Minimal disconnected cuts in planar graphs

Marcin Kamiński, Daniël Paulusma, Anthony Stewart, Dimitrios M. Thilikos

To cite this version:

Marcin Kamiński, Daniël Paulusma, Anthony Stewart, Dimitrios M. Thilikos. Minimal disconnected cuts in planar graphs. Networks, 2016, 68 (4), pp.250-259. 10.1002/net.21696 . lirmm-01483626

HAL Id: lirmm-01483626 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01483626

Submitted on 22 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Minimal Disconnected Cuts in Planar Graphs *

Marcin Kamiński ${ }^{1}$, Daniël Paulusma ${ }^{2}$, Anthony Stewart ${ }^{2}$, and Dimitrios M. Thilikos ${ }^{3}$
${ }^{1}$ Institute of Computer Science, University of Warsaw, Poland
mjk@mimuw.edu.pl
${ }^{2}$ School of Engineering and Computing Sciences, Durham University, UK
\{daniel.paulusma,a.g.stewart\}@durham.ac.uk
${ }^{3}$ Computer Technology Institute and Press "Diophantus", Patras, Greece, Department of Mathematics, University of Athens, Athens, Greece, and AlGCo project-team, CNRS, LIRMM, Montpellier, France. sedthilk@thilikos.info

Abstract

The problem of finding a disconnected cut in a graph is NP-hard in general but polynomial-time solvable on planar graphs. The problem of finding a minimal disconnected cut is also NP-hard but its computational complexity was not known for planar graphs. We show that it is polynomial-time solvable on 3-connected planar graphs but NP-hard for 2-connected planar graphs. Our technique for the first result is based on a structural characterization of minimal disconnected cuts in 3-connected $K_{3,3}$-free-minor graphs and on solving a topological minor problem in the dual. In addition we show that the problem of finding a minimal connected cut of size at least 3 is NP-hard for 2 -connected apex graphs. Finally, we relax the notion of minimality and prove that the problem of finding a so-called semi-minimal disconnected cut is still polynomial-time solvable on planar graphs.

Keywords. vertex cut, connectivity, planar graph.

1 Introduction

A cutset or cut in a connected graph is a subset of its vertices whose removal disconnects the graph. The problem Stable Cut is that of testing whether a connected graph has a cut that is an independent set. Le, Mosca, and Müller [17] proved that this problem is NP-complete even for K_{4}-free planar graphs with maximum degree 5 . A connected graph $G=(V, E)$ is k-connected for some

[^0]integer k if $|V| \geq k+1$ and every cut of G has size at least k. It is not hard to see that if one can solve Stable Cut for 3-connected planar graphs in polynomial time then one can do so for all planar graphs (in particular the problem is trivial if the graph has a cut-vertex or a cut set of two vertices that are non-adjacent). Hence, the problem is NP-complete for 3-connected planar graphs.

Due to the above it is a natural question whether one can relax the condition on the cut to be an independent set. This leads to the following notion. For a connected graph $G=(V, E)$, a subset $U \subseteq V$ is called a disconnected cut if U disconnects the graph and the subgraph induced by U is disconnected as well, that is, has at least two (connected) components. This problem is NP-compete in general [18] but polynomial-time solvable on planar graphs [11]. However, the property of the cut being disconnected can be viewed to be somewhat artificial if one considers the 4 -vertex path $P_{4}=p_{1} p_{2} p_{3} p_{4}$, which has two disconnected cuts, namely $\left\{p_{1}, p_{3}\right\}$ and $\left\{p_{2}, p_{4}\right\}$. Both these cuts contain a vertex, namely p_{1} and p_{4}, respectively, such that putting this vertex out of the cut and back into the graph keeps the graph disconnected. Therefore, Ito et al. [10] defined the notion of a minimal disconnected cut of a connected graph $G=(V, E)$, that is, a disconnected cut U so that $G[(V \backslash U) \cup\{u\}]$ is connected for every $u \in U$ (more generally, we call a cut that satisfies the later condition a minimal cut). Here, the graph $G[S]$ denotes the subgraph of G induced by $S \subseteq V(G)$. We note that every vertex of a minimal cut U of a connected graph $G=(V, E)$ is adjacent to every component of $G[V \backslash U]$. See Figure 1 for an example of a planar graph with a minimal disconnected cut. The corresponding decision problem is defined as follows.

```
Minimal Disconnected Cut
    Instance: a connected graph G=(V,E).
    Question: does G have a minimal disconnected cut?
```


Fig. 1. An example of a planar graph with a minimal disconnected cut, namely the set S.

Ito et al. [10] showed that Minimal Disconnected Cut is NP-complete. However its computational complexity remained open for planar graphs. As a graph has a stable cut if and only if a graph has a minimal stable cut, the problem
of deciding whether a graph has a minimal stable cut is NP-complete for any graph class (and thus for the class of planar graphs) for which Stable Cut is NP-complete. In contrast, the problem of deciding whether a graph has a minimal cut (that may be connected or disconnected) is polynomial-time solvable: given a vertex cut U we can remove vertices from U one by one until the remaining vertices in U form a minimal cut.

Our Results. As a start we observe that Minimal Disconnected Cut is polynomial-time solvable for outerplanar graphs (as these graphs do not contain $K_{2,3}$ as a minor, any minimal cut has size at most 2). In Section 3 we prove that Minimal Disconnected Cut is also polynomial-time solvable on 3-connected planar graphs. The technique used by Ito et al. [11] for solving Disconnected Cut in polynomial time for planar graphs was based on the fact that a planar graph either has its treewidth bounded by some constant or else contains a large grid as a minor. However, grids (which are 3-connected planar graphs) do not have minimal disconnected cuts. Hence, we need to use a different approach, which we describe below.

We first provide a structural characterization of minimal disconnected cuts for the class of 3-connected $K_{3,3}$-minor-free graphs, which contains the class of planar graphs. In particular we show that any minimal disconnected cut of a 3-connected planar graph G has exactly two components and that these components are paths. In order to find such a cut we prove that it suffices to test whether G contains, for some fixed integer r, the biclique $K_{2, r}$ as a contraction. We show that G has such a contraction if and only if its dual contains the multigraph D_{r}, which is obtained from the r-vertex cycle by replacing each edge by two edges, as a subdivision (see also Figure 2). We then present a characterization of any graph that contains such a subdivision. Next we use this characterization to prove that the corresponding decision problem of finding a multigraph D_{r} as a subdivision for some $r \geq 2$ is polynomial-time solvable even on general graphs.

In Section 4 we give our second result, namely that, contrary to Disconnected Cut, which is polynomial-time solvable for planar graphs [11], Minimal Disconnected Cut stays NP-complete for the class of 2-connected planar graphs. Our proof is based on a reduction from Stable Cut and as such is different from the NP-hardness proof for general graphs [10], the gadget of which contains large cliques.

In Section 4 we also show that the problem of finding a minimal connected cut of size at least 3 is NP-complete for 2-connected apex graphs (graphs that can be made planar by deleting one vertex); to the best of our knowledge the computational complexity of this problem has not yet been determined even for general graphs. We note that the problem of finding whether a graph contains a (not necessarily minimal) connected cut of size at most k that separates two given vertices s and t is linear-time FPT when parameterized by k [19].

