
HAL Id: lirmm-01483628
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01483628v1

Submitted on 22 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(Meta) Kernelization
Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx,

Saket Saurabh, Dimitrios M. Thilikos

To cite this version:
Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, et al..
(Meta) Kernelization. Journal of the ACM (JACM), 2016, 63 (5), pp.#44. �10.1145/2973749�. �lirmm-
01483628�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01483628v1
https://hal.archives-ouvertes.fr

(Meta) Kernelization1

Hans L. Bodlaender2 Fedor V. Fomin3,4 Daniel Lokshtanov3

Eelko Penninkx2 Saket Saurabh3,5 Dimitrios M. Thilikos6

September 2013

Abstract

In a parameterized problem, every instance I comes with a positive integer k. The

problem is said to admit a polynomial kernel if, in polynomial time, one can reduce

the size of the instance I to a polynomial in k, while preserving the answer. In

this work we give two meta-theorems on kernelzation. The first theorem says that

all problems expressible in Counting Monadic Second Order Logic and satisfying a

coverability property admit a polynomial kernel on graphs of bounded genus. Our

second result is that all problems that have finite integer index and satisfy a weaker

coverability property admit a linear kernel on graphs of bounded genus. These

theorems unify and extend all previously known kernelization results for planar

graph problems.

Keywords: graph algorithms, counting monadic second order logic, parameterized com-

plexity, embedded graphs, preprocessing, kernelization, treewidth, protrusions, finite

integer index.

1A preliminary version of this article appeared in Proceedings of the 50th Annual IEEE Symposium

on Foundations of Computer Science (FOCS 2009), IEEE, 2009, pp. 629–638.
2Utrecht University, Utrecht, the Netherlands. Email: {H.L.Bodlaender|penninkx}@uu.nl
3University of Bergen, Bergen, Norway. Email: {fomin|daniello}@ii.uib.no
4Supported by “Rigorous Theory of Preprocessing”, ERC Advanced Investigator Grant 267959.
5The Institute of Mathematical Sciences, CIT Campus, Chennai, India. Email: saket@imsc.res.in.

Supported by “Parameterized Approximation”, ERC Starting Grant 306992.
6Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece and

AlGCo project-team, CNRS, LIRMM, France. Email: sedthilk@thilikos.info. Co-financed by the E.U.

(European Social Fund - ESF) and Greek national funds through the Operational Program “Education

and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding

Program: “Thales. Investing in knowledge society through the European Social Fund”.

1

ar
X

iv
:0

90
4.

07
27

v3
 [

cs
.D

M
]

 2
5

Se
p

20
13

http://www.staff.science.uu.nl/~bodla101/
http://www.ii.uib.no/~fomin/
http://www.ii.uib.no/~daniello/
http://www.cs.uu.nl/staff/penninkx.html
http://www.imsc.res.in/~saket/
http://www.thilikos.info
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5438590&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D5438590
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5438590&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D5438590

