions have been extensively studied, both when
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C is full, i.e., involves a constraint for each pair of genes in
V [7, 8], and when it is not [9].
In [9], the authors give O(n3) time algorithms to decide

whether C is satisfiable and consistent under the assump-
tion that the species tree is known – where n = |V |.
These results hold whether C is a full set of constraints or
not. They also showed how to decide whether C is satis-
fiable when the species tree is unknown but C is full (this
problem was also considered in [10]).
In this paper, we extend the results of [9] by giving a

O(n3) time algorithm to decide whether C is consistent,
even when the species tree is not known and C is not
full, and show an application on real data. Thus the prob-
lems of deciding satisfiability, deciding consistency given
a species tree, and deciding consistency with an unknown
species tree, are all polynomial-time solvable. We also
investigate an optimization version of these problems, in
which we wish to minimize the number of duplication
events in the evolutionary history for V – duplication
minimization is a well-known criterion in phylogenomics
[11]. Unfortunately, we show that all three problems are
NP-hard, even when the maximum number of duplication
events is 2, and are unlikely to have good polynomial- time
approximation algorithms.

Preliminaries
A rooted tree T with arc set E(T) and node set V (T) is a
directed acyclic connected graph, in which every node has
in-degree 1, except for a single node, the root – denoted
by ROOT(T), of in-degree 0, and where the set of nodes in
T with out-degree 0 – the leaves of T, denoted by L(T) –
are univocally labeled. Throughout the paper, we will treat
leaves in a tree as synonymous with the labels associated
to them. We denote by I(T) the set V (T) \ L(T) – the
internal nodes of T. If all nodes in I(T) have out-degree 2,
we say that T is binary.
Given two nodes x, y in T, we say that x is an ancestor

of y in T, and that y is a descendant of x in T, if there is a
directed path from x to y in T. (Note that any node x is an
ancestor and descendant of itself.) If x is not an ancestor of
y and y is not a ancestor of x, we say that x, y are separated
in T. If there is an arc from x to y in T, we say that x is the
parent of y in T and that y is a child of x in T.
Given a node x, let DESCT (x) denote the descendants

of x in T. Let CHILDT (x) denote the set of all chil-
dren of x in T. Let LEAFT (x) = DESC(x) ∩ L(T), i.e.
LEAFT (x) is the set of leaves in T that are descendants
of x. Note that LEAFT (ROOT(T)) = L(T). Given a set
A of nodes in T, let LCAT (A) denote the least common
ancestor of A in T, that is, the unique node z such that z
is an ancestor of all x ∈ A, and no descendant of z has
this property. Given two nodes x, y, we will often write
LCAT (x, y) as shorthand for LCAT ({x, y}). When T is clear
from context, we will often omit “in T” and simply say

that x is the ancestor of y, y is the descendant of x, z is a
leaf, etc.
Suppressing a non-root node x of out-degree 1 in a tree

T consists of removing x and making the unique child
of x a new child of the parent of x. Given a set of leaves
L′ ⊆ L(T), the restriction of T to L′, denoted T |L′ , is
the tree derived from T by taking the minimum subtree
of T spanning L′, and suppressing all non-root nodes of
out-degree 1.
A triplet is a rooted binary treeT with |L(T)| = 3. Given

three distinct elements x, y, z, we denote by xy|z the unique
triplet T with L(T) = {x, y, z} such that LCAT (x, y) �=
ROOT(T) (or equivalently, LCAT (x, y) �= LCAT (x, z) =
LCAT (y, z)).We say that a rooted treeT displays the triplet
xy|z if T |{x,y,z} = xy|z.
Given a set of edges E over a set of vertices V, and a sub-

set V ′ ⊆ V , we define E[V ′]= {xy : x, y ∈ V ′, xy ∈ E}.
Given graphs G = (V ,E) and G′ = (V ′,E′), we say that
G′ is an induced subgraph of G if V ′ ⊆ V and E′ =
E[V ′], and denote G′ by G[V ′]. We define E = {xy :
x, y ∈ V , xy /∈ E} and say that G = (V ,E) is the com-
plement of G. For any integer l ≥ 1, a path Pl is a graph
(V = {v1, . . . , vl},E = {vivi+1 : 1 ≤ i ≤ l − 1}. We
note here that if a graph contains an induced P4, then
its complement contains an induced P4 on the same four
vertices.

Species trees and DS-trees. Let � denote a set of
species. A species tree S on � is a binary rooted tree such
that L(T) = �, used to depict the evolutionary history of
the species in �.
Genes are said to be homologous if they share a com-

mon ancestor. Let V denote a set of homologous genes
belonging to species in �. A species assignment of V is
a function s : V → �, with s(v) = a representing
the fact that gene v belongs to species a ∈ �. For a set
V ′ ⊆ V , we define s(V ′) = {a ∈ � : ∃x ∈ V ′, s(x) = a},
and s|V ′ : V ′ → s(V ′) such that s|V ′(v) = s(v) for all
v ∈ V ′. A DS-tree on V is a pair (T , �), where T is a binary
rooted tree with leaf set V and � : I(T) → {Dup, Spec}
is a function labeling each internal node x of T as a spe-
ciation node (if �(x) = Spec) or a duplication node (if
�(x) = Dup). DS-trees are used to depict the evolution-
ary history of the genes in V. When the function � is clear
from context, we will often omit it and speak only of a
DS-tree T.
Given two genes x, y in T, we say that x, y are orthologs