In Section 5 we consider a generalization of (minimal) disconnected cuts and stable cuts. For a family of graphs \mathcal{H}, a connected graph has a (minimal) \mathcal{H}-cut if it has a (minimal) cut that induces a graph in \mathcal{H}. This leads to the corresponding decision problems \mathcal{H}-Cut and Minimal \mathcal{H}-Cut. For instance, we can describe
(Minimal) Stable Cut as (Minimal) $\left\{P_{1}, 2 P_{1}, 3 P_{1}, \ldots\right\}$-Cut. Moreover, if \mathcal{H} consists of all disconnected graphs, we obtain the (Minimal) Disconnected Cut problem. The problem of finding minimum (that is, smallest) \mathcal{H}-cuts that separate two given vertices s and t has been studied from a parameterized point of view for various graph families \mathcal{H} by Heggernes et al. [9]. We show some initial results for Minimal \mathcal{H}-Cut, which provide some further insights in our main results.

In Section 6 we relax the notion of minimality for cut sets as follows. If a cut U of a graph $G=(V, E)$ is minimal, each of its vertices is adjacent to every component in $G[V \backslash U]$. What if instead we demand that each vertex $u \in U$ is adjacent to at least two (but maybe not all) components of $G[V \backslash U]$? This leads to the following definition. A disconnected cut U of a connected graph $G=(V, E)$ is semi-minimal if $G[(V \backslash U) \cup\{u\}]$ contains fewer components than $G[V \backslash U]$ for every $u \in U$. The corresponding decision problem, which is known to be NP-complete [10], is called Semi-Minimal Disconnected Cut. Note that there exist graphs with a disconnected cut, such as the P_{4}, that have no semi-minimal disconnected cut. Because for planar graphs Minimal Disconnected Cut is NP-complete and Disconnected Cut is polynomial-time solvable, it is a natural question to determine the complexity of Semi-Minimal Disconnected Cut for planar graphs. We adapt the proof for Disconnected Cut to show that Semi-Minimal Disconnected Cut is also polynomial-time solvable on planar graphs.

We finish our paper with some further observations and open problems in Section 7.

Related Work. Vertex cuts play an important role in graph connectivity. In the literature various kinds of vertex cuts, besides stable cuts, have been studied extensively and we briefly survey a number of results below that have not been mentioned yet.

A cut U of a graph $G=(V, E)$ is a clique cut if $G[U]$ is a clique, a k-clique cut if $G[U]$ has a spanning subgraph consisting of k complete graphs; a strict k-clique cut if $G[U]$ consists of k components that are complete graphs; and a matching cut if $E_{G[U]}$ is a matching. It follows from a classical result of Tarjan [23] that determining whether a graph has a clique cut is polynomial-time solvable. Whitesides [24] and Cameron et al. [4] proved that the problem of testing whether a graph has a k-clique cut is solvable in polynomial time for $k=1$ and $k=2$, respectively. Cameron et al. [4] also proved that testing whether a graph has a strict 2-clique cut can be solved in polynomial time. As mentioned the problem of testing whether a graph has a stable cut is NP-complete. This was first shown for general graphs by Chvátal [5]. Also the problem of testing whether a graph has a matching cut is NP-complete. This was shown by Brandstädt et al. [3]. Bonsma [2] proved that this problem is NP-complete even for planar graphs with girth 5 and for planar graphs with maximum degree 4.

The Skew Partition problem is that of testing whether a graph $G=(V, E)$ has a disconnected cut U so that $V \backslash U$ induces a disconnected graph in the complement of G. De Figueiredo, Klein, Kohayakawa and Reed [7] proved that
even the list version of this problem, where each vertex has been assigned a list of blocks in which it must be placed, is polynomial-time solvable. Afterwards, Kennedy and Reed [15] gave a faster polynomial-time algorithm for the non-list version.

Finally, for an integer $k \geq 1$, a cut U of a connected graph G is a k-cut of G if $G[U]$ contains exactly k components. For $k \geq 1$ and $\ell \geq 2$, a k-cut U is a (k, ℓ)-cut of a graph G if $G[V \backslash U]$ consists of exactly ℓ components. Ito et al. [11] proved that testing if a graph has a k-cut is solvable in polynomial time for $k=1$ and NP-complete for every fixed $k \geq 2$. In addition they showed that testing if a graph has a (k, ℓ)-cut is polynomial-time solvable if $k=1, \ell \geq 2$ and NP-complete otherwise [11]. The same authors showed, by using the approach for solving Disconnected Cut on planar graphs, that both problems are polynomial-time solvable on planar graphs.

2 Preliminaries

Let $G=(V, E)$ be a connected simple graph. A maximal connected subgraph of G is called a component of G. Recall that, for a subset $S \subseteq V(G)$, we let $G[S]$ denote the subgraph of G induced by S, which has vertex set S and edge set $\{u v \mid u, v \in S, u v \in E(G)\}$. A vertex $u \in V \backslash S$ is adjacent to a set $S \subseteq V \backslash\{u\}$ if u is adjacent to a vertex in S. We say that two disjoints sets $S \subset V$ and $T \subset V$ are adjacent if S contains a vertex adjacent to T, or equivalently, if T contains a vertex adjacent to S.

Let G be a graph. We define the following operations. The contraction of an edge $u v$ removes u and v from G, and replaces them by a new vertex made adjacent to precisely those vertices that were adjacent to u or v in G. Unless we explicitly say otherwise we remove all self-loops and multiple edges so that the resulting graph stays simple. The subdivision of an edge $u v$ replaces $u v$ by a new vertex w with edges $u w$ and $v w$. Let $u \in V(G)$ be a vertex that has exactly two neighbours v, w, and moreover let v and w be non-adjacent. The vertex dissolution of u removes u and adds the edge $v w$.

A graph G contains a graph H as a minor if H can be obtained from G by a sequence of vertex deletions, edge deletions and edge contractions. If G does not contains H as a minor, G is H-minor-free. We say that G contains H as a contraction, denoted by $H \leq_{c} G$, if H can be obtained from G by a sequence of edge contractions. Finally, G contains H as a subdivision if H can be obtained from G by a sequence of vertex deletions, edge deletions and vertex dissolutions, or equivalently, if G contains a subgraph H^{\prime} that is a subdivision of H, that is, H can be obtained from H^{\prime} after applying zero or more vertex dissolutions. We say that a vertex in H^{\prime} is a subdivision vertex if we need to dissolve it in order to obtain H; otherwise it is called a branch vertex (that is, it corresponds to a vertex of H).

For some of our proofs the following global structure is useful. Let G and H be two graphs. An H-witness structure \mathcal{W} is a vertex partition of a (not
necessarily proper) subgraph of G into $|V(H)|$ nonempty sets $\{W(x)\}_{x \in V(H)}$ called (H-witness) bags, such that
(i) each $W(x)$ induces a connected subgraph of G,
(ii) for all $x, y \in V(H)$ with $x \neq y$, bags $W(x)$ and $W(y)$ are adjacent in G if x and y are adjacent in H.

In addition, we may require the following additional conditions:
(iii) for all $x, y \in V(H)$ with $x \neq y$, bags $W(x)$ and $W(y)$ are adjacent in G only if x and y are adjacent in H,
(iv) every vertex of G belongs to some bag.

By contracting all bags to singletons we observe that H is a minor or contraction of G if and only if G has an H-witness structure such that conditions (i)-(ii) or (i)-(iv) hold, respectively. We note that G may have more than one H-witness structure with respect to the same containment relation.

We denote the complete graph on k vertices by K_{k} and the complete bipartite graph with bipartition classes of size k and ℓ, respectively, by $K_{k, \ell}$. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other. By Kuratowski's Theorem [16], a graph is planar if and only if it is both K_{5}-minor-free and $K_{3,3}$-minor-free. Recall that an apex graph is a graph that can be made planar by deleting one vertex.

3 The Algorithm

We first present a necessary and sufficient condition for a 3 -connected $K_{3,3}$-minorfree graph to have a minimal disconnected cut.

