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Abstract. The k-restricted edge-connectivity of a graph G, denoted by
λk(G), is defined as the minimum size of an edge set whose removal leaves
exactly two connected components each containing at least k vertices.
This graph invariant, which can be seen as a generalization of a mini-
mum edge-cut, has been extensively studied from a combinatorial point
of view. However, very little is known about the complexity of comput-
ing λk(G). Very recently, in the parameterized complexity community
the notion of good edge separation of a graph has been defined, which
happens to be essentially the same as the k-restricted edge-connectivity.
Motivated by the relevance of this invariant from both combinatorial and
algorithmic points of view, in this article we initiate a systematic study of
its computational complexity, with special emphasis on its parameterized
complexity for several choices of the parameters. We provide a number
of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.

Keywords: Graph cut; k-restricted edge-connectivity; Good edge sepa-
ration; Parameterized complexity; FPT-algorithm; Polynomial kernel.

1 Introduction

Motivation. The k-restricted edge-connectivity is a graph invariant that has
been widely studied in the literature from a combinatorial point of view [1, 4,
17, 22, 32, 33]. Since the classical edge-connectivity may not suffice to measure
accurately how connected a graph is after deleting some edges, Esfahanian and
Hakimi [16] proposed in 1988 the notion of restricted edge-connectivity. Given
a graph G, a non-empty set S ⊆ E(G) is an edge-cut if G − S has at least
two connected components. An edge-cut S is called a restricted edge-cut if there
are no isolated vertices in G − S. The restricted edge-connectivity λ′(G) is the
minimum cardinality over all restricted edge-cuts S.

Inspired by the above definition, Fàbrega and Fiol [17] proposed in 1994 the
notion of k-restricted edge-connectivity, where k is a positive integer, generalizing
this notion. An edge-cut S is called a k-restricted edge-cut if every component

? An extended abstract of this article appeared in the Proceedings of the 41st Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages
219-233, volume 9224 of LNCS, Garching, Germany, June 2015.
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2 L. P. Montejano and I. Sau

of G−S has at least k vertices. Assuming that G has k-restricted edge-cuts, the
k-restricted edge-connectivity of G, denoted by λk(G), is defined as the minimum
cardinality over all k-restricted edge-cuts of G, i.e.,

λk(G) = min{|S| : S ⊆ E(G) is a k-restricted edge-cut}.

Note that for any graph G, λ1(G) is the size of a minimum edge-cut, and
λ2(G) = λ′(G). A connected graph G is called λk-connected if λk(G) exists. Let
[X,Y ] denote the set of edges between two disjoint vertex sets X,Y ⊆ V (G),
and let X denote the complement X = V (G)\X of vertex set X. It is clear that
for any k-restricted cut [X,X] of size λk(G), the graph G − [X,X] has exactly
two connected components.

Very recently, Chitnis et al. [6] defined the notion of good edge separation for
algorithmic purposes. For two positive integers k and `, a partition (X,X) of
the vertex set of a connected graph G is called a (k, `)-good edge separation if
|X|, |X| > k, |[X,X]| ≤ `, and both G[X] and G[X] are connected. That is, it
holds that λk(G) ≤ ` if and only if G admits a (k − 1, `)-good edge separation.
Thus both notions, which have been defined independently and for which there
existed no connection so far, are essentially the same.

Good edge separations turned out to be very useful for designing parameter-
ized algorithms for cut problems [6], by using a technique known as recursive un-
derstanding, which basically consists in breaking up the input graph into highly
connected pieces in which the considered problem can be efficiently solved. It
should be mentioned that Kawarabayashi and Thorup [23] had defined before a
very similar notion for vertex-cuts and introduced the idea of recursive under-
standing. This technique has also been subsequently used in [10,24,29].

Very little is known about the complexity of computing the k-restricted edge-
connectivity of a graph, in spite of its extensive study in combinatorics. In this
article we initiate a systematic analysis on this topic, with special emphasis on
the parameterized complexity of the problem. In a nutshell, the main idea is
to identify relevant parameters of the input of some problem, and study how
the running time of an algorithm solving the problem depends on the chosen
parameters. See [8, 13,18,28] for introductory textbooks to this area.

Our results. We consider the following two problems concerning the k-
restricted edge-connectivity of a graph.

Existential Restricted Edge-connectivity (EREC)

Instance: A graph G = (V,E) and a positive integer k.
Question: Is G λk-connected ?