Contents

1 Introduction 3

2 Definitions and Notations 9

2.1 Preliminaries . 9

2.1.1 Parameterized algorithms and kernels 10

2.1.2 Tree-width . 10

2.2 Boundaried Graphs . 11

2.3 Finite Integer Index . 12

2.4 Structures and its properties . 13

2.5 Counting Monadic Second Order Logic and its properties 14

2.6 Boundaried structures . 16

3 A variant of Courcelle’s Theorem 17

4 Derivation of our results 26

4.1 Meta-algorithmic properties . 26

4.2 The meta-algorithm . 27

4.3 Two master theorems . 28

4.4 Problems having the algorithmic and combinatorial properties 29

4.5 Derivation of Theorems 1.1, 1.2, and 1.3 29

5 Reduction Rules 30

5.1 Model checking on structures . 30

5.2 Protrusion replacement families for annotated p-min-CMSO[ψ] Problems 31

5.3 Protrusion replacement for annotated p-eq-CMSO[ψ] Problems 37

5.4 Protrusion replacement for annotated p-max-CMSO[ψ] Problems 39

5.5 A protrusion replacement family based for problems that have FII 43

6 Combinatorial results 44

6.1 Definitions from graph theory . 44

6.2 Decomposition lemma for coverable problems 45

6.3 Decomposition lemma for quasi-coverable problems 49

7 Criteria for proving FII 56

7.1 Strong monotonicity . 56

7.2 FII for p-min/max-CMSO[ψ] problems 57

8 Implications of our results 59

8.1 Preliminary tools . 60

8.2 Covering minors . 60

8.3 Packing minors . 62

2

8.4 Subgraph Covering and Packing . 65

8.5 Domination and its variants . 67

8.6 Scattered sets . 71

8.7 Problems on Directed Graphs . 73

8.8 A direct proof of FII for a minimization problem 74

8.9 Summary of consequences of our results 77

9 Open Problems and Further Directions 82

A Problem Compendium 90

A.1 Minimization problems that have FII and are quasi-coverable – linear

kernels for graphs of bounded genus. 90

A.2 Maximization problems that have FII and are quasi-coverable – linear

kernels for graphs of bounded genus. 90

A.3 Problems that do not have FII and are coverable p-min/max-CMSO –

polynomial kernels for graphs of bounded genus. 90

A.4 A problem that has FII but is not quasi-coverable. 90

A.5 A quasi-coverable problem that has no FII. 90

A.6 Problems that do not have FII and they are not quasi-coverable. 90

1 Introduction

Preprocessing (data reduction or kernelization) as a strategy of coping with hard prob-

lems is universally used in almost every implementation. The history of preprocessing,

like applying reduction rules to simplify truth functions, can be traced back to the 1950’s

[65]. A natural question in this regard is how to measure the quality of the preprocessing

rules proposed for a specific problem. For a long time the mathematical analysis of poly-

nomial time preprocessing algorithms was neglected. The basic reason for this anomaly

was that if we start with an instance I of an NP-hard problem and can show that, in

polynomial time, we can replace this with an equivalent instance I ′ with |I ′| < |I| then

that would imply P=NP in classical complexity. The situation changed drastically with

advent of parameterized complexity. Combining tools from parameterized and classical

complexities it has become possible to derive upper and lower bounds on the sizes of

reduced instances, or so called kernels.

Kernelization. In parameterized complexity each problem instance comes with a

parameter k and the parameterized problem is said to admit a polynomial kernel if there

is a polynomial time algorithm (the degree of polynomial is independent of k), called a

kernelization algorithm, that reduces the input instance down to an instance with size

bounded by a polynomial p(k) in k, while preserving the answer. This reduced instance

is called a p(k) kernel for the problem. If p(k) = O(k), then we call it a linear kernel

3

(for a more formal definition, see Subsection 2.1.1). Kernelization has been extensively

studied in the realm of parameterized complexity, resulting in polynomial kernels for a

variety of problems. Notable examples of kernelization include a 2k-sized vertex kernel

for Vertex Cover [20], a 355k vertex kernel for Dominating Set on planar graphs [5],

which later was improved to a 67k vertex kernel [19], and an O(k2) kernel for Feedback

Vertex Set [70] parameterized by the solution size.

One of the most important results in the area of kernelization was given by [5]. They

gave the first linear sized kernel for the Dominating Set problem on planar graphs. The

work of [5] triggered an explosion of papers on kernelization, and in particular on kernel-

ization of problems on planar graphs. Combining the ideas of [5] with problem specific

data reduction rules, kernels of linear sizes were obtained for a variety of parameterized

problems on planar graphs including Connected Vertex Cover, Minimum Edge

Dominating Set, Maximum Triangle Packing, Efficient Edge Dominating

Set, Induced Matching, Full-Degree Spanning Tree, Feedback Vertex Set,

Cycle Packing, and Connected Dominating Set [3, 5, 15, 16, 19, 46, 47, 53, 59, 62].