Theorem 1. A 3-connected $K_{3,3}$-minor-free graph G has a minimal disconnected cut if and only if $K_{2, r} \leq_{c} G$ for some $r \geq 2$.

Proof. Let $G=(V, E)$ be a 3-connected graph that has no $K_{3,3}$ as a minor. First suppose that G has a minimal disconnected cut U. Let p and q be the number of components of $G[U]$ and $G[V \backslash U]$, respectively. Because U is a disconnected cut, $p \geq 2$ and $q \geq 2$. By definition, every vertex of every component of $G[U]$ is adjacent to all components in $G[V \backslash U]$. Hence, G contains $K_{p, q}$ as a contraction. Because G has no $K_{3,3}$ as a minor, G has no $K_{3,3}$ as a contraction. This means that $p \leq 2$ or $q \leq 2$. Because $p \geq 2$ and $q \geq 2$ holds as well, we find that $K_{2, r} \leq_{c} G$ for some $r \geq 2$.

Now suppose that $K_{2, r} \leq_{c} G$ for some $r \geq 2$. Throughout the remainder of the proof we denote the partition classes of $K_{k, \ell}$ by $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=$ $\left\{y_{1}, \ldots, y_{\ell}\right\}$. We refer to the bags in a $K_{k, \ell \text {-witness structure of } G \text { corresponding }}$ to the vertices in X and Y as x-bags and y-bags, respectively. Because $K_{2, r} \leq_{c} G$, there exists a $K_{2, r}$-witness structure \mathcal{W} of G that satisfies conditions (i)-(iv). Note that $W\left(x_{1}\right) \cup W\left(x_{2}\right)$ is a disconnected cut. However, it may not be minimal.

Suppose that $W\left(x_{1}\right)$ contains a vertex u that is adjacent to some but not all y-bags, i.e., the number of y-bags to which u is adjacent is h for some
$1 \leq h<r$. Then we move u to a y-bag that contains one of its neighbours unless $W\left(x_{1}\right) \cup W\left(x_{2}\right)$ no longer induce a disconnected graph (which will be the case if u is the only vertex in $\left.W\left(x_{1}\right)\right)$. We observe that $G\left[W\left(x_{1}\right) \backslash\{u\}\right]$ may be disconnected, namely when u is a cut vertex in $G\left[W\left(x_{1}\right)\right]$. We also observe that u together with its adjacent y-bags induces a connected subgraph of G. Hence, the resulting witness structure \mathcal{W}^{\prime} is a $K_{q, r^{\prime}}$-witness structure of G with $q \geq 2$ (as the resulting vertices in $W\left(x_{1}\right) \cup W\left(x_{2}\right)$ still induce a disconnected graph) and $r^{\prime}=r-(h-1)$. Because $1 \leq h<r$, we find that $2 \leq r^{\prime} \leq r$. We repeat this rule as long as possible. During this process, $W\left(x_{2}\right)$ does not change, and afterwards, we do the same for $W\left(x_{2}\right)$. Let \mathcal{W}^{*} denote the resulting witness structure that is a $K_{q^{*}, r^{*}}$-witness structure satisfying conditions (i)-(iv) for some $q^{*} \geq 2$ and $2 \leq r^{*} \leq r$.

We will now prove the following claim.
Claim. Every vertex of each x-bag of \mathcal{W}^{*} is adjacent to all y-bags.
We prove this claim as follows. First suppose that there exists an x-bag of \mathcal{W}^{*}, say $W^{*}\left(x_{1}\right)$, that contains a vertex u adjacent to some but not to all y-bags of \mathcal{W}^{*}, say u is not adjacent to $W^{*}\left(y_{1}\right)$. By our procedure we would have moved u to an adjacent y-bag unless that makes the disconnected cut connected. Hence we find that there are exactly two witness bags $W^{*}\left(x_{1}\right)$ and $W^{*}\left(x_{2}\right)$ and that $W^{*}\left(x_{1}\right)=\{u\}$. In our procedure we only moved vertices from x-bags to y-bags. This means that u belonged to an x-bag of the original witness structure \mathcal{W}. This x-bag was adjacent to all y-bags of \mathcal{W} (as \mathcal{W} was a $K_{2, r}$-witness structure). As we only moved vertices from x-bags to y-bags, this means that there must still exist a path from u to a vertex in $W^{*}\left(y_{1}\right)$ that does not use any vertex of $W^{*}\left(x_{2}\right)$; a contradiction. Hence every x-bag of \mathcal{W}^{*} only contains vertices that are either adjacent to all y-bags or to none of them.

Now, in order to obtain a contradiction, suppose that an x-bag, say $W^{*}\left(x_{1}\right)$, contains a vertex u not adjacent to any y-bag. Because G is 3 -connected, G contains three vertex-disjoints paths P_{1}, P_{2}, P_{3} from u to a vertex in $W^{*}\left(y_{1}\right)$ (by Menger's Theorem). Each P_{i} contains a vertex v_{i} in $W^{*}\left(x_{1}\right)$ whose successor on P_{i} is outside $W^{*}\left(x_{1}\right)$ and thus in some y-bag. Hence, by our assumption, v_{i} has a neighbour in every y-bag (including $W^{*}\left(y_{1}\right)$). Recall that the number of y-bags is $r^{*} \geq 2$. We consider the subgraph induced by the vertices from $W^{*}\left(y_{1}\right)$ and $W^{*}\left(y_{2}\right)$ together with the vertices on the three paths P_{1}, P_{2}, P_{3}. For $i=1, \ldots, 3$ we contract all edges on the subpath of P_{i} from u to v_{i} to one edge, and we contract both $W^{*}\left(y_{1}\right)$ and $W^{*}\left(y_{2}\right)$ to single vertices. These edge contractions modify the subgraph into a graph isomorphic to $K_{3,3}$, which is not possible. Hence, every vertex of each x-bag of \mathcal{W}^{*} is adjacent to all y-bags. This completes the proof of the claim.

As $q^{*} \geq 2$ and $r^{*} \geq 2$, there are at least two x-bags and at least two y-bags in \mathcal{W}^{*}. By combing this observation with the above claim, we find that the x-bags of \mathcal{W}^{*} form a minimal disconnected cut U of G. This completes the proof of Theorem 1.

Recall that planar graphs are $K_{3,3}$-minor-free by Kuratowski's Theorem. Hence, by Theorem 1 we may restrict ourselves to finding a $K_{2, r}$-contraction for some $r \geq 2$ in a 3-connected planar graph. Below we state some additional terminology.

Fig. 2. The graphs $D_{2}, C_{4}, D_{4}, K_{2,4}$. Note that the dual of $C_{4}=K_{2,2}$ is D_{2}, that D_{4} is obtained from C_{4} by duplicating each edge and that D_{4} is the dual of $K_{2,4}$.

Recall that D_{n} is the multigraph obtained from the cycle on $n \geq 3$ vertices by doubling its edges. We let D_{2} be the multigraph that has two vertices with four edges between them. The dual graph G_{d} of a plane graph G has a vertex for each face of G, and there exist k edges between two vertices u and v in G_{d} if and only if the two corresponding faces share k edges in G. Note that the dual of a graph may be a multigraph. As 3-connected planar graphs have a unique embedding (see e.g. Lemma 2.5.1, p. 39 of [21]) we can speak of the dual of a 3 -connected planar graph.

Lemma 1. Let G be a 3-connected planar graph. Then G contains $K_{2, r}$ as a contraction for some $r \geq 2$ if and only if the dual of G contains D_{r} as a subdivision.