Restricted Edge-connectivity (REC)

Instance: A connected graph G = (V,E) and a positive integer k.
Output: λk(G), or a correct report that G is not λk-connected.
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The latter problem can be seen as a generalization of computing a Mini-
mum Cut in a graph, which is polynomial-time solvable [30]. In Section 2 we
prove that it is NP-hard, even restricted to λk-connected graphs. In Section 3
we study the parameterized complexity of the REC problem. More precisely,
given a connected graph G and two integers k and `, we consider the problem of
determining whether λk(G) ≤ `. Existing results concerning good edge separa-
tions imply that the problem is FPT when parameterized by k and `. We prove
that it is W[1]-hard when parameterized by k, and that it is FPT when parame-
terized by ` but unlikely to admit polynomial kernels. Moreover, we prove that
the EREC problem is FPT when parameterized by k. Finally, in Section 4 we
also consider the maximum degree ∆ of the input graph as a parameter, and
we prove that the EREC problem remains NP-complete in graphs with ∆ ≤ 5,
and that the REC problem is FPT when parameterized by k and ∆. Note that
this implies, in particular, that the REC problem parameterized by k is FPT in
graphs of bounded degree. Table 1 below summarizes the results of this article.

Problem Classical Parameterized complexity with parameter
complexity k + ` k ` k +∆

Is G NPc, even FPT FPT
λk-connected ? if ∆ ≤ 5 ? (Thm 4) ? (Thm 8)

(Thm 7)

NPh, even if G FPT W[1]-hard FPT (Thm 5) FPT
λk(G) ≤ ` ? is λk-connected (Thm 2, (Thm 3) No poly kernels (Thm 8)

(Thm 1) by [6]) (Thm 6)

Table 1. Summary of our results, where ∆ denotes the maximum degree of the
input graph G, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard).
The symbol ‘?’ denotes that the problem is not defined for that parameter.

Further research. Some open questions are determining the existence of
polynomial kernels for the REC problem with parameters k + ` or k + ∆,
speeding-up the FPT algorithm of Theorem 5 (which is quite inefficient), im-
proving the bound on the maximum degree in Theorem 7, and studying the
(parameterized) complexity of the REC problem in planar graphs and other
sparse graph classes.

Notation. We use standard graph-theoretic notation; see for instance [11].
For a graph G, let ∆(G) denote its maximum degree, and for a vertex v, its
degree in G is denoted by dG(v). If S ⊆ V (G), we define G− S = G[V (G) \ S],
and if S ⊆ E(G), we define G− S = (V (G), E(G) \ S). Unless stated otherwise,
throughout the article n denotes the number of vertices of the input graph of
the problem under consideration. We will always assume that the input graphs
are connected.
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2 Preliminary results

Clearly, any connected graph G is λ1-connected, and λ1(G) can be computed in
polynomial time by a Minimum Cut algorithm (cf. [30]). However, for k ≥ 2,
there exist infinitely many connected graphs which are not λk-connected, such
as the graphs containing a cut vertex u such that every component of G − u
has at most k − 1 vertices (these graphs are called flowers in the literature [4],
and correspond exactly to stars when k = 2). Moreover, the EREC problem is
hard. Indeed, given a graph G, if n is even and k = n/2, by [14, Theorem 2.2] it
is NP-complete to determine whether G contains two vertex-disjoint connected
subgraphs of order n/2 each. We can summarize this discussion as follows.

Remark 1. The EREC problem is NP-complete.

In Section 4 we will strengthen the above hardness result to the case where
the maximum degree of the input graph is at most 5.

Note that Remark 1 implies that the REC problem problem is NP-hard. Fur-
thermore, even if the input graph G is guaranteed to be λk-connected, computing
λk(G) remains hard, as shown by the following theorem.

Theorem 1. The REC problem is NP-hard restricted to λk-connected graphs.

Proof: We prove it for n even and k = n/2. The reduction is from the Minimum
Bisection problem1 restricted to connected 3-regular graphs, which is known
to be NP-hard [2]. Given a 3-regular connected graph G with even number of
vertices as instance of Minimum Bisection, we construct from it an instance
G′ of REC by adding two non-adjacent universal vertices v1 and v2. Note that
G′ is λn/2-connected, since any bipartition of V (G′) containing v1 and v2 in
different parts induces two connected subgraphs.

We claim that v1 and v2 should necessarily belong to different connected
subgraphs in any optimal solution in G′. Indeed, let (V1, V2) be a bipartition of
V (G) such that |[V1, V2]| = λn/2(G′), and assume for contradiction that v1, v2 ∈
V1. Since G is connected, there is a vertex u ∈ V2 with at least one neighbor
in V1 \ {v1, v2}. Let V ′1 := V1 ∪ {u} \ {v2} and V ′2 := V2 ∪ {v2} \ {u}, and note
that both G[V ′1 ] and G[V ′2 ] are connected. Since u has at least one neighbor in
V1 \ {v1, v2}, G is 3-regular, and v1 and v2 are non-adjacent and adjacent to all
other vertices ofG′, it can be checked that |[V ′1 , V ′2 ]| ≤ |[V1, V2]|−1 = λn/2(G′)−1,
contradicting the definition of λn/2(G′).