with respect to T if LCAT (x, y) is a speciation node, and
paralogs with respect to T otherwise. Given an undirected
graph G = (V ,E), a DS-tree (T , �) on V is a DS-tree for
G (or G is an orthology graph for T) if for every x, y ∈ V ,
xy ∈ E ⇔ �(LCAT (x, y)) = Spec. That is, x and y are
adjacent in G if and only if they are orthologs with respect
to T.
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The presence of two homologous genes in the same
species can be caused either by duplications or gene trans-
fers [12]. So, in absence of gene transfers, homologous
genes from the same species are necessarily paralogs. We
formalize this idea in the following assumption.

Assumption 1 We assume in what follows that when-
ever we are given a graph G = (V ,E) with a species
assignment s, two vertices x, y of G are not adjacent if
s(x) = s(y).

Cographs A cograph is a graph that can be generated
from a single-vertex graph using the operations of dis-
joint union (taking the disjoint union of multiple graphs)
and series composition (adding all possible edges between
vertices of multiple graphs) [13]. This generation scheme
yields a representation of a cograph in terms of cotrees.
A cotree is a rooted tree T, with internal nodes labeled
0 (representing the disjoint union operation) or 1 (repre-
senting the series composition). Hence a cotree represents
a graphG = (V ,E) if L(T) = V and two vertices x and y of
G are adjacent if and only if LCAT (x, y) = 1. Observe that
the cotree representation of a cograph is not unique. Also,
while a cotree is not necessarily binary, any non-binary
cotree can be transformed in linear time into a binary
cotree with the same corresponding cograph. There are
several characterizations of cographs. Among other char-
acterizations, a cograph is a graph with no induced P4
[13]. Cographs can also be viewed as graphs where each
connected component has diameter at most 2.
Hellmuth et al. [8] noted that all orthology graphs (i.e.

graphs for which there exists a DS-tree) can be charac-
terized as symbolic ultrametrics [14], and showed that a
graph is an orthology graph if and only if it is a cograph
[8, Corollary 4].
Thus we have a useful graph-theoretic framework for

deciding on the existence of a DS-tree.

Proposition 1 For an undirected graph G = (V ,E), the
following are equivalent:

1. There exists a DS-tree for G;
2. G contains no induced P4, i.e. it is P4-free;
3. G is a cograph.

As cographs can be recognized in linear time [15, 16],
deciding whether a graph has a DS-tree, i.e., if it is sat-
isfiable, can be achieved within the same time complex-
ity. Note, however, that not every DS-tree represents a
possible evolutionary history for a set of genes. In partic-
ular, given a species assignment, different parts of a DS-
tree may imply conflicting evolutionary histories for the
species containing those genes. The concept of consistency
makes this notion precise.

Consistent DS-trees. Given a DS-tree T on V, a species
assignment s : V → � and a species tree S on �, we
say that (T , s) is consistent with S (or S-consistent) if for
every speciation node z in T, and distinct children x, y of z,
LCAS(s(LEAFT (x))) and LCAS(s(LEAFT (y))) are separated
in S. Given a graphG = (V ,E) and the species assignment
s, the pair (G, s) is consistent with S if there exists a DS-tree
T for G such that (T,s) is consistent with S. We say that G
(resp. T) along with the species assignment s, is consistent
if there exists a species tree S such that (G,s) (resp. (T,s)) is
consistent with S [9].
Given a DS-tree T on V and a species assignment s :

V → �, let tr(T , s) be the set of triplets s(x)s(y)|s(z) for
which the triplet xy|z is displayed by T with a speciation
node as the root, and for which s(x) �= s(y).
Hernandez-Rosales et al. [7] showed that (T , s) is con-

sistent with a species tree S if and only S displays all
triplets in tr(T , s). In light of this result, Hellmuth et al.
[10] gave a framework for finding the DS-tree and species
tree for which the maximum number of triplets are dis-
played, using Integer Linear Programming. Lafond and
El-Mabrouk [9] improved the result of [7] by showing that
it is enough to consider only the triplets in tr(T , s) that
have a speciation node as the root node and a duplica-
tion node as the other internal node. This can expressed
in terms of the consistency of an orthology graph in the
following way.
Given a graph G = (V ,E) and species assignment s :

V → �, define the set of triplets P3(G, s) = {s(x)s(y)|s(z) :
xz, zy ∈ E and xy /∈ E and s(x) �= s(y)}. Note that as a
consequence of Assumption 1, if s(x)s(y)|s(z) ∈ P3(G, s),
then s(z) �= s(y) and s(z) �= s(x).
By Theorem 5 in [9], we have the following theorem (in

fact, Theorem 5 in [9] only states that (G, s) is consistent
if and only if there exists a species tree S which displays
all triplets in P3(G, s), but their proof shows that (G, s) is
indeed consistent with such an S):

Theorem 1 [9] Let G = (V ,E) have a DS-tree and let
s : V → � be a species assignment. Let S be a species
tree on �. Then (G, s) is consistent with S if and only if S
displays all triplets in P3(G, s).