Proof. We first observe that for all $r \geq 2$, every $K_{2, r}$ has a unique plane embedding, the dual of which is D_{r}. Then the results follows from a result from [13] that for 3-connected planar graphs comes down to the following statement: a 3-connected planar graph G contains a graph H as a contraction if and only if the dual of G contains the dual of H as a subdivision.

By Lemma 1 it suffices to check if the dual of the 3-connected planar input graph contains D_{r} as a subdivision for some $r \geq 2$. We show how to solve this problem in polynomial time for general graphs. In order to do so we need the next lemma which gives a necessary condition for a graph G to be a yes-instance of this problem. In its proof we use the following notation. For a path $P=v_{1} v_{2} \ldots v_{p}$, we write $v_{i} P v_{j}$ to denote the subpath $v_{i} v_{i+1} \ldots v_{j}$ or $v_{j} P v_{i}$ if we want to emphasize that the subpath is to be traversed from v_{j} to v_{i}.
Lemma 2. Let v, w be two distinct vertices of a multigraph G such that there exist four edge-disjoint v-w-paths in G. Then G contains a subdivision of D_{r} for some $r \geq 2$.

Proof. We prove the lemma by induction on $|V(G)|+|E(G)|$. Then we can assume that G is the union of the four edge-disjoint v - w-paths. Let us call these paths P_{1}, P_{2}, P_{3}, and P_{4}. If these four paths are vertex-disjoint (apart from v and w) then they form a subdivision of D_{2}. Hence, we may assume that there exists at least one vertex of G not equal to v or w that belongs to more than one of the four paths.

First suppose that there exists a vertex u that belongs to all four paths P_{1}, P_{2}, P_{3} and P_{4}. Let G^{\prime} be the graph consisting of the vertices and edges of the four subpaths $v P_{1} u, v P_{2} u, v P_{3} u$ and $v P_{4} u$. As G^{\prime} does not contain w, it holds that $\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|<|V(G)|+|E(G)|$. By the induction hypothesis, G^{\prime}, and thus G, contains a subdivision of D_{r} for some $r \geq 2$.

Now suppose that there exists a vertex u that belong to only three of the four paths, say to P_{1}, P_{2}, and P_{3}. Let G^{\prime} be the graph that consists of the vertices and edges of the four paths $u P_{1} w, u P_{2} w, u P_{3} w$ and $u P_{1} v P_{4} w$. As G^{\prime} does not contain an edge of $v P_{2} u$ we find that $\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|<|V(G)|+|E(G)|$. By the induction hypothesis, G^{\prime}, and thus G, contains a subdivision of D_{r} for some $r \geq 2$.

From now on assume that every inner vertex of every path $P_{i}(i=1, \ldots, 4)$ belongs to at most one other path $P_{j}(j \neq i)$. We say that two different paths P_{i} and P_{j} cross in a vertex u if u is an inner vertex of both P_{i} and P_{j}. Suppose P_{i} and P_{j} cross in some other vertex u^{\prime} as well. Then we say that u is crossed before u^{\prime} by P_{i} and P_{j} if u is an inner vertex of both $v P_{i} u^{\prime}$ and $v P_{j} u^{\prime}$.

We now prove the following claim.
Claim 1. If P_{i} and $P_{j}(i \neq j)$ cross in both u and u^{\prime} then we may assume without loss of generality that either u is crossed before u^{\prime} or u^{\prime} is crossed before u.

We prove Claim 1 as follows. Suppose that u is not crossed before u^{\prime} by P_{i} and P_{j} and similarly that u^{\prime} is not crossed before u by P_{i} and P_{j}. Then we may assume without loss of generality that u is an inner vertex of $v P_{i} u^{\prime}$ and that u^{\prime} is an inner vertex of $v P_{j} u$. See Figure 3 for an example of this situation. However, in that case we can replace P_{i} and P_{j} by the paths $v P_{i} u P_{j} w$ and $v P_{j} u^{\prime} P_{i} w$. These two paths together with the two unused original paths form a subgraph G^{\prime} of G with fewer edges than G (as for instance no edge on $u P_{i} u^{\prime}$ belongs to G^{\prime}). We apply the induction hypothesis on G^{\prime}. This completes the proof of Claim 1.
We need Claim 1 to prove the following claim, which is crucial for our proof.
Claim 2. We may assume without loss of generality that there exists a vertex $u \notin\{v, w\}$ that is on two paths P_{i} and $P_{j}(i \neq j)$ so that every inner vertex of $v P_{i} u$ and $v P_{j} u$ has degree 2 in G.
We prove Claim 2 as follows. By our assumption there exists at least one vertex in G that is on two paths. Let $s \notin\{v, w\}$ be such a vertex, say s belongs to P_{1} and P_{2}. Assume without los of generality that every inner vertex of $v P_{1} s$ has degree 2. Then, by Claim 1, we find that P_{1} and P_{2} do not cross in an inner vertex of $v P_{2} s$.

If every inner vertex of $v P_{1} s$ and $v P_{2} s$ has degree 2 in G then the claim has been proven. Suppose otherwise, namely that there exists an inner vertex s^{\prime} of

Fig. 3. The paths P_{i} and P_{j} where u is not crossed before u^{\prime} by P_{i} and P_{j} and similarly u^{\prime} is not crossed before u by P_{j} and P_{i}. Note that the paths P_{i} and P_{j} may have more common vertices, but for clarify this is not been shown.
$v P_{1} s$ or $v P_{2} s$ whose degree in G is larger than 2 , say s^{\prime} belongs to $v P_{2} s$. As P_{1} does not cross $v P_{2} s$, we find that s^{\prime} must belong to P_{3} or to P_{4}. Choose s^{\prime} in such a way that every inner vertex of $v P_{2} s^{\prime}$ has degree 2 in G. Assume without loss of generality that s^{\prime} belongs to P_{3}.

If every inner vertex of $v P_{3} s^{\prime}$ has degree 2 then the claim has been proven (as every inner vertex of $v P_{2} s^{\prime}$ has degree 2 as well). Suppose otherwise, namely that there exists an inner vertex $s^{\prime \prime}$ of $v P_{3} s^{\prime}$ whose degree in G is larger than 2 . Choose $s^{\prime \prime}$ in such a way that every inner vertex of $v P_{3} s^{\prime \prime}$ has degree 2 in G. By Claim 1, no inner vertex of $v P_{3} s^{\prime}$ belongs to P_{2}, so $s^{\prime \prime}$ does not lie on P_{2}. This means that $s^{\prime \prime}$ belongs either to P_{1} or to P_{4}.

Fig. 4. The paths P_{1}, P_{2} and P_{3} where s belongs to P_{1} and P_{2}, s^{\prime} belongs to $v P_{2} s$ and P_{3} and $s^{\prime \prime}$ belongs to $v P_{3} s^{\prime}$ and P_{1}.

Suppose $s^{\prime \prime}$ belongs to P_{1}. See Figure 4 for an example of this situation. As every inner vertex of $v P_{1} s$ has degree 2 , we find that s is an inner vertex of $v P_{1} s^{\prime \prime}$. However, we can now replace P_{1}, P_{2} and P_{3} by the three paths $v P_{1} s P_{2} w, v P_{2} s^{\prime} P_{3} w$ and $v P_{3} s^{\prime \prime} P_{1} w$. These three paths form, together with P_{4}, a subgraph of G with fewer edges than G (for instance, no edge of $s P_{1} s^{\prime \prime}$ belongs to G^{\prime}). We can apply the induction hypothesis on this subgraph. Hence we may assume that $s^{\prime \prime}$ does not belong to P_{1}.