Therefore, solving the REC problem in G′ corresponds exactly to solving the
Minimum Bisection problem in G, concluding the proof. �

1 Given a graph G with even number of vertices, the Minimum Bisection problem
consists in partitioning V (G) into two equally-sized parts minimizing the number of
edges with one endpoint in each part.
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3 A parameterized analysis

The NP-hardness results of the previous section naturally lead to considering
parameterized versions of the problem. In this section we consider the following
three distinct parameterizations.

Parameterized Restricted Edge-connectivity (p-REC)

Instance: A connected graph G = (V,E) and two integers k and `.
Parameter 1: The integers k and `.
Parameter 2: The integer k.
Parameter 3: The integer `.

Question: λk(G) ≤ ` ?

As mentioned in the introduction, determining whether λk(G) ≤ ` corre-
sponds exactly to determining whether G admits a (k − 1, `)-good edge sep-
aration. This latter problem has been recently shown to be solvable in time
2O(min{k,`} log(k+`)) · n3 log n by Chitnis et al. [6, Lemma II.2].

Theorem 2 (Chitnis et al. [6]). The p-REC problem is FPT when parame-
terized by both k and `.

We would like to note that any improvement on the running time of the
algorithm behind Theorem 2 would answer an open question raised in [7,9], and
would have direct consequences and improve the algorithms described in [6, 10,
24].

As pointed out in [16,21], the p-REC problem can be solved in time O∗(n2k).
Roughly, the idea is to guess two sets of k vertices inducing a connected sub-
graph, contract them into two vertices s and t, and then call a polynomial-time
Minimum Cut algorithm between s and t (cf. [30]). In other words, it is in XP
when parameterized by k. The following theorem shows that this is essentially
the best algorithm we can hope for when the parameter is only k. Indeed, since
the blow-up of the parameter in the reduction is linear, the fact that k-Clique
cannot be solved in time f(k) · no(k) unless an unlikely collapse occurs in pa-
rameterized complexity theory [5] implies that the p-REC problem cannot be
solved in time f(k) · no(k) either.

Theorem 3. The p-REC problem is W[1]-hard when parameterized by k.

Proof: We reduce from k-Clique, which is known to be W[1]-hard [13]. The
parameterized reduction is the same as the one given by Downey et al. in [12,
Theorem 2] to show the W[1]-hardness of the Cutting k Vertices from a
Graph problem, only the analysis changes.

Let G = (V,E) be an n-vertex graph for which we wish to determine whether
it has a k-clique. We construct a graph G′ as follows:

(1) We start with a clique C of size n3 and n representative vertices correspond-
ing bijectively with the vertices of G.
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(2) Every representative vertex v is connected to n2 − dG(v) arbitrary vertices
of C.

(3) If uv ∈ E(G) then uv ∈ E(G′).

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Fig. 1. Illustration of the graph G′ in the proof of Theorem 3.

See Fig. 1 for an illustration of G′. Consider ` = kn2−2
(
k
2

)
and take k ≤ n/2.

We claim that G has a k-clique if and only if G′ is a Yes-instance of p-REC.
Suppose first that K ⊆ V (G) is a k-clique in G. Obviously, K is connected in

G′ and has k vertices. On the other hand, G′−K is also connected with at least
n3−|K| > k vertices. Finally, it is straightforward to check that |[K,V (G′)\K]| =
kn2 − 2

(
k
2

)
= `.

In the other direction, suppose G′ has a k-restricted edge-cut with at most
` edges, i.e., there exists K ⊆ V (G′) such that G[K] and G′ −K are connected,
|K| ≥ k, |V (G′) \ K| ≥ k, and |[K,V (G′) \ K]| ≤ `. Two cases need to be
distinguished.

Case 1. C ∩K = ∅. Then every vertex of K must be a representative vertex.
Hence |[K,V (G′) \K]| = |K|n2 − 2|E(G′[K])| since every representative vertex
has degree n2. As by hypothesis |[K,V (G′) \ K]| ≤ ` = kn2 − 2

(
k
2

)
, it follows

that |E(G′[K])| =
(
k
2

)
, hence K must be a k-clique.

Case 2. C ∩ K 6= ∅. Note that for every bipartition (C1, C2) of C we have
that |[C1, C2]| ≥ n3− 1 > `. Now suppose C ∩ (V (G′) \K) 6= ∅ and consider the
bipartition C1 = C ∩K and C2 = C ∩ (V (G′)\K) of C. Then |[K,V (G′)\K]| ≥
|[C1, C2]| ≥ n3−1 > `, a contradiction. Therefore, we have that C∩(V (G′)\K) =
∅. The proof concludes by applying Case 1 to V (G′) \K instead of K. �

In contrast to Theorem 3 above, we now prove that the EREC problem
(which is NP-complete by Remark 1) is FPT when parameterized by k. The
proof uses the technique of splitters introduced by Naor et al. [27], which has
also been recently used for designing parameterized algorithms in [6,10,24]. Our
main tool is the following lemma.