Dominating Set has received special attention from kernelization view point, leading

to a linear kernel on graphs of bounded genus [41] and polynomial kernel on graphs

excluding a fixed graph H as a minor and on d-degenerated graphs [6, 64]. We refer to

the survey of [45] for a detailed treatment of the area of kernelization.

Most of the papers on linear kernels on planar graphs have the following idea in

common: find an appropriate region decomposition (essentially a partitioning of the

vertex set into graphs of small diameter) of the input planar graph based on the problem

in question, and then perform problem specific rules to reduce the part of the graph

inside each region. The first step towards the general abstraction of all these algorithms

was initiated by [46], who proved a general decomposition theorem for all problems

with a specific distance property. Combining this decomposition theorem with problem

specific reduction rules yields linear kernels for various problems on planar graphs. Thus

all previous work on kernelization was strongly based on the design of reduction rules

particular to the problem in question. In this paper we step aside and find properties

of problems, such as expressibility in Counting Monadic Second Order Logic (CMSO),

which allows these reduction rules to be automated.

Algebraic reduction techniques. The idea of graph replacement for algorithms dates

back to Fellows and Langston [31]. Arnborg et al. [7] proved that every set of graphs of

bounded treewidth that is definable by a Monadic Second Order Logic (MSO) formula

is also definable by reduction. By making use of algebraic reductions, Arnborg et al. [7]

obtained a linear time algorithm for MSO expressible problems on graphs of bounded

treewidth. Bodlaender and de Fluiter [11, 17, 26] generalized these ideas in several

ways—in particular, they applied it to a number of optimization problems. It is also

important to mention the work of Bodlaender and Hagerup [14], who used the concept

of graph reduction to obtain parallel algorithms for MSO expressible problems on graphs

4

of bounded treewidth.

Algorithmic meta-theorems. Our results can be seen as what Grohe and Kreutzer

call algorithmic meta-theorems [43, 58]. Meta-theorems bring out the deep relations be-

tween logic and combinatorial structures, which is a fundamental issue of computational

complexity. Such theorems also yield a better understanding of the scope of general al-

gorithmic techniques and the limits of tractability. A typical example of meta-thoerem is

the celebrated Courcelle’s theorem [22] which states that all graph properties definable

in MSO can be decided in linear time on graphs of bounded treewidth. More recent

examples of such meta-theorems state that all first-order definable properties on planar

graphs can be decided in linear time [42] and that all first-order definable optimization

problems on classes of graphs with excluded minors can be approximated in polynomial

time to any given approximation ratio [25]. Our meta-theorems not only give a uniform

and natural explanation for a large family of known kernelization results but also provide

a variety of new results. In what follows we build up towards our theorems. We first

give necessary definitions needed to formulate our results.

Parameterized graph problems. A parameterized graph problem Π in general can

be seen as a subset of Σ∗ × Z+ where, in each instance (x, k) of Π, x encodes a graph

and k is the parameter (we denote by Z+ the set of all non-negative integers). In this

paper we extend this definition by permitting the parameter k to be negative with the

additional constraint that either all pairs with non-positive value of the parameter are

in Π or that no such pair is in Π. Formally, a parametrized problem Π is a subset of

Σ∗ × Z where for all (x1, k1), (x2, k2) ∈ Σ∗ × Z with k1, k2 < 0 it holds that (x1, k1) ∈ Π

if and only if (x2, k2) ∈ Π. This extended definition encompasses the traditional one and

is being adopted for technical reasons (see Subsection 2.3). In many cases, in the pair

(x, k), x will encode an annotated graph, that is a pair (G,S) where S is a subset of the

vertices of G, i.e., S contains the annotated vertices of G. In this paper, we mostly work

on problems restricted to certain graph classes. For this reason, given a graph class G,
we use notation Π e G for the set of instances of Π minus the instances (x, k) where x

does not encode a graph in G. That way, the new problem Π′ = Π e G is a subset of