Theorem 1 directly provides a polynomial time algo-
rithm to decide whether a graph and a species assignment
are consistent with a given species tree. The following
proposition reformulates Theorem 1 in a convenient way:

Proposition 2 Given a graph G = (V ,E), a species
assignment s : V → �, and a species tree S, (G, s) is
consistent with S if and only if the following holds:

1. G does not contain an induced P4;
2. Every triplet in P3(G, s) is displayed by S.
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As both of the properties in Proposition 2 are hereditary,
we also have:

Corollary 1 Given a graph G = (V ,E), a species assign-
ment s and a subset V ′ ⊆ V, if (G, s) is consistent with
a species tree S then (G[V ′] , s|V ′) is consistent with the
species tree S|s(V ′).

Constraint graphs. A constraint graph is a pair (G, s)
where G = (V ,M � U) is an edge-bicolored graph and
s is a species assignment on V. A constraint graph aims
at representing the partial knowledge about the orthology
or paralogy relations between genes from V. The edges in
M aremandatory edges, representing the pairs of genes xy
for which we know that x and y are orthologs. The non-
edges of G (i.e. the set of unordered pairs uv for which
uv /∈ M � U) represent the pairs of genes xy for which
we know that x and y are paralogs. The edges in U are
unknown edges, for which we do not know if x and y
are orthologs or paralogs. From Assumption 1, we have
that xy /∈ M � U for any pair of genes x, y such that
s(x) = s(y) (in absence of gene transfers, homologous
genes from the same species are necessarily paralogs).
Note that an orthology graph is a constraint graph where
U = ∅. A sandwich of a constraint graph (G, s), with
G = (V ,M � U), is a graph H = (V ,E) such that
M ⊆ E ⊆ M ∪ U .
As a gene is always associated with the species it belongs

to, throughout this paper we will always present a DS-
tree T together with a species assignment s. Thus we
will speak of a DS-tree (T , s). Similarly, we will always
present an orthology graph G together with its species
assignment s, and speak of an orthology graph (G, s). A
sandwich graph G′ will be presented on its own with-
out a species assignment, as a sandwich graph is defined
relative to a constraint graph (G = (V ,M � U), s), and
so the species assignment s will always be clear from
context.

Methods
Computing a consistent DS-tree
In this section, we describe a polynomial time algorithm
for the following problem:
CONSISTENTORTHOLOGY GRAPH SANDWICH problem

Input: a constraint graph (G, s), withG = (V ,M�U) and
s : V → � a species assignment;
Output: a sandwich graph H for (G, s) such that (H , s) is
consistent (if any exists).
Observe that by Proposition 2, the CONSISTENT

ORTHOLOGY GRAPH SANDWICH problem amounts to
computing a sandwich cograph satisfying extra properties.
The sandwich cograph problem is known to be polyno-
mial time solvable [17]. Our algorithm can be seen as a
combination of the sandwich cograph algorithm and the

BUILD algorithm [18] for checking consistency of a set of
triplets.
Let G = (V ,M �U) be an edge-bicolored graph and for

F ⊆ U , define the graph G(F) = (V ,M ∪ F).
The first lemma proves that unknown edges between

connected components of G(∅) can be removed (i.e.
freezed as paralogy relations between genes).

Lemma 1 Let (G, s) be a constraint graph with G =
(V ,M � U). Let CC be the connected components of G(∅),
and let UCC = ⋃

C∈CC U[C]. There exists a consis-
tent sandwich graph of (G, s) if and only if there exists a
consistent sandwich graph of (GCC = (V ,M � UCC), s).

Proof Suppose first that there exists a consistent sand-
wich graph G′ = (V ,E′) of (G, s) and let S be a species
tree such that (G′, s) is S-consistent. For every C ∈ CC,
by Corollary 1 (G′[C] , s|C) is consistent with S|s(C) and
hence with S. Then the disjoint union G′′ of the G′[C] is
a sandwich cograph of (GCC , s). Moreover we clearly have
P3(G′′, s) = ∪CP3(G′[C] , s|C), implying that (G′′, s) is also
consistent with S. The converse is symmetric.

Reduction Rule 1 Let (G, s) be a constraint graph with
G = (V ,M �U). Remove from U every edge xy such that x
and y belong to distinct connected components of G(∅).

As an example, consider the constraint graph (G, s) in
Fig. 1. The genes a1, b1, c1, d1 form one connected com-
ponent of G(∅), and a2, b2, c2, d2 form the other. Thus
Reduction Rule 1 will remove the unknown edge d1a2
from U.
Note that although we remove all edges between con-

nected components of G(∅), we cannot solve the problem
on each connected component independently, and so we
cannot assume that G(∅) is connected. The reason is that
for two connected componentsC,D ofG(∅), a solution for
(G[C] , s|C) may be consistent with a different species tree
than a solution for (G[D] , s|D). To avoid conflicts between
solutions on different subgraphs, we must split the graph
into subgraphs on disjoint sets of species.
From now on, we may assume that |s(V )| > 1. Oth-

erwise, Assumption 1 implies that M = U = ∅, and
thereby (G, s) is a trivial positive instance. For the sake of
the algorithm, we define an auxiliary graph HG,s = (�, F)

on the species set, called hereafter the species graph. For
each pair of distinct species a, b ∈ �, add ab to F if there
exist x, y ∈ V such that x and y are in the same connected
component of G(∅), x and y are not adjacent in G(U) and
s(x) = a, s(y) = b.