Lemma 1 (Chitnis et al. [6]). There exists an algorithm that given a set U of
size n and two integers a, b ∈ [0, n], outputs in time 2O(min{a,b}·log(a+b)) · n log n
a set F ⊆ 2U with |F| = 2O(min{a,b}·log(a+b)) · log n such that for every two sets
A,B ⊆ U , where A∩B = ∅, |A| ≤ a, and |B| ≤ b, there exists a set S ∈ F with
A ⊆ S and B ∩ S = ∅.
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Theorem 4. The EREC problem is FPT when parameterized by k. More pre-
cisely, it can be solved by an algorithm running in time 2O(k log k) · n2 log n.

Proof: We use the easy property thatG is λk-connected if and only ifG contains
two vertex-disjoint trees T1 and T2 such that |V (T1)| ≥ k and |V (T2)| ≥ k. In
order to apply Lemma 1, we take U = V (G) and a = b = k, obtaining in time
kO(k) ·n log n the desired family F of subsets of vertices of G. Now, if such trees
T1 and T2 exist, then necessarily there exists a set S ∈ F such that V (T1) ⊆ S
and V (T2)∩ S = ∅. Therefore, in order to determine whether G is λk-connected
or not, it suffices to check, for each set S ∈ F , whether both G[S] and G − S
contain a connected component with at least k vertices. (Note that for each such
set S ∈ F , this can be done in linear time.) Indeed, if such a set S exists, then
clearly G is λk-connected. Otherwise, by the property of the family F , G does
not contain two disjoint trees T1 and T2 of size k each, and therefore G is not
λk-connected. �

Concerning the parameterized complexity of the p-REC problem, in view of
Theorems 2 and 3, it just remains to settle the case when the parameter is `
only. The following theorem provides an answer to this question. We will need
the following result, which is a reformulation of [31, Corollary 1].

Lemma 2 (van Bevern et al. [31]). Given a graph G on n vertices and an
integer `, determining whether λbn/2c(G) ≤ ` can be solved in time f(`) ·n11 for
some explicit function f depending only on `.

Theorem 5. The p-REC problem is FPT when parameterized by `.

Proof: If k ≤ `, we solve the problem using the FPT algorithm given by Theo-
rem 2 with parameter k+` ≤ 2`. Otherwise, in the case where k > `, we proceed
to Turing-reduce the problem to the particular case where k = bn/2c, which is
FPTwith parameter ` by Lemma 2 above, as follows. For each vertex v of the
n-vertex input graph G, and for each integer p with 0 ≤ p ≤ n − 2k, let Gpv be
the graph obtained from G by adding a clique Kp on p vertices and all the edges
between vertex v and the vertices in Kp.

Claim. It holds that λk(G) ≤ ` if and only if there exist a vertex v ∈ V (G) and
an integer p with 0 ≤ p ≤ n− 2k such that λbn+p

2 c(G
p
v) ≤ `.

Proof: Assume first that λk(G) ≤ `. Let (X,X) be a partition of V (G)
achieving λk(G), where we assume without loss of generality that X ≥ X, let
p = |X| − |X|, and let v be any vertex in X. Then p ≤ (n− k)− k = n− 2k and
by construction it holds that λbn+p

2 c(G
p
v) ≤ λk(G) ≤ `.

Conversely, suppose that there exist a vertex v ∈ V (G) and an integer p
with 0 ≤ p ≤ n − 2k such that λbn+p

2 c(G
p
v) ≤ `. Let (X,X) be a partition of

V (Gpv) achieving λbn+p
2 c(G

p
v), and assume without loss of generality that v ∈ X.

We claim that the clique Kp is entirely contained in X. Indeed, suppose for
contradiction that Kp ∩X 6= ∅, and let K = Kp ∩X. Since Gpv[X] is connected
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and v ∈ X, necessarily X = K. We distinguish two cases. If p < k, then
|X| = |K| ≤ p − 1 ≤ k − 2 ≤ n/2 − 2 <

⌊
n+p
2

⌋
, contradicting the definition

of λbn+p
2 c(G

p
v). Otherwise, if p ≥ k, then we use that the number of edges in

[X,X] is at least the minimum cut of the clique of size p+1 induced by Kp∪{v},
which is equal to p. That is, |[X,X]| ≥ p ≥ k > `, contradicting the hypothesis
that (X,X) is a partition of V (Gpv) achieving λbn+p

2 c(G
p
v) ≤ `.