Σ∗ × Z that corresponds to the restriction of Π to graphs in G. In this paper we mostly

apply such restrictions to bounded genus graphs. We denote by Gr the class of graphs

that are 2-cell embeddable in some surface of Euler genus at most r.

r-coverable problems. Let G = (V,E) be a graph embedded without crossings in a

surface. (For more details on graph embeddings, see Subsection 6.) The radial distance

between two vertices x, y of G in this embedding is one less than the minimum length of

an alternating sequence of vertices and faces starting from x and ending in y, such that

every two consecutive elements of this sequence are incident with each other. Given a

set S ⊆ V, we define Rr
G(S) to be the set of all vertices of G whose radial distance from

some vertex of S is at most r

5

Let r be a non-negative integer. We say that a parameterized graph problem Π has

the radial r-coverability property if all YES-instances of Π encode graphs embeddable in

some surface of Euler genus at most r and there exist such an embedding and a set S ⊆ V
such that |S| ≤ r · k and Rr

G(S) = V. We say that a problem Π is radially r-coverable if

either Π or its “complement in Gr”, namely Π∩Gr has the radial r-coverability property,

(here, Π = Σ∗ \ Π). Every problem Π that has the radial r-coverability property is

radially r-covervable. However, the converse is not necessarily true. In particular, the

p-Independent Set problem can easily be seen to be radially r-coverable but it does

not have the radial r-coverability property.

r-quasi-coverable problems. A parameterized graph problem Π has the radial r-quasi-

coverability property if all YES-instances of Π encode graphs embeddable in some surface

of Euler genus at most r and there exist such an embedding and a set S ⊆ V such that

|S| ≤ r ·k and tw(G\Rr
G(S)) ≤ r (by tw(G) we denote the treewidth of G, for the formal

definition, see Subsection 2.1.2). We say that a problem Π is radially r-quasi-coverable,

if either Π or Π∩ Gr has the radial r-quasi-coverability property. Every problem Π that

has the radial r-quasi-coverability property is radially r-quasi-covervable. Again, the

converse is not necessarily true. For an example, the p-Cycle Packing problem is

radially r-quasi-coverable but it does not have the radial r-quasi-coverability property.

Notice that if a problem is r-coverable then it is also r-quasi-coverable. From now

on, for simplicity, we drop the terms “radial” and “radially” and we simply use the terms

“r-quasi-coverability property” or “r-quasi-coverable”.

Counting Monadic Second Order Logic. We use CMSO [8, 24, 23], an extension

of MSO, as a basic tool to express properties of vertex/edge sets in graphs. As in this

section our aim is to define a series of CMSO-based problem properties, we avoid the

formal definitions of CMSO and we postpone them for Subsection 2.5.

Our first result concerns a parameterized analogue of graph optimization problems

where the objective is to find a maximum or minimum sized vertex or edge set satisfying

a CMSO-expressible property. We now define a class of parameterized problems, called

p-min-CMSO problems1, with one problem for each CMSO sentence ψ on graphs, where

ψ has a free vertex set variable S. The p-min-CMSO problem defined by ψ is denoted

by p-min-CMSO[ψ] and defined as follows.

p-min-CMSO[ψ]

Input: A graph G = (V,E) and a non-negative integer k

Parameter: k

Question: Is there a subset S ⊆ V such that |S| ≤ k and (G,S) |=
ψ?

1We follow the notation given in the book by Flum and Grohe [32] and add “p” in front of names of

problems to emphasize that these are parameterized problems.

6

In other words, p-min-CMSO[ψ] is a subset Π of Σ∗×Z where for every (x, k) ∈ Σ∗×Z+,

(x, k) ∈ Π if and only if there exists a set S ⊆ V where |S| ≤ k such that the graph G

encoded by x together with S satisfy ψ, i.e., (G,S) |= ψ. For (x, k) ∈ Σ∗ × Z− we know

that (x, k) /∈ Π. In this case, we say that Π is definable by the sentence ψ and that Π is

a p-min-CMSO[ψ].