From the above we conclude that $s^{\prime \prime}$ belongs to P_{4}. See Figure 5 for an example of this situation. We consider the paths $v P_{3} s^{\prime \prime}$ and $v P_{4} s^{\prime \prime}$. If every inner vertex of $v P_{4} s^{\prime \prime}$ has degree 2 in G then we have proven Claim 2 (recall that every inner vertex of $v P_{3} s^{\prime \prime}$ has degree 2 in G as well). Suppose otherwise, namely that
there exists an inner vertex t of $v P_{4} s^{\prime \prime}$ whose degree in G is larger than 2. Choose t in such a way that every inner vertex of $v P_{4} t$ has degree 2 in G. By Claim 1 we find that t is not on P_{3}. If t is on P_{2} we can use a similar replacement of three paths by three new paths as before that enables us to apply the induction hypothesis. Hence, we find that t belongs to P_{1}.

Fig. 5. The paths P_{1}, P_{2}, P_{3} and P_{4} where s belongs to P_{1} and P_{2}, s^{\prime} belongs to $v P_{2} s$ and $P_{3}, s^{\prime \prime}$ belongs to $v P_{3} s^{\prime}$ and P_{4} and t belongs to $v P_{4} s^{\prime \prime}$ and P_{1}.

As every inner vertex of $v P_{1} s$ has degree 2 in G we find that s is an inner vertex of $v P_{1} t$. Then we take the four paths $v P_{1} s P_{2} w, v P_{2} s^{\prime} P_{3} w, v P_{3} s^{\prime \prime} P_{4} w$ and $v P_{4} t P_{1} w$. These four paths form a subgraph G^{\prime} of G with fewer edges than G (as for instance G^{\prime} contains no edge from $s P_{1} t$). We can apply the induction hypothesis on G^{\prime}. Hence we may assume that such a vertex t cannot exist. Thus we have found the desired vertex and subpaths, namely $s^{\prime \prime}$ with subpaths $v P_{3} s^{\prime \prime}$ and $v P_{4} s^{\prime \prime}$. This completes the proof of Claim 2.

By Claim 2 we may assume without loss of generality that there exists a vertex u that belongs to P_{1} and P_{2} such that every inner vertex of $v P_{1} u$ and $v P_{2} u$ has degree 2 . Let G^{*} be the graph obtained from G by contracting all edges of $v P_{1} u$ and $v P_{2} u$ (recall that we remove loops and multiple edges). Let u^{*} be the new vertex to which all the edges were contracted. Notice that there are four edge-disjoint u^{*}-w-paths in G^{*}. Then, by the induction hypothesis, G^{*} contains a subdivision H of D_{r} for some $r \geq 2$. If u^{*} does not belong to H, then G contains H as well and we would have proven the lemma. Assume that u^{*} belongs to H.

First suppose that u^{*} is a subdivision vertex of H in G^{*}. Let u^{*} have neighbours s_{1} and s_{2} in H. Take a shortest path Q from s_{1} to s_{2} in the subgraph of G induced by s_{1}, s_{2} and the vertices of $v P_{1} u$ and $v P_{2} u$. This results in a graph H^{\prime}, which is a subgraph of G and which is a subdivision of D_{r} as well.

Now suppose that u^{*} is a branch vertex of H in G^{*}, say u^{*} corresponds to $z \in V\left(D_{r}\right)$. Note that any vertex in D_{r} has one neighbour if $r=2$ and two neighbours if $r \geq 3$. We let s and t be the two branch vertices of H that correspond to the neighbours of z in D_{r} (note that $s=t$ if $r=2$). Let s_{1} and s_{2} be the neighbours of u^{*} on the two paths from u^{*} to s, respectively, in H. Similarly, let t_{1} and t_{2} be the neighbours of u^{*} on the two paths from u^{*} to t,
respectively, in H. Note that, as G is a multigraph, it is possible that $s_{1}=s_{2}=s$ and $t_{1}=t_{2}=t$.

Recall that every internal vertex on $v P_{1} u$ and on $v P_{2} u$ has degree 2 in G. As u is an inner vertex of P_{1} and P_{2} but not of P_{3} and P_{4}, it has degree 4 in G. As G is the union of P_{1}, P_{2}, P_{3} and P_{4}, we find that v has degree 4 as well. Then, after uncontracting u^{*}, we have without loss of generality one of the following two situations in G. First, u is adjacent to s_{1} and s_{2} and v is adjacent to t_{1} and t_{2}. In that case u and v become branch vertices of a subdivision of D_{r+1} in G (to which the internal vertices on the paths $u P_{1} v$ and $u P_{2} v$ belong as well, namely as subdivision vertices). Second, u is adjacent to s_{1} and t_{1}, whereas v is adjacent to s_{2} and t_{2}. Then u and v become subdivision vertices of a subdivision of D_{r} in G (and we do not use the internal vertices on the paths $u P_{1} v$ and $u P_{2} v$). This completes the proof of the lemma.

Lemma 2 gives us the following result.

Theorem 2. It is possible to find in $O\left(m n^{2}\right)$ time whether a graph G with n vertices and m edges contains D_{r} as a subdivision for some $r \geq 2$.

Proof. Let G be a graph with m edges. We check for every pair of vertices s and t whether G contains four edge-disjoint paths between them. We can do this via a standard reduction to the maximum flow problem. Replace each edge $u v$ by the $\operatorname{arcs}(u, v)$ and (v, u). Give each arc capacity 1 . Introduce a new vertex s^{\prime} and an $\operatorname{arc}\left(s^{\prime}, s\right)$ with capacity 4 . Also introduce a new vertex t^{\prime} and an arc $\left(t, t^{\prime}\right)$ with capacity 4 . Check if there exists an $\left(s^{\prime}, t^{\prime}\right)$-flow of value 4 by using the Ford-Fulkerson algorithm. As the maximum value of an $\left(s^{\prime}, t^{\prime}\right)$-flow is at most 4 , this costs $O(m)$ time per pair, so $O\left(m n^{2}\right)$ time in total.

If there exists a pair s, t in G with four edge-disjoint paths between them then G has a subdivision of D_{r}, for some $r \geq 2$, by Lemma 2. If not then we find that G has no subdivision of any $D_{r}(r \geq 2)$ as any subdivision of D_{r} immediately yields four edge-disjoint paths between two vertices and our algorithm would have detected this.

We are now ready to state our main result.

Theorem 3. Minimal Disconnected Cut can be solved in $O\left(n^{3}\right)$ time on 3 -connected planar graphs with n vertices.

Proof. Let G be a 3 -connected planar graph with n vertices. By Theorem 1 it suffices to check whether $K_{2, r} \leq_{c} G$ for some $r \geq 2$. By Lemma 1, the latter is equivalent to checking whether the dual of G, which we denote by G^{*}, contains D_{r} as a subdivision for some $r \geq 2$. To find G^{*} we first embed G in the plane using the linear-time algorithm from Mohar [20]. As the number of edges in a planar graph is linear in the number of vertices, G^{*} has $O(n)$ vertices and $O(n)$ edges and can be constructed in $O(n)$ time. We are left to apply Theorem 2.

4 Hardness

We prove the following result, which shows that Theorem 3 can be viewed as best possible.

Theorem 4. Minimal Disconnected Cut is NP-complete for the class of 2-connected planar graphs.

Proof. As we can check in polynomial time whether a given subset of vertices in a graph is a minimal disconnected cut, the problem belongs to NP. To show NP-hardness we reduce from Stable Cut. Recall that this problem is to test whether a graph has a cut that is an independent set and that it is an NP-complete problem for planar graphs [17] even if they are 2-connected (as the answer is trivially yes if the input graph contains a cut vertex ${ }^{1}$).