We now claim that the partition of V (G) given by (X,X \ Kp) defines a
k-restricted edge-cut of G with at most ` edges, concluding the proof. First note
that both G[X] and G[X \Kp] are connected, since both Gpv[X] and Gpv[X] are
connected by hypothesis, and the removal of Kp from Gpv[X] clearly preserves
connectivity. On the other hand, we have that |X| ≥

⌊
n+p
2

⌋
≥
⌊
n
2

⌋
≥ k and

|X \ Kp| = |X| − p ≥
⌊
n+p
2

⌋
− p ≥ n−p−1

2 ≥ n−(n−2k)−1
2 = k − 1

2 , and since

both |X \Kp| and k are integers, the latter inequality implies that |X \Kp| ≥ k.
Finally, since Kp ⊆ X, it holds that |[X,X \Kp]| = |[X,X]| ≤ `. 3

Note that the above claim yields the theorem, as it implies that the problem
of deciding whether λk(G) ≤ ` can be solved by invoking O(n2) times the FPT
algorithm given by Lemma 2. �

To complement Theorem 5, in the next theorem we prove that the p-REC
problem does not admit polynomial kernels when parameterized by `, unless
coNP ⊆ NP/poly.

Theorem 6. Unless coNP ⊆ NP/poly, the p-REC problem does not admit
polynomial kernels when parameterized by `.

Proof: The proof is strongly inspired by the one given by van Bevern et al. [31,
Theorem 3] to prove that the Minimum Bisection problem does not admit
polynomial kernels, which in turn resembles the proof given by Garey et al. [20]
to prove the NP-hardness of Minimum Bisection. The main difference with
respect to the proof given in [31] is that we need to make the appropriate mod-
ifications to guarantee that both parts left out by the edge-cut are connected,
which is not an issue in the Minimum Bisection problem.

We will first rule out the existence of polynomial kernels for the generalization
of p-REC where the edges have non-negative integer weights, and the objective
is to decide whether the input graph can be partitioned into two connected
subgraphs with at least k vertices each by removing a set of edges whose total
weight does not exceed `. We call this problem Edge-Weighted p-REC. Then
it will just remain to get rid of the edge weights. This is done at the end of the
proof of the theorem.

As shown by Bodlaender et al. [3], in order to prove that Edge-Weighted
p-REC does not admit polynomial kernels when parameterized by ` (assuming
that coNP ⊆ NP/poly), it is sufficient to define a cross composition from an NP-
hard problem to Edge-Weighted p-REC. In our case, the NP-hard problem is
Maximum Cut (see [19]), which is defined as follows. Given a graph G = (V,E)
and an integer p, one has to decide whether V can be partitioned into two sets
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A and B such that there are at least p edges with an endpoint in A and an
endpoint in B.

A cross composition from Maximum Cut to Edge-Weighted p-REC pa-
rameterized by ` consists of a polynomial-time algorithm that, given t instances
(G1, p1), . . . , (Gt, pt) of Maximum Cut, constructs an instance (G∗, k, `) of
Edge-Weighted p-REC such that (G∗, k, `) is a Yes-instance if and only
if one of the t instances of Maximum Cut is a Yes-instance, and such that ` is
polynomially bounded as a function of max1≤i≤t |V (Gi)|. Similarly to [31], we
may safely assume that for each 1 ≤ i ≤ t we have |V (Gi)| =: n and pi =: p
(by the arguments given in [3]), that 1 ≤ p ≤ n2 (as if p = 0 all instances
are Yes-instances, and if p > n2 all instances are No-instances), and that t is
odd (otherwise, we can add a No-instance consisting of an edgeless graph on n
vertices).

Given (G1, p), . . . , (Gt, p), we create G∗ as follows; see Fig. 2 for an illustra-
tion. Let w1 := 5n2 and w2 := 5. For each graph Gi = (Vi, Ei) add to G∗ the
vertices in Vi and a clique V ′i with |Vi| = n vertices whose edges have weight
w1. Add an edge of weight w1 between each vertex in Vi and each vertex in
V ′i . For each pair of vertices u, v ∈ Vi, add the edge {u, v} to G∗ with weight
w1 − w2 if {u, v} ∈ Ei, and with weight w1 otherwise. Let s1i , s

2
i be two ar-

bitrary distinct vertices in V ′i , which we call link vertices. For 1 ≤ i ≤ t − 1,
add two edges with weight 1 between s1i and s1i+1 and between s2i and s2i+1,
and two edges with weight 1 between s1t and s11 and between s2t and s21. This
completes the construction of G∗. These 2t edges among distinct V ′i ’s are called
chain edges (cf. the thicker edges in Fig. 2). Finally, we set k := |V (G∗)|/2 and
` := w1n