The definition of p-eq-CMSO[ψ] (resp. p-max-CMSO[ψ]) problem is the same as

the one for p-min-CMSO[ψ] problem with the difference that now we ask that |S| = k

(resp. |S| ≥ k) and that for any (x, k) ∈ Σ∗ × Z− we have that (x, k) ∈ Π. We can

also extend the notion of a p-min/eq/max-CMSO[ψ] problems to edge versions. In

these problems S is a subset of edges instead of a subset of vertices. All of our results

can be straightforwardly extended to this alternate setting. In particular, an edge

set problem on graph G = (V,E) can be transformed to a vertex subset problem on

the edge-vertex incidence graph I(G) of G, which is is a bipartite graph with vertex

bipartition’s V and E with edges between vertices v ∈ V and e ∈ E if and only if v

is incident with e in G. Observe that if G can be embedded in surface Σ then so does

I(G) and even the treewidth of these graphs only differ by a factor of 2. To make the

translation work throughout the paper, it is sufficient to use the fact that the property

of being an incidence graph of a graph G is expressible in MSO. To avoid complications

in our proof we omit the details for this.

The annotated version Πα of a p-min/eq/max-CMSO[ψ] problem Π is the param-

eterized graph problem whose instances are pairs of the form ((G, Y), k) where (G, Y)

is an annotated graph and k is a non-negative integer. In the annotated version of a

p-min/eq-CMSO[ψ] problem, S is additionally required to be a subset of Y. For the

annotated version of a p-max-CMSO[ψ] problem S is not required to be a subset of

Y, but instead of |S| ≥ k we demand that |S ∩ Y | ≥ k. A problem is an annotated p-

min/eq/max-CMSO[ψ] problem if it is the annotated version of some p-min/eq/max-

CMSO[ψ] problem.

Our results. Our first result is the following theorem (the proofs of Theorems 1.1, 1.2,

and 1.3 are given in Section 4).

Theorem 1.1. If Π is an r-coverable p-min/max-CMSO[ψ] (respectively p-eq-

CMSO[ψ]) problem, then the annotated version Πα admits a quadratic (respectively

cubic) kernel.

Let us remark that, while a parameterized graph problem is a special case of its an-

notated version where all vertices are annotated, the existence of a polynomial kernel for

the annotated version does not imply directly that the corresponding (non-annotated)

parameterized graph problem admits a polynomial kernel. Indeed, a kernelization al-

gorithm for an annotated parameterized graph problem Πα is a polynomial time algo-

rithm that, given an input (G = (V,E), Y, k) of Πα, computes an equivalent instance

(G′ = (V ′, E′), Y ′, k′) of Πα such that max{|V ′|, k′} = kO(1). The point here is that even

7

when Y = V, we cannot guarantee that Y ′ = V ′. However, there is a simple trick resolv-

ing this issue, given some additional complexity conditions. In particular, Theorem 1.1

can be used to prove the following.

Theorem 1.2. If Π is an NP-hard r-coverable p-min/eq/max-CMSO[ψ] problem and

Πα is in NP, then Π admits a polynomial kernel.

Theorems 1.1 and 1.2 provide polynomial kernels for a variety of parameterized graph

problems. However, many parameterized graph problems in the literature are known to

admit linear kernels on planar graphs. Our next theorem unifies and generalizes all

known linear kernels for parametrized graph problems on surfaces. To this end we make

use of the notion of having Finite Integer Index or, in short, FII. This term first appeared

in the works of [17, 26] and is similar to the notion of finite state [1, 18, 24]. As the

definition of the property of having FII is long, we defer it to Subsection 2.3. Out next

result is the following.

Theorem 1.3. If Π is an r-quasi-coverable parameterized graph problem that has FII,

then Π admits a linear kernel.

Our theorems are similar in spirit, yet they have a few differences. In particular,

not every p-min/eq/max-CMSO[ψ] problem has FII. For example, the Independent

Dominating Set problem is a p-min-CMSO[ψ] problem, but it does not have FII.