Let G be a 2 -connected planar graph with n vertices and m edges. We construct in polynomial time a graph G^{\prime} by adding for each edge $e=u v$ in G a new vertex x_{e} that we make adjacent (only) to u and v. Note that G^{\prime} is a planar graph with $m+n$ vertices and $3 m$ edges. Moreover, G^{\prime} is 2-connected. Hence, it suffices to prove that G has a stable cut if and only if G^{\prime} has a minimal disconnected cut.

First suppose that G has a stable cut S. As long as S contains a vertex u so that the subgraph of G induced by $(V(G) \backslash S) \cup\{u\}$ is disconnected we move u from S to $V(G) \backslash S$. Because G is 2-connected, the resulting set $S^{*} \subseteq S$ is a stable cut of size at least 2 . By our procedure, S^{*} is a minimal disconnected cut of G as well. Because S^{*} is an independent set, at least one vertex of every pair of adjacent vertices u, v in G does not belong to S^{*}, say u does not belong to S. Let F be the component of $G\left[V \backslash S^{*}\right]$ that contains u. Then either v belongs to F as well or v belongs to S^{*}. In both cases we place $x_{u v}$ in F (so we neither create any new components in $G^{*}-S$ nor do we reduce the number of components). After doing this for each pair of adjacent vertices in G we find that S^{*} is also a minimal disconnected cut of G^{*}.

Now suppose that G^{\prime} has a minimal disconnected cut S^{\prime}. Consider an edge uv of G^{\prime} that belongs to G as well. The vertex $x_{u v}$ has degree 2 and both its neighbours u and v are adjacent. Hence, $x_{u v}$ cannot belong to S^{\prime} (as otherwise $x_{u v}$ would have neighbours in at most one component of $\left.G^{\prime}-S^{\prime}\right)$. Moreover, at most one of u and v can belong to S^{\prime} as otherwise, due to their adjacency, they would belong to the same component of $G^{\prime}\left[S^{\prime}\right]$, meaning that any other component of $G^{\prime}\left[S^{\prime}\right]$ is not adjacent to the 1-vertex component of $G^{\prime}-S^{\prime}$ that contains $x_{u v}$. Hence, S^{\prime} is a stable cut of G^{\prime} that only contains vertices of G. Because at least one vertex of any pair of adjacent vertices u, v belongs to the same component of $G^{\prime}-S^{\prime}$ that contains the vertex $x_{u v}$, we find that $G-S^{\prime}$ has just as many (and thus at least two) components as $G^{\prime}-S^{\prime}$. We conclude that S^{\prime} is a stable cut of G as well.

[^1]A cut S in a graph G is a minimal connected cut if $G[S]$ is connected and for all $u \in S$ we have that $G[(V \backslash S) \cup\{u\}]$ is connected. We call the problem of testing whether a graph has a minimal connected cut of size at least k the Minimal Connected $\operatorname{Cut}(k)$ problem. By modifying the proof of Theorem 4 we obtain the following result.

Theorem 5. Minimal Connected Cut(3) is NP-complete even for the class of 2-connected apex graphs.

Proof. We can check in polynomial time whether a given subset of vertices in a graph is a minimal connected cut. Hence the problem belongs to NP. As mentioned, we are following the line of the proof of Theorem 4, so we reduce from the Stable Cut problem restricted to 2 -connected planar graphs.

Let G be a 2 -connected planar graph with n vertices and m edges. We construct in polynomial time a graph $G^{\prime \prime}$ by adding for each edge $e=u v$ in G a new vertex x_{e} that we make adjacent (only) to u and v. We say that these newly added vertices are of x-type. Afterward we add a new vertex y that we make adjacent to all vertices of G (so not to the x-type vertices). Note that $G^{\prime \prime}$ is an apex graph with $m+n+1$ vertices and $3 m+n$ edges. Moreover, $G^{\prime \prime}$ is 2 -connected. We claim that G has a stable cut if and only if $G^{\prime \prime}$ has a minimal connected cut of size at least 3 .

First suppose that G has a stable cut S. Following the same arguments as in the proof of Theorem 4 we find that S contains a subset S^{*} that is a minimal disconnected cut of $G^{\prime \prime}-\{y\}$. Adding y to S^{*} yields a minimal connected cut of $G^{\prime \prime}$. Because G is 2-connected, $S^{*} \cup\{y\}$ has size at least 3 .

Now suppose that $G^{\prime \prime}$ has a minimal disconnected cut $S^{\prime \prime}$ of size at least 3 . Consider an edge $u v$ of $G^{\prime \prime}$ that belongs to G as well. The vertex $x_{u v}$ has degree 2 and its two neighbours u, v are adjacent. Hence, $x_{u v}$ cannot belong to $S^{\prime \prime}$ (as otherwise $x_{u v}$ would have neighbours in at most one component of $\left.G^{\prime \prime}-S^{\prime \prime}\right)$. Moreover, at most one of u and v can belong to $S^{\prime \prime}$. This can be seen as follows. For contradiction, assume that u and v both belong to $S^{\prime \prime}$. Because $S^{\prime \prime}$ has size at least 3, we find that $S^{\prime \prime}$ contains some vertex $w \notin\{u, v\}$. This is not possible, as w is not adjacent to the 1-vertex component of $G^{\prime \prime}-S^{\prime \prime}$ that contains $x_{u v}$.

Let $T=S^{\prime \prime} \backslash\{y\}$ if $y \in S^{\prime \prime}$ and let $T=S^{\prime \prime}$ otherwise. Because at most one of every pair of adjacent vertices in G and no x-type vertices belong to $S^{\prime \prime}$, we find that T is a stable cut of $G^{\prime \prime}-\{y\}$ that only contains vertices of G. Because at least one vertex of any pair of adjacent vertices u, v belongs to the same component of $G^{\prime \prime}-S^{\prime \prime}$ that contains the vertex $x_{u v}$, we find that $G-T$ has just as many (and thus at least two) components as $G^{\prime \prime}-S^{\prime \prime}$. Hence $G-T$ has at least two components. We conclude that T is a stable cut of G.

Note that we cannot use the reduction in the proof of Theorem 5 to get NP-hardness for Minimal Connected Cut(1), the reason being that the gadget graph constructed contains many minimal disconnected cuts of size 2.

5 A Generalization

Let \mathcal{H} be a graph class. Recall that a given connected graph has a minimal \mathcal{H}-cut if it has a (minimal) cut that induces a graph in \mathcal{H} and that the corresponding decision problems are called \mathcal{H}-Cut and Minimal \mathcal{H}-Cut.

From the proof of Theorem 4 we find that the Minimal Stable Cut problem, that is, the problem of determining whether a graph has a minimal stable cut is NP-complete even for 2-connected planar graphs. The argument in this proof to move any cut vertex not adjacent to all components outside the stable cut until a minimal stable cut is obtained can be generalized to \mathcal{H}-cuts if an extra condition is added.

Observation 1 Let \mathcal{H} be a graph class of graphs closed under vertex deletion. Then a connected graph has a minimal \mathcal{H}-cut if and only if it has a \mathcal{H}-cut.

Due to Observation 1, the problems \mathcal{H}-Cut and Minimal \mathcal{H}-Cut are polynomially equivalent if \mathcal{H} is closed under vertex deletion. Recall that if we let \mathcal{H} be the class of disconnected graphs, we obtain the (Minimal) Disconnected Cut problem. However, we cannot combine Observation 1 with results for the Disconnected Cut problem to obtain corresponding results for the Minimal Disconnected Cut problem, because the class of disconnected graphs is not closed under vertex deletion. This is also clear from the fact that Disconnected CuT is polynomial-time solvable for planar graphs [11], whereas we showed in Section 4 that Minimal Disconnected Cut is NP-complete even for 2-connected planar graphs.