Lemma 2 Let (G, s) be a constraint graph reduced by
Reduction Rule 1. If the species graph HG,s is connected,
then (G, s) does not have a consistent sandwich graph.
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Fig. 1 Example of an constraint graph (G = (V ,M � U), s), with s(a1) = s(a2) = A, s(b1) = s(b2) = B, s(c1) = s(c2) = C, s(d1) = s(d2) = D. The
mandatory edgesM are solid; the unknown edges U are dashed. Reduction Rule 1 will delete the unknown edge d1a2

Proof Consider an arbitrary binary species tree S, and an
arbitrary sandwich graph G′ = (V ,E′) of (G, s). We show
that P3(G′, s) contains a triplet not displayed by S.
Let A = LEAFS(uA) and B = LEAFS(uB) where uA and

uB are the children of ROOT(S). Note that A and B par-
tition the set of species �. As HG,s is connected, there
exists a ∈ A, b ∈ B such that ab ∈ F . Therefore there
exist x, y ∈ V such that x, y are in the same connected
component C of G(∅), s(x) = a, s(y) = b and xy /∈ M ∪ U .
As G′[C] is connected, there exists a chordless path P

from x to y in G′. By Proposition 2, G′ is P4-free. This
implies that P contains, in addition to x and y, a third
vertex z such that xz ∈ E′ and zy ∈ E′.
Assume without loss of generality that s(z) ∈ A (the

case s(z) ∈ B is symmetric). Then we have s(x)s(y)|s(z) ∈
P3(G′). Note however that LCAS(s(y), s(z)) = ROOT(S)
(as s(z) ∈ A, s(y) ∈ B), while LCAS(s(x), s(z)) is a descen-
dant of LCAS(A). It follows that LCAS(s(x), s(z)) is different
from LCAS(s(y), s(z)), and so s(x)s(y)|s(z) is not displayed
by S.

The next lemma shows how to use connected com-
ponents of the species graph in order to freeze some
unknown edges to orthology relations between genes.

Lemma 3 Let (G, s) be a constraint graph reduced by
Reduction Rule 1 such that the species graph HG,s is not
connected.
Let A be the vertices of a connected component of

the species graph HG,s and let B = � \ A. Let GA =
(VA,M[VA]�U[VA] ) and GB(VB,M[VB]�U[VB] ),
where VA = s−1(A) and VB = s−1(B). There exists a
consistent sandwich graph of (G, s) if and only if there exist
consistent sandwich graphs of (GA, s|VA) and of (GB, s|VB).

Proof Let G′
A and G′

B be respectively consistent sand-
wich graphs of (GA, s|VA) and of (GB, s|VB). Suppose that

G′
A is consistent with the species tree SA and G′

B with
SB. For every connected component C of G(∅), let G′

C
be the series composition of G′

A[C] and G′
B[C] and let

G′ = (V ,E′) be the disjoint union of all G′
C ’s. We now

show that (G′, s) is a consistent sandwich graph of (G, s).
As G′

A and G′
B are cographs, by construction G′ is a

cograph too. Now, asG′
A andG′

B are respectively sandwich
graphs of (GA, s|VA) and (GB, s|VB), and as there is no edge
in M between different connected components of G(∅),
we have thatM ⊆ E′. By construction of HG,s and the fact
that HG,s has no edges between A and B, for every con-
nected componentC ofG(∅), if x ∈ VA∩C and y ∈ VB∩C,
then xy ∈ M ∪ U . As G′

A and G′
B are respectively sand-

wich graphs of (GA, s|VA) and (GB, s|VB), this implies that
E′ ⊆ M ∪ U . It follows that G′ is a sandwich graph of G.
Now consider the species tree S obtained from SA and

SB by adding a root whose children are ROOT(SA) and
ROOT(SB). We claim that (G′, s) is consistent with S. Con-
sider a triplet s(x)s(y)|s(z) ∈ P3(G′, s). We distinguish two
cases:

• If {s(x), s(y), s(z)} ⊆ A (the case {s(x), s(y), s(z)} ⊆ B
is symmetric), then s(x)s(y)|s(z) ∈ P3(GA) and is
displayed by SA and thereby by S as well.

• Otherwise, as xz, yz ∈ E′, x and y are connected in G′
and so by construction of G′, we have that x, y ∈ C
for some connected component C of G(∅). As
xy /∈ E′, by construction of G′

C either {s(x), s(y)} ⊆ A
or {s(x), s(y)} ⊆ B. Suppose w.l.o.g that the former
holds, implying s(z) ∈ B. Observe then that
s(x)s(y)|s(z) is displayed by S. Indeed, we have
LCAS(s(x), s(z)) = LCAS(s(y), s(z)) = ROOT(S), and
LCAS(s(x)s(y)) is a descendant of ROOT(SA).