2−w2p+4. Note that k is not polynomially bounded in terms of n, but
this is not a problem since the parameter we consider is `, which is bounded by
5n4. This construction can be clearly performed in polynomial time in t · n. We
claim that (G∗, k, `) is a Yes-instance of Edge-Weighted p-REC if and only
if there exists i ∈ {1, . . . , t} such that (Gi, p) is a Yes-instance of Maximum
Cut.

w1

w1

w1

w1

V1 V ′
1 V2 V ′

2 Vi V ′
i Vt V ′

t

w1w1w1

1

1

1

1

−w2s11

s21

s12

s22
s2i

s1i s1t

s2t

Fig. 2. Illustration of the graph G∗ in the proof of Theorem 6.
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Assume first that there exists i ∈ {1, . . . , t} such that (Gi, p) is a Yes-
instance of Maximum Cut. Assume without loss of generality that i = 1, and
let V1 = A ] B such that there are at least p edges in E1 between A and B.
We proceed to partition V (G∗) into two equally-sized sets A′ and B′ such that
both G∗[A′] and G∗[B′] are connected, and such that the total weight of the
edges in G∗ with one endpoint in A′ and one endpoint in B′ is at most `. The
set A′ contains V1 ∩ A, any set of |B| vertices in V ′1 containing exactly one of

s11 and s21 (this is possible since 1 ≤ |B| ≤ n − 1), and
⋃dt/2e
i=2 Vi ∪ V ′i . Then

B′ = V (G∗) \ A′. Since t is odd, |A′| = |B′|. Let us now see that G∗[A′] is
connected. As 1 ≤ |A| ≤ n− 1, the set V1 ∩A′ is connected to V ′1 ∩A′, which is
connected to V ′2 since A′ contains exactly one of the link vertices s11 and s21. The

graph G∗[
⋃dt/2e
i=2 Vi ∪ V ′i ] is clearly connected because of the chain edges, which

implies that G∗[A′] is indeed connected. The proof for the connectivity of G∗[B′]
is similar, using that V1∩B′ is connected to V ′1 ∩B′ since 1 ≤ |B| ≤ n−1, which
is in turn connected to V ′t since B′ contains exactly one of the link vertices s11
and s21. Finally, let us show that the total weight of the edges between A′ and
B′ is at most `. Note first that two chain edges incident to V ′1 and two chain
edges incident to V ′dt/2e belong to the cut defined by A′ and B′, and no other
chain edge belongs to the cut. Beside the chain edges, only edges in the graph
G∗[V1 ∪ V ′1 ] are cut. Note that G∗[V1 ∪ V ′1 ] is a clique on 2n vertices and each of
(V1 ∪ V ′1)∩A′ and (V1 ∪ V ′1)∩B′ contains n vertices. Since |[A,B]| ≥ p, at least
p of the edges of weight w1 − w2 belong to the cut. Therefore, the total weight
of the cut is at most w1n

2 − w2p+ 4 = `.

Conversely, assume that for all i ∈ {1, . . . , t}, (Gi, p) is a No-instance of
Maximum Cut, and we want to prove that (G∗, k, `) is a No-instance of Edge-
Weighted p-REC. Let A]B be a partition of V (G∗) such that |A| = |B| and
both G∗[A] and G∗[B] are connected, and such that the weight of the edges
between A and B is minimized among all such partitions. For 1 ≤ i ≤ t, we let
ai := |(Vi ∪ V ′i ) ∩ A|. Since for 1 ≤ i ≤ t, (Gi, p) is a No-instance of Maximum
Cut, any bipartition of Vi cuts at most p−1 edges. Therefore, the total weight of
the edges between (Vi∪V ′i )∩A and (Vi∪V ′i )∩B is at least w1ai(2n−ai)−(p−1)w2.

Since t is odd, necessarily at least one of the graphsGi is cut by A]B. Assume
first that exactly one graph Gi is cut by A ] B. Since |A| = |B|, we have that
ai = n, so the value of the cut is at least w1n

2− (p− 1)w2 = w1n
2− pw2 +w2 >

w1n
2 − pw2 + 4 = `, and thus (G∗, k, `) is a No-instance of Edge-Weighted

p-REC.