Also if for instance \mathcal{H} consists of all linear forests on at least two components (disjoint unions of two or more paths) we cannot use Observation 1, but in that case we can determine the complexity of Minimal \mathcal{H}-Cut by first giving the following description of minimal disconnected cuts in planar graphs (the second statement is a structural observation which is not needed for the proof of this result).

Theorem 6. Let G be a $K_{3,3}$-minor-free graph. Let U be any minimal cut of G. Then every component of $G[U]$ is a path or a cycle, or in case G is planar and U is disconnected, every component of $G[U]$ is a path. Moreover, G has a minimal disconnected cut of size 2 or for every minimal disconnected cut U of G it holds that $G[V \backslash U]$ has exactly two components.

Proof. Let V_{1} and V_{2} be the vertex sets of any two components of $G[V \backslash U]$. Suppose that U contains a vertex s of degree 3 in $G[U]$. Then s has neighbours t_{1}, t_{2}, t_{3} in U. As every vertex of U is adjacent to both V_{1} and V_{2}, the vertices s, t_{1}, t_{2}, t_{3} form, together with V_{1} and V_{2}, a $K_{3,3}$-minor of G, a contradiction. Hence, every component of $G[U]$ has maximum degree at most 2 , so is either a path or a cycle. Suppose that G is planar and that U is disconnected. For contradiction, assume that $G[U]$ contains a component with vertex set U_{1} that is a cycle. As every vertex of U is adjacent to both V_{1} and V_{2} we find that U_{1}
and a vertex of another component of $G[U]$ form, together with V_{1} and V_{2}, a K_{5}-minor of G, which is not possible as G is planar.

Now suppose that G has at least one minimal disconnected cut but not one of size 2 . Let U be a minimal disconnected cut of G. Then $G[V \backslash U]$ must have exactly two components; otherwise three vertices from U and three components of $G[V \backslash U]$ form a $K_{3,3}$-minor of G, as every vertex of U is adjacent to every component of $G[V \backslash U]$ by definition.

Let \mathcal{P} consist of all disjoint unions of two or more paths. Theorems 3,4 and 6 have the following consequence.

Corollary 1. Minimal \mathcal{P}-Cut is polynomial-time solvable for k-connected planar graphs if $k \geq 3$ and NP-complete if $k \leq 2$.

6 Semi-Minimality

Fig. 6. The grid M_{9}, where the two thick cycles correspond to cycles C_{b} and C_{d} in the proof of Theorem 7.

The $m \times m$ grid M_{m} has all pairs (i, j) for $i, j=0,1, \ldots, m-1$ as the vertex set, and two vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are joined by an edge if and only if $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|=1$. See Figure 6 for an example. We need the following result due to Robertson, Seymour and Thomas (see e.g. [6] for the definition of treewidth).

Lemma 3 ([22]). For every integer m, every planar graph of treewidth at least $6 m-4$ contains M_{m} as a minor.

We also use the well-known result of Courcelle [6] that states that on any class of graphs of bounded treewidth, every problem definable in monadic second-order logic can be solved in time linear in the number of vertices of the graph (we refer to [6] for more details on monadic second-order logic).

Lemma 4. The Semi-Minimal Disconnected Cut problem can be defined in monadic second order logic.

Proof. We can express the property that $G=(V, E)$ has a semi-minimal disconnected cut in monadic second order logic as follows. We first note that a graph G has a disconnected cut if and only if V can be partitioned into four sets U_{1}, U_{2}, V_{1}, V_{2} such that the following three conditions hold:

1. every vertex of V belongs to exactly one set of $\left\{U_{1}, U_{2}, V_{1}, V_{2}\right\}$;
2. sets $U_{1}, U_{2}, V_{1}, V_{2}$ are all nonempty;

3a. sets U_{1} and U_{2} are nonadjacent;
3 b . sets V_{1} and V_{2} are nonadjacent.
It is readily seen that these conditions can be expressed in monadic second order logic:

$$
\begin{aligned}
& -\phi_{1}=\forall u\left(U_{1}(u) \vee U_{2}(u) \vee V_{1}(u) \vee V_{2}(u)\right) ; \\
& -\phi_{2}=\exists u U_{1}(u) \wedge \exists u U_{2}(u) \wedge \exists u V_{1}(u) \wedge \exists u V_{2}(u) ; \\
& -\phi_{3 a}=\forall u \forall v\left(\left(U_{1}(u) \wedge U_{2}(v)\right) \rightarrow \neg E(u, v)\right) ; \\
& -\phi_{3 b}=\forall u \forall v\left(\left(V_{1}(u) \wedge V_{2}(v)\right) \rightarrow \neg E(u, v)\right)
\end{aligned}
$$

We are left to express the semi-minimality in monadic second order logic. This condition is equivalent to demanding that for all $u \in U_{1} \cup U_{2}$ there exists a set $Z_{u} \subseteq V$ (so Z_{u} may be different for different vertices u of $U_{1} \cup U_{2}$) such that the following three conditions hold:

4a. $Z_{u} \cap\left(V_{1} \cup V_{2}\right)$ contains a neighbour s of u;
4b. $\left(V_{1} \cup V_{2}\right) \backslash Z_{u}$ contains a neighbour t of u;
4c. there is no edge between any vertex of $Z_{u} \cap\left(V_{1} \cup V_{2}\right)$ and any vertex of $\left(V_{1} \cup V_{2}\right) \backslash Z_{u}$.

Also these conditions can be easily formulated in monadic second order logic:
$-\phi_{4 a}=\exists s\left(E(s, u) \wedge Z_{u}(s) \wedge\left(V_{1}(s) \vee V_{2}(s)\right) ;\right.$
$-\phi_{4 b}=\exists t\left(E(t, u) \wedge\left(V_{1}(t) \vee V_{2}(t)\right) \wedge \neg Z_{u}(t)\right)$;
$-\phi_{4 c}=\forall s \forall t\left(\left(Z_{u}(s) \wedge\left(V_{1}(s) \vee V_{2}(s)\right) \wedge\left(V_{1}(t) \vee V_{2}(t)\right) \wedge \neg Z_{u}(t)\right) \rightarrow \neg E(s, t)\right)$.
Then G has a semi-minimal disconnected cut if and only if the following monadic second order logic sentence is true:
$\exists U_{1} \exists U_{2} \exists V_{1} \exists V_{2}\left(\phi_{1} \wedge \phi_{2} \wedge \phi_{3 a} \wedge \phi_{3 b} \wedge \forall u\left(\left(U_{1}(u) \vee U_{2}(u)\right) \rightarrow \exists Z_{u}\left(\phi_{4 a} \wedge \phi_{4 b} \wedge \phi_{4 c}\right)\right)\right)$.
This completes the proof of Lemma 4.
We also need the following lemma.

Lemma 5. Let U be a disconnected cut of a connected graph $G=(V, E)$. If every component of $G[U]$ is adjacent to at least two components of $G[V \backslash U]$, then G has a semi-minimal disconnected cut $U^{\prime} \subseteq U$.