The converse follows from Corollary 1.

The correctness of the next branching rule follows from
Lemma’s 2 and 3.
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Branching Rule 1 Let (G, s) be a constraint graph
reduced by Reduction Rule 1 such that the species graph
HG,s is not connected. Let A be a connected component of
the species graph HG,s and let B = � \ A. Solve CONSIS-
TENT SANDWICH SUBGRAPH on (GA, s|VA) and (GB, s|VB)

where VA = s−1(A) and VB = s−1(B). If there exist G′
A =

(VA,E′
A) and G′

B = (VB,E′
B) that are respectively con-

sistent sandwich graphs of (GA, s|VA) and (GB, s|VB), then
return G′ = (V ,E′

A ∪ E′
B ∪M′), where M′ = {xy ∈ M∪U :

x ∈ VA, y ∈ VB}. Otherwise, return NULL.

Consider again the example of Fig. 1, after the unknown
edge d1a2 has been removed by Reduction Rule 1. Because
one connected component has non-edges a1c1, b1d1 and
the other has non-edge b2d2, the edges in HG,s will be
AC and BD (see Fig. 2). Thus, Branching Rule 1 will
split the constraint graph into two parts, one restricted to
a1, c1, a2, c2, and one restricted to b1, d1, b2, d2.
We can now give the pseudocode of the algorithm,

which essentially consists of alternately applying Reduc-
tion Rule 1 and Branching Rule 1.

Theorem2 Given a constraint graph (G, s), theCONSIS-
TENT ORTHOLOGY GRAPH SANDWICH problem can be
solved in O(n3) time, where n is the number of genes in G.

Fig. 2 Example of the species graph HG,s derived from (G, s) after an
application of Reduction Rule 1. The edge AC is due to non-edge
a1c1; edge BD is due to non-edges b1d1 and b2d2. As HG,s is not
connected, we can apply Branching Rule 1

Algorithm 1: COSG(G, s)
input : A constraint graph (G, s) with G = (V ,M�U)

and a species assignment s : V → �;
output: A consistent sandwich graph G′ = (V ,E′)

such thatM ⊆ E′ ⊆ M � U , if one exists;
otherwise return NULL.

Apply Reduction Rule 1;
if |s(V )| = 1 then

return G;
else

Compute the species graph HG,s;
if HG,s is connected then

return NULL;
else

Let GA,GB be the graphs andM′ the set of
edges defined in Branching Rule 1;
G′
A ← COSG(GA, s|VA) and

G′
B ← COSG(GB, s|VB);

if G′
A is not NULL and G′

B is not NULL then
return (G,E(G′

A) ∪ E(G′
B) ∪ M′);

else return NULL

Proof The correctness of Algorithm 1 follows from the
correctness of Reduction Rule 1 (Lemma 1) and Branching
Rule 1 (Lemma’s 2 and 3).
To analyze the running time of Algorithm 1, we simply

observe that the recursive calls define a binary tree struc-
ture with at most O(|�|) = 0(n) nodes. As each step of
the recursion can clearly be performed in quadratic time,
so the complexity follows.

We can adapt the algorithm to cases when the species
tree S is partially known, by adjusting the construction of
HG,s. In particular, for any x, y, z ∈ V for which it is known
that S displays the triplet s(x)s(y)|s(z), we add s(x)s(y) as
an edge in HG,s.
Algorithm 1 has important applications. When the

species tree is not known, it allows us to differentiate
constraint graphs that are consistent with a species tree
from those that are not; the latter cannot be depicted by a
consistent DS-tree, and should be considered as phyloge-
netically irrelevant and discarded. When the species tree
S is known and a given constraint graph C is not consis-
tent with it, the sandwich graph returned by Algorithm 1
shows to what extent C and S are in contradiction. Fur-
thermore if S contains some uncertainties, it allows us to
see if the contradictions betweenC and S lie in the “uncer-
tainty zone” of S. This may help to correct the species
tree.
As an example of the last appplication, suppose that we

have the species tree given in Fig. 3(a), but the relative



The Author(s) BMC Bioinformatics 2016, 17(Suppl 14):416 Page 257 of 282

Fig. 3 Example of (a) a species tree where the placement of C is uncertain, and b) another species tree that can be derived from the first by changing
the position of C. The DS-tree in (c) is not consistent with the species tree in (a)(assuming s(a1) = s(a2) = A, s(b1) = s(b2) = B, s(c1) = s(c2) =
C, s(d1) = s(d2) = D), but it is consistent with the species tree in (b). In (c), circles represent speciation events, and squares represent duplication
events

position of species C in this tree is uncertain. Suppose in
addition we are given the constraint graph (G, s) given in
Fig. 1. The DS-tree in Fig. 3(c) is a DS-tree for (G, s), but
is not consistent with the Fig. 3(a). However, it is consis-
tent with the species tree in Fig. 3(b), which can be derived
from Fig. 3(a) by moving species C.
See the “Results and Discussion” section for an example

of application on real data.