We claim that there is always exactly one graph Gi cut by A]B. Assume for
contradiction that it is not the case, that is, that there are two strictly positive
values ai, aj for some i 6= j. By symmetry between A and B, we may assume
that ai+aj ≤ 2n. The total weight of the edges cut in G∗[Vi∪V ′i ] and G∗[Vj∪V ′j ]
is at least

w1ai(2n− ai)− (p− 1)w2 + w1aj(2n− aj)− (p− 1)w2 =
2nw1(ai + aj)− w1(a2i + a2j )− 2w2(p− 1).
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Now we construct another solution A′ ]B′ of Edge-Weighted p-REC in
G∗ where the ai + aj vertices are cut in only one of Vi ∪ V ′i and Vj ∪ V ′j , say
Vi ∪ V ′i (note that this is possible since ai + aj ≤ 2n). In order to do so, as far
as there exists such a pair ai, aj , we proceed as follows. If ai + aj = 2n, then
Vi ∪ V ′i is entirely contained in A′ or B′. Otherwise, if ai + aj < 2n, then we
choose (Vi ∪ V ′i ) ∩A′ such that it contains exactly one of s1i and s2i . At the end
of this procedure, exactly one graph Gi is cut. Finally, we arrange the other
G`’s, with ` 6= i, consecutively into A′ and B′. That is, we put the vertices of⋃i+bt/2c
`=i+1 V`∪V`′ into A′, and the vertices of

⋃i−1
`=i+dt/2e V`∪V`′ into B′, where the

indices are counted cyclically from 1 to t. The connectivity of both G∗[A′] and
G∗[B′] is guaranteed by the chain edges and the choice of the selector vertices
s1i and s2i .

Let i, j be two indices for which the above procedure has been applied. Taking
into account that each V ′i has four incident chain edges, the total weight of the
edges cut in G∗[Vi ∪ V ′i ] and G∗[Vj ∪ V ′j ] by the new solution is at most

w1(ai + aj)(2n− ai − aj) + 8 =
2nw1(ai + aj)− w1(a2i + a2j )− 2w1aiaj + 8.

That is, the weight of the cut defined by A ]B minus the weight of the cut
defined by A′ ]B′ is at least

−2w2(p− 1) + 2w1aiaj − 8 =
2(w1aiaj − w2(p− 1)− 4) ≥

2(w1 − w2(n2 − 1)− 4) > 0,

where we have used that ai, aj ≥ 1, p ≤ n2, w1 = 5n2, and w2 = 5. In
other words, A′ ] B′ defines a cut of strictly smaller weight, contradicting the
definition of A ]B.

To conclude the proof of the theorem, it just remains to deal with the
edge weights. As in [31], we show how to convert the instance (G∗, k, `) of
Edge-Weighted p-REC that we just constructed into an equivalent instance
of p-REC such that the resulting parameter remains polynomial in n. Given
(G∗, k, `), we define (Ĝ, k, `) as the instance of p-REC, where Ĝ is an unweighted
graph obtained from G∗ as follows. We replace each vertex v of G∗ with a clique
Cv of size w1 + ` + 1, and for each edge {u, v} of G∗ with weight w, we add w
pairwise disjoint edges between the cliques Cu and Cv. Since no cut of size at
most ` in Ĝ can separate a clique Cv introduced for a vertex v, it follows that
(G∗, k, `) is a Yes-instance of Edge-Weighted p-REC if and only if (Ĝ, k, `)
is a Yes-instance of p-REC. Finally, it is clear that the desired cut size ` is still
polynomial in n. �

4 Considering the maximum degree as a parameter

Towards understanding the parameterized complexity of the REC problem, one
may wonder whether considering the maximum degree of the input graph as
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an extra parameter turns the problem easier (this is a classical approach in
parameterized complexity, see for instance [25, 26]). We first prove that, from a
classical complexity point of view, bounding the degree of the input graph does
not turn the problem easier. Before stating the hardness result, we need the
define the 3-Dimensional Matching problem, 3DM for short.

An instance of 3DM consists of a set W = R ∪ B ∪ Y , where R,B, Y are
disjoint sets with |R| = |B| = |Y | = m, and a set of triples T ⊆ R×B× Y . The
question is whether there exists a matching M ⊆ T covering W , i.e., |M | = m
and each element of W = R ∪B ∪ Y occurs in exactly one triple of M .

An instance of 3DM can be represented by a bipartite graph GI = (W ∪
T,EI), where EI =

⋃
t=(r,b,y)∈T

{{r, t}, {b, t}, {y, t}}; see Fig. 3.

Elements

Triples T

W = R ∪B ∪ Y

(r, b, y)

r b y

Fig. 3. Representation of an instance of 3DM.

It is known that 3DM is NP-complete even if each element of W appears in
2 or 3 triples only [14, 15]. In [14, Theorem 2.2] it is proved that partitioning a
graph G into two connected subgraphs of equal size is NP-hard, using a reduction
from 3DM. It is worth noting that the graph constructed in the NP-hardness
reduction contains only two vertices of degree greater than five. In Theorem 7 we
appropriately modify the reduction of [14, Theorem 2.2] so that the constructed
graph has maximum degree at most 5.

Theorem 7. The EREC problem is NP-complete even if the maximum degree
of the input graph is 5.