Proof. Let D_{1}, \ldots, D_{p} be the components of $G[U]$. For each D_{i} we do as follows. As long as there exists a vertex $u \in D_{i}$ that is adjacent to at most one component of $G[V \backslash U]$ we move u from D_{i} to $G[V \backslash U]$. Because D_{i} is adjacent to at least two components of $G[V \backslash U]$, this process stops before D_{i} becomes empty. Afterwards, D_{i} only contains vertices adjacent to none or at least two components of $G[V \backslash U]$. Note that D_{i} contains at least one vertex adjacent to at least two components of $G[V \backslash U]$. We move all vertices not adjacent to any components of $G[V \backslash U]$ from D_{i} to $G[V \backslash U]$. Afterward, D_{i} is still nonempty. Hence, after doing this for each D_{i}, we have obtained a set $U^{\prime} \subseteq U$ that is a semi-minimal disconnected cut of G.

We are now ready to prove the main result of this section.
Theorem 7. The Semi-Minimal Disconnected Cut problem can be solved in linear time for planar graphs.

Proof. Let G be a planar graph. We use Bodlaender's algorithm [1] to test in linear time whether the treewidth of G is at most $6 \cdot 9-5$. If so, then by Lemma 4 and the aforementioned theorem of Courcelle [6], we can test in linear time whether G has a semi-minimal disconnected cut. If not, then G contains M_{9} as a minor by Lemma 3 . Let \mathcal{W} be a corresponding witness structure. We notice that the vertices of M_{9} can be partitioned into 5 nested cycles $C_{a}, C_{b}, C_{c}, C_{d}$ and C_{e} of length 1 (with slight abuse of terminology), 8, 16, 24 and 32 , respectively; see also Figure 6. We let U be the union of vertices in the sets $W(x)$ for all $x \in V\left(C_{b}\right) \cup V\left(C_{d}\right)$. Then, as G is planar, U is a disconnected cut of G. Moreover, as $V\left(C_{b}\right) \cup V\left(C_{d}\right)$ satisfies the condition of Lemma $5, U$ satisfies this condition as well. Hence, we can apply this lemma to obtain a semi-minimal disconnected cut $U^{\prime} \subseteq U$ of G.

7 Conclusions

Our main results are that Minimal Disconnected Cut is NP-complete for 2-connected planar graphs and polynomial-time solve for planar graphs that are 3 -connected. Our proof technique for the latter result was based on translating the problem to a dual problem, namely the existence of a subdivision of D_{r} for some r, for which we obtained a polynomial-time algorithm even for general graphs. One can also solve the problem of determining whether a graph contains D_{r} as a subdivision for some fixed integer r by using the algorithm of Grohe, Kawarabayashi, Marx, and Wollan [8] which tests in cubic time, for any fixed graph H, whether a graph contains H as a subdivision. However, when r is part of the input we observe the following.

Theorem 8. The problem of deciding whether a graph contains the graph D_{r} as a subdivision is NP-complete if r is part of the input.

Proof. We reduce from the problem Hamilton Cycle, which is well known to be NP-complete [14]. Let G be a graph with n vertices and m vertices. We replace each edge $e=u v$ in G by two paths $u s_{e} v$ and $u t_{e} v$ where s_{e} and t_{e} are two new vertices (so we add $2 m$ new vertices in total). The resulting graph contains D_{n} as a subdivision if and only if G has a hamilton cycle.

We finish our paper with some open problems. Recall that our construction in Theorem 5 does not work for proving NP-hardness of Minimal Connected $\operatorname{CuT}(1)$, which is the problem of deciding whether a graph has a minimal connected cut. The computational complexity of this problem is not known. In fact we do not know this even for (3-connected) planar graphs, and we pose these questions as open problems. Note that these problems fall under a more general study into minimal \mathcal{H}-cuts that we introduced in Section 5 .

References

1. H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM Journal on Computing 25 (1996) 1305-1317.
2. P.S. Bonsma, The complexity of the matching-cut problem for planar graphs and other graph classes, Journal of Graph Theory 62 (2009) 109-126.
3. A. Brandstädt, F.F. Dragan, V.B. Le and T. Szymczak, On stable cutsets in graphs, Discrete Applied Mathematics 105 (2000) 39-50.
4. K. Cameron, E. M. Eschen, C. T. Hoàng, and R. Sritharan, The complexity of the list partition problem for graphs, SIAM Journal on Discrete Mathematics 21 (2007) 900-929.
5. V. Chvátal, Recognizing decomposable graphs, Journal of Graph Theory 8 (1984) 51-53.
6. B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Information and Computation 85 (1990) 12-75.
7. C.M.H. de Figueiredo, S. Klein, Y. Kohayakawa and B.A. Reed, Finding skew partitions efficiently, Journal of Algorithms 37 (2000) 505-521.
8. M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan, Finding topological subgraphs is fixed-parameter tractable, Proc. STOC 2011, 479-488.
9. P. Heggernes, P. van 't Hof, D. Marx, N. Misra and Y. Villanger, On the parameterized complexity of finding separators with non-hereditary properties, Algorithmica 72 (2015) 687-713.
10. T. Ito, M. Kamiński, D. Paulusma and D.M. Thilikos, On disconnected cuts and separators, Discrete Applied Mathematics 159 (2011) 1345-1351.
11. T. Ito, M. Kamiński, D. Paulusma and D. M. Thilikos, Parameterizing cut sets in a graph by the number of their components, Theoretical Computer Science 412 (2011) 6340-6350.
12. M. Kamiński, D. Paulusma, A. Stewart and D.M. Thilikos, Minimal disconnected cuts in planar graphs, Proc. FCT 2015, LNCS 9210, 243-254.
13. M. Kamiński, D. Paulusma and D.M. Thilikos, Contractions of planar graphs in polynomial time, Proc. ESA 2010, LNCS 6346 (2010) 122-133.
14. R.M. Karp, Reducibility among combinatorial problems, In: Complexity of Computer Computations, New York: Plenum (1972) 85-103.
15. W.S. Kennedy and B. Reed, Fast skew partition recognition, In: Computational Geometry and Graph Theory, LNCS 4535 (2008) 101-107.
16. K. Kuratowski, Sur le problème des courbes gauches en topologie, Fundamenta Mathematicae 15 (1930) 271-283.
17. V.B. Le, R. Mosca and H. Müller, On stable cutsets in claw-free graphs and planar graphs, Journal of Discrete Algorithms 6 (2008) 256-276.
18. B. Martin and D. Paulusma, The computational complexity of Disconnected Cut and 2K2-Partition, Journal of Combinatorial Theory, Series B 111 (2015) 17-37.
19. D. Marx, B. O'Sullivan and I. Razgon, Finding small separators in linear time via treewidth reduction, ACM Transactions on Algorithms 9 (2013) 30.
20. B. Mohar, A linear time algorithm for embedding graphs in an arbitrary surface, SIAM Journal on Discrete Mathematics 12 (1999) 6-26.
21. B. Mohar and C. Thomassen, Graphs on Surfaces, The Johns Hopkins University Press, 2001.
22. N. Robertson, P. Seymour, and R. Thomas, Quickly excluding a planar graph, Journal of Combinatorial Theory, Series B 62 (1994) 323-348.
23. R.E. Tarjan, Decomposition by clique separators, Discrete Mathematics 55 (1985) 221-232.
24. S.H. Whitesides, An algorithm for finding clique cut-sets, Information Processing Letters 12 (1981) 31-32.

[^0]: * The fist author was supported by Foundation for Polish Science (HOMING PLUS/2011-4/8) and National Science Center (SONATA 2012/07/D/ST6/02432). The second author was supported by EPSRC Grant EP/K025090/1. The research of the last author was co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II. An extended abstract of this paper appeared in the proceedings of FCT 2015 [12].

[^1]: ${ }^{1}$ We recall from Section 1 that Stable Cut is NP-complete even for 3-connected planar graphs, but we do not need 3-connectivity in our proof.