Hardness of optimizing the duplication nodes
Given a constraint graph (G, s) for which there exist sev-
eral possible DS-trees, wemay be interested in finding one
minimizing the number of duplication nodes. Duplication
minimization is a well-known criterion in phylogenomics
[4, 11]; for example, it is used to resolve polytomies
in gene trees in [19] and to estimate the species tree
in [20].
In this section, we consider the following three opti-

mization variants of theORTHOLOGY GRAPH SANDWICH
problem in which the number of duplication nodes has to
be minimized.We prove hardness results for each of these
problems.
k-DUPLICATION ORTHOLOGY GRAPH SANDWICH

problem (k-DOGS)

Input: a constraint graph (G, s) and an integer k;
Output: does there exists a DS-tree (T , s) containing at
most k duplication nodes, whose orthology graph is a
sandwich of G?
The above problem is equivalent to asking if (G, s) is sat-

isfiable and there exists a DS-tree for (G, s) containing at
most k duplication nodes.
SPECIES TREE CONSISTENT k-DUPLICATION ORTHOL-

OGY GRAPH SANDWICH problem (S-CONS-k-DOGS)
Input: a constraint graph (G, s), with G = (V ,M�U) and
s : V → � a species assignment, a species tree S on � and
an integer k;
Question: does there exist a DS-tree (T , s) containing at
most k duplication nodes, whose orthology graph is a
sandwich of G, and is consistent with S?
CONSISTENT k-DUPLICATION ORTHOLOGY GRAPH

SANDWICH Problem (CONS-k-DOGS)
Input: a constraint graph (G, s), with G = (V ,M �
U) and s : V → � a species assignment, and an
integer k;
Question: does there exist a DS-tree (T , s) containing at
most k duplication nodes and a species tree S, such that
the orthology graph of (T , s) is a sandwich of G and is
consistent with S?
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We first provide a reduction from 3-COLORING that
proves that k-DOGS is para-NP-hard [21] with respect to
the number of duplication nodes k (that is, k-DOGS is NP-
hard for some fixed k). This implies that k-DOGS does not
belong to the complexity classXP, meaning that the prob-
lem cannot be solved in time O(nf (k)) for some function
f (.). In what follows, [ k] denotes the set {1, · · · , k}.
k-COLORING Problem

Input: a (connected) graph G = (V ,E);
Question: does there exist a k-coloring c : V →[ k] such
that for every xy ∈ E, c(x) �= c(y)?
The following lemma will be useful in this section. An

equivalent version of this lemma could be written in terms
of cographs, and we believe a proof for such a lemma
should already exist in the literature. However, as we were
unable to find such a proof, we give one here.

Lemma4 Let (G, s) be an orthology graph with aDS-tree
containing at most k duplication nodes. Then we can find
a k + 1 coloring of its complement G in polynomial time.

Proof Let (G = (V ,E), s) be an orthology graph. We
prove the claim by induction on |V |.
If |V | = 1, then there are 0 duplication nodes in a DS-

tree for (G, s), and G has a 1-coloring, as required.
So now suppose the claim holds for all orthology graphs

(G′ = (V ′,E′), s′) with |V ′| < |V |. Let (T , σ) be a DS-
tree for (G, s) with at most k duplication nodes. Consider
ROOT(T). If ROOT(T) is a duplication node, thenG is dis-
connected, and we can find a partition V = VA � VB such
that there is no edge between VA and VB in G. Moreover,
the number of duplication nodes in T is kA+kB+1, where
kA is the number of duplication nodes in a DS-tree for
G[VA], and kB is the number of duplication nodes in a DS-
tree for G[VB]. By the inductive hypothesis, there exists
a kA + 1 coloring for G[VA], and a kB + 1 coloring for
G[VB]. It is clear that we can combine these colorings into
a kA + 1 + kB + 1 ≤ k + 1 coloring of G.
If ROOT(T) is a speciation node, thenG is disconnected,

and we can find a partition V = VA � VB such that there
are no edges betweenVA andVB inG. Moreover, the num-
ber of duplication nodes in a DS-tree for G[VA] (G[VB],
respectively) is at most k. By the inductive hypothesis,
there exists a k+1 coloring forG[VA] and a k+1 coloring
for G[B] and these can be combined into a k + 1 coloring
for G.
This proof can be turned into a polynomial time algo-

rithm as follows. If G is disconnected, find a partition
V = VA �VB with no edges between VA and VB in G, and
recursively find colorings for G[VA] and G[VB], adjust-
ing the coloring on G[VB] to assign different values from
those assigned by the coloring on G[VA].
Otherwise, find a partition V = VA � VB with no edges

between VA and VB in G, and recursively find colorings

for G[VA] and G[VB]. As each recursion splits the set of
vertices and each recursive step takes polynomial time, the
whole algorithm takes polynomial time.

Lemma 5 Given a connected graph G = (V ,E), define
a constraint graph (H = (V ,M � U), s) by setting M = ∅
and U = E, and letting s : V → � be an arbitrary species
assignment such that each gene in V is assigned to a differ-
ent species. Then for any integer k > 0,G is k-colorable if
and only if (H , s) has a solution with at most k−1 duplica-
tion nodes. Furthermore if such a solution exists then there
exists a solution consistent with an arbitrary species tree
on �.