Proof: Given an instance (W,T ) of 3DM with W = R ∪ B ∪ Y , |R| = |B| =
|Y | = m, and T ⊆ R × B × Y such that each element of W appears in 2 or 3
triples only, we define an n-vertex graph G = (V,E) with maximum degree 5 as
follows (see Fig. 4 for an illustration).

The set of vertices of G is

V = W ∪ T ∪ Ta ∪ Tb ∪ P ∪ {a},
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Elements

Triples

a

b

na

nb

nb

T

Ta

Tb

W

Pa

Fig. 4. Construction of the graph G in the proof of Theorem 7, with ∆(G) = 5.

where Ta = {ta1 , . . . , ta|T |}, Tb = {b = tb1, t
b
2, . . . , t

b
|T |}, T = {t1, . . . , t|T |} is the

set of triples, and P =
⋃

σ∈W∪Tb∪{a}
Pσ, where Pσ = {(σ, t) : t = 1, . . . , nσ} with

na = (3m+ |T |)nb + 5m− |T | − 1, nb = 2m3, and nσ = nb for every σ ∈W ∪Tb.
The set of edges of G is

E = EI ∪ ETa
∪ ETb

∪ ET+

⋃
σ∈W∪Tb∪{a}

Eσ,

where ETa = {{tai , tai+1} : 1 ≤ i ≤ |T | − 1}, ETb
= {{tbi , tbi+1} : 1 ≤ i ≤ |T | − 1},

ET+ = {{ti, tai }, {ti, tbi} : 1 ≤ i ≤ |T |}, and Eσ = {{σ, (σ, 1)}} ∪ {{(σ, t), (σ, t +
1)} : 1 ≤ t ≤ nσ − 1} ∪ {a, ta1} for every σ ∈W ∪ Tb ∪ {a}.

Note that the maximum degree of G is indeed 5 (only vertices of T could get
degree 5, all other vertices have degree at most 4). Since n = 1 + 3m + 3|T | +
na + (3m+ |T |)nb, we can observe that

n = 2(na + 1 + 2|T | −m).

Next, we show that for k = n/2, G is Yes-instance of the REC problem if
and only if T contains a matching covering W .

One direction is easy. Suppose first that T contains a matching M covering
W . Let S = {a}∪Pa∪Ta∪(T \M). It is straightforward to check that |S| = n/2
and that G[S], G[V \ S] are both connected.

Conversely, suppose that G can be partitioned into 2 connected subgraphs
G[S], G[V \S] with |S| = n/2. We can assume that a ∈ S, and then it follows that
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Pa ⊆ S. Now |S \ (Pa∪{a})| = 2|T |−m < 2m3 = nb since |T | ≤ m3. As Pσ ⊆ S
if and only if σ ∈ S ∩ (W ∪Tb), then S ∩ (W ∪Tb) = ∅ since |S \ (Pa ∪{a})| < nb
and |Pσ| = nb for every σ ∈ W ∪ Tb. Hence S \ (Pa ∪ {a}) ⊆ T ∪ Ta. Let
M = (V \ S) ∩ T . Then |M | ≤ m since |S \ (Pa ∪ {a})| = 2|T | − m. Finally,
as G[V \ S] is connected and W ∪ Tb ⊆ V \ S, it follows that |M | ≥ m. Hence
|M | = m and M must be a matching covering W . �

In order to understand to which extent the vertices of high degree make the
complexity of computing the restricted edge-connectivity of a graph hard, we
also consider the maximum degree of the input graph as a parameter for the
p-REC problem.

Theorem 8. The p-REC problem is FPT when parameterized by k and the
maximum degree ∆ of the input graph.

Proof: The algorithm is based on a simple exhaustive search. We use the prop-
erty that, for any graph G and any two integers k, `, λk(G) ≤ ` if and only if G
contains two vertex-disjoint trees T1 and T2 with |V (T1)| ≥ k and |V (T2)| ≥ k,
such that there exists an edge set S in G with |S| ≤ ` such that in G − S the
trees T1 and T2 belong to different connected components. Hence, we just have
to determine whether these trees exist in G or not. For doing so, for every pair
of distinct vertices v1 and v2 of G, we exhaustively consider all trees T1 and T2
with k vertices containing v1 and v2, respectively. Note that the number of such
trees is at most ∆2k. For every pair of vertex-disjoint trees T1 and T2, we proceed
as follows. We contract tree T1 (resp. T2) to a single vertex t1 (resp. t2), keeping
edge multiplicities, and then we run in the resulting graph a polynomial-time
Minimum Cut algorithm between t1 and t2 (cf. [30]). If the size of the returned
edge-cut is at most `, then T1 and T2 are the desired trees. Otherwise, we con-
tinue searching. It is clear that the overall running time of this algorithm is
O(∆2k · nO(1)). �
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