Proof Assume that G is k-colorable, with c : V →[ k]
a k-coloring of G. Let Vi = c−1(i) for each i ∈[ k].
Thus V1, . . .Vk form a partition of V. For each i ∈[ k],
let (Ti, s|Vi) be an arbitrary DS-tree with leaves Vi such
that every internal node is a speciation node, and let xi
denote the root of Ti. We now construct a DS-tree (T , s)
as follows. Let z1, . . . , zk−1 be duplication nodes such that
ROOT(T) = z1, such that for each i ∈[ k − 2] , zi has child
nodes xi and zi+1, and the children of zk−1 are xk−1 and
xk . Now consider the graph H ′ = (V ,E′) obtained from
the disjoint union of cliques on Vi for 1 � i � k. Observe
that H ′ is a sandwich graph of (H , s). Moreover by con-
struction, we have that xy ∈ E′ if and only if LCAT (x, y) is
a speciation node. Moreover (T , s) has k − 1 duplication
nodes, soH ′ is a solution. To conclude the proof of the first
claim, observe that the converse follows from Lemma 4.
To see the second claim, observe that as H ′ is a disjoint
union of cliques, P3(H ′, s) = ∅ and therefore (H ′, s) is
consistent with any species tree on �.

As an example of the construction in the proof above,
consider the graph G = (V ,E) given in Fig. 4. The corre-
sponding constraint graph (H = (V ,M � U), s) is given
in Fig. 5, and a DS-tree for this constraint graph is given
in Fig. 6. As this DS-tree has 2 duplication nodes, G
has a 3-coloring. In particular, following the structure of
Fig. 6, we observe that there is a 1-coloring of G[ {a, e}]
(as these vertices are not adjacent in G), and a 1-coloring
of G[ {b, f }]. Combining these colorings gives a 2-coloring
of G[ {a, b, e, f }], which can then be combined with a
1-coloring of G[ {c, d}] to give a 3-coloring of G.
We now prove the NP-hardness of 2-DOGS, S-CONS-

2-DOGS or CONS-2-DOGS, using Lemma 5 and the fact
that 3-COLORING is NP-hard [22].

Theorem 3 2-DOGS is NP-hard.

Proof Given an instance G = (V ,E) of 3-COLORING, let
(H , s) be the constraint graph given by Lemma 5. Then
by Lemma 5, (H , s, 2) is a YES-instance of k-DOGS if and
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Fig. 4 A graph G = (V , E)

only if G is 3-colorable. As 3-COLORING is NP-hard, so is
2-DOGS.

Using the same technique as for Theorem 3, we can
prove the same NP-hardness result for S-CONS-2-DOGS
and CONS-2-DOGS. The proofs are identical to that of
Theorem 3, except that in the case of Theorem 4 we con-
struct an arbitrary species tree S on � in addition to the
constraint graph (H , s).

Theorem 4 S-CONS-2-DOGS is NP-hard.

Theorem 5 CONS-2-DOGS is NP-hard.

Let MINDOGS, S-CONS-MINDOGS, and CONS-
MINDOGS denote the minimization versions of k-DOGS,
S-CONS-k-DOGS, and CONS-k-DOGS respectively, in
which we want to find a solution with the minimum num-
ber of duplication nodes. Let GRAPH COLORING denote
the minimization version of k-COLORING. As GRAPH
COLORING has no polynomial time n1−ε′-approximation
for any ε′ > 0, unless P=NP [23], we can prove the
following theorem.

Fig. 5 A constraint graph (H = (V ,M�U), s) derived from G by setting
M = ∅ and U = E, and letting s : V → � be an arbitrary species
assignment such that each gene is mapped to a different species

Theorem 6 For any ε > 0, there is no polynomial time
algorithm that takes as input an instance of MINDOGS,
and returns a solution with at most n1−ε · k duplication
nodes if there exists a solution with at most k duplication
nodes, unless P = NP.

Proof Let G = (V ,E) be an instance of GRAPH COL-
ORING. Without loss of generality we may assume that G
is connected. Let (H , s) be the constraint graph given by
Lemma 5.
Now for any ε > 0, fix an integer n0 and ε′ > 0 such

that n1−ε + 1 < n1−ε′ for any n ≥ n0.
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Fig. 6 A DS-tree for (H = (V ,M � U), s). Note that the partition
{a, e}, {b, f }, {c, d} corresponds to a 3-coloring of G. Circles represent
speciation events, and squares represent duplication events

Suppose that there exists a polynomial-time n1−ε-
approximation for MINDOGS, i.e. an algorithm that for
any instance (H , s) with n vertices, finds a solution with
at most n1−ε · k duplication nodes if there exists a solu-
tion with at most k duplication nodes. We show that there
exists a polynomial-time n1−ε′-approximation for GRAPH
COLORING.
Let G be an instance of GRAPH COLORING with n ver-

tices, and suppose without loss of generality that n ≥ n0
(as otherwise the problem can be solved exactly in poly-
nomial time). Let (H , s) be the instance of MINDOGS
constructed from G as above. Now run the supposed
approximation algorithm for MINDOGS on (H , s). If G is
k-colorable for any k > 1, then by Lemma 5, there exists
a solution for (H , s) with at most k − 1 duplication nodes.
Therefore ifG is k-colorable, the algorithm returns a solu-
tion with at most n1−ε · (k − 1) duplication nodes. (Note
that we may assume the solution contains at least 1 dupli-
cation node, as otherwise G would be disconnected). Let
(H ′, s) be the orthology graph for this solution. Then by
Lemma 4, we have a n1−ε ·(k−1)+1-coloring forH ′. AsG
is a subgraph ofH ′, this is also a n1−ε · (k−1)+1-coloring
for G.
As n ≥ n0, n1−ε · (k − 1) + 1 ≤ (n1−ε + 1) · k ≤ n1−ε′ · k

and so we have a polynomial time n1−ε′-approximation for
GRAPH COLORING, a contradiction.

Using the same technique as for Theorem 6, we can
prove the same inapproximability result for S-CONS-
MINDOGS and CONS-MINDOGS. The proofs are iden-
tical to that of Theorem 6, except that in the case of
Theorem 7 we construct an arbitrary species tree S on �

in addition to the constraint graph (H , s).

Theorem 7 For any ε > 0, there is no polynomial time
algorithm that takes as input an instance of S-CONS-
MINDOGS, and returns a solution with at most n1−ε · k
duplication nodes if there exists a solution with at most k
duplication nodes, unless P = NP.

Theorem 8 For any ε > 0, there is no polynomial
time algorithm that takes as input an instance of CONS-
MINDOGS, and returns a solution with at most n1−ε · k
duplication nodes if there exists a solution with at most k
duplication nodes, unless P = NP.

To summarise the results in this section: given a con-
straint graph on n vertices, it is NP-hard to find a DS-tree
for that graph with at most k duplication nodes, even
when k = 2. This holds regardless of whether we require
the DS-tree to be consistent, or whether we are given a
species tree that it should be consistent with. Viewed as
a minimization problem, it is NP-hard even to find an
n1−ε-approximate solution, for any ε > 0.

Results and Discussion
We integrated Algorithm 1 to the software provided at
[24] by the authors of [9]. Note that the previous version
of the program only permitted to check satisfiability and
consistency of a constraint graph with respected to a given
species tree S.
We used the modified software to reanalyze the data set

in [9]. This data set was constructed by randomly choos-
ing 265 gene families of vertebrates with more than 20
genes from Ensembl [25]. Each gene family was then anal-
ysed with ProteinOrtho [26] using 9 different parameter
settings, yielding 2385 different constraint graphs. Here
S is the Ensembl species tree, which can be downloaded
at [27].
For this data set we have that, apart from one case, all

satisfiable constraint graphs are also consistent. In 533 out
of 2385 cases, the constraint graph was found to be con-
sistent, but not consistent with S. We were interested in
finding out how greatly the graphs in this set (denoted
CG) conflicted with S. Indeed, some nodes in the Ensembl
species tree, for example the position of Equus, Tupaia
and Cavia, do not enjoy a consensus in the community, so
some contradictions with S are expected.
Note that we can use the graph G′ outputted by Algo-

rithm 1 to obtain a species tree in the following way: we
compute the set T of all P3(G′, s) and then feed T to the
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BUILD algorithm [18], which will return a species tree
displaying all the triplets in T (in practice, our implemen-
tation of Algorithm 1 is able to construct a species tree
directly).
This species tree can fail to be binary, if the informa-

tion contained in T is sparse (this is actually the case
for our data set: the maximum number of internal nodes
over all species trees reconstructed by our approach from
constraint graphs in CG was 6, with an average of 1.5).
To estimate the discordancy between the Ensembl

species tree S and each of the species trees S′ recon-
structed by our approach for a constraint graph in CG, we
did the following: for each pair (S, S′) we constructed a
tree S′′ displaying the maximum number of triplets of S
not contradicting S′ using PhySIC_IST [28].We then com-
puted the number of triplets displayed by S not in S′′, as a
proportion of the total number of triplets displayed by S:
the higher this number is, the higher the conflict between
S and S′. This number, denoted c(S, S′), can be used to dif-
ferentiate gene families that are goodmarkers (i.e. markers
highly coherent with the given species tree, which will
have a low c(S, S′)) from gene families that are bad mark-
ers (with a high c(S, S′)). The histogram of the values of
c(S, S′) for our data set is given in Fig. 7. This shows that
several constraint graphs, even though not consistent with
S, are not in high contradiction with it and thus the cor-
responding gene families can still be considered as good
markers.

Conclusions
In this paper, we extend the results of [9] by giving a
O(n3) time algorithm to decide whether C is consistent,
even when the species tree is not known and C is not
full. We also incorporated this algorithm into the software
provided at [24]. The algorithm has important applica-
tions in providing evidence for the structure of a species
tree when that species tree is unknown. It also allows us
to see how much an ‘inconsistent’ set of constraints is

Fig. 7 The histogram of the values of c(S, S′) for our data set

in conflict with a known species tree, as the algorithm
returns a species tree for which those constraints are con-
sistent, if any exists. On the negative side, we show that
the problem ofminimizing duplications nodes in DS-trees
is NP-hard even when the number of duplications is very
small, and it is also hard to find approximate solutions for
this criterion.
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