Also the class of parameterized graph problems that have FII does not have a syntactic

characterization and hence it may take some more work to apply Theorem 1.3 than

Theorem 1.1. On the other hand, Theorem 1.3 applies to r-quasi-coverable problems

and yields linear kernels. That way, it unifies and implies results presented in [4, 5, 15,

16, 19, 41, 46, 47, 53, 59, 62] as a corollary.

At high level, the proofs of our theorems consist of combinatorial decomposition and

algebraic reductions. The combinatorial part shows how a graph can be decomposed

into pieces with specific properties, and the algebraic reductions part explains how these

pieces can be reduced. The important tool in both parts is the notion of protrusion, i.e.

a subset of vertices of a graph, inducing a graph of constant treewidth and separated

from the remaining part of the graph by a constant number of vertices. In the algebraic

reductions part of the proof, we show that sufficiently large protrusions can be replaced

by equivalent protrusions of smaller size. For CMSO problems algebraic reduction step is

much more technical and involved than for FII. Here we work with annotated problems

and perform replacements in several stages.

In the combinatorial part, the result concerning quasi-coverable problems is roughly

as follows. Suppose that after deleting k constant radius balls from a bounded-genus

graph G the remaining part of G has constant treewidth. Then either G has a protrusion

of sufficiently large size (and in this case we can apply protrusion reduction to reduce

the instance), or G has O(k) vertices. The proof of this result is based on a new

treewidth-obstruction lemma for graphs embedded on a surface of bounded genus, which

8

is interesting in its own right. More precisely the lemma states that if a graph of

bounded genus has two vertices which are far apart (in the radial distance) and cannot

be separated by a small separator, then the treewidth of the graph is large. Concerning

coverable problems, we show that every bounded genus graph G whose vertices can be

covered by k balls of constant radius admits a protrusion decomposition. A protrusion

decomposition is a partition of the vertex set into O(k) sets, one of these sets is a set S of

size O(k) and the other sets are protrusions separated from each other by S. Combined

with protrusion replacement rules for CMSO problems, such a decomposition implies

the existence of a polynomial kernel for every coverable CMSO problem.

The remaining part of this paper is organized as follows. In the next section (Sec-

tion 2) we give a series of definitions on basic notions that are necessary to describe our

results. In Section 3 we give a proof of a variant of the classical Courcelle’s Theorem

which we use in the proofs of our results. In Section 4 we present our meta-algorithmic

framework for kernelization and explain how our main results are derived from a series

of algorithmic and combinatorial properties. The algorithmic properties are proved in

Section 5 while our combinatorial results are proven in Section 6. Some criterion for

proving that a problem in graphs has FII are given in Section 7 and in Section 8 we

give an extended exposition of how our results can be applied to concrete problems. In

Section 9, we conclude with some open problems and further research directions. At

the end of the paper, we append a short compendium of problems for which linear or

polynomial kernels are consequences of our results.

2 Definitions and Notations

In this section we give necessary definitions, set up notations and derive some preliminary

results that we make use of in proving the main results of the paper.

2.1 Preliminaries

In this section we define some concepts that we use in the rest of this paper. Given a

graph G = (V,E) we use the notation V (G) and E(G) for V and E respectively. Given

a set S ⊆ V (G), we define ∂G(S) as the set of vertices in S that have a neighbor in V \S.
For a set S ⊆ V (G), the neighbourhood of S in G is NG(S) = ∂G(V (G) \ S). We also

define the closed neighborhood of S in G as NG[S] = S ∪ ∂G(V (G) \ S). When it is clear

from the context, we omit the subscripts.

Let G = (V,E) be a graph. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V

and E′ ⊆ E. The subgraph G′ is called an induced subgraph of G if E′ = {{u, v} ∈ E |
u, v ∈ V ′}. In this case, G′ is also called the subgraph induced by V ′ and is denoted

by G[V ′]. Given a graph G and a set S ⊆ V, we denote by G \ S the graph G[V \ S]. If

S ⊆ E, we denote G \ S = (V,E \ S). We also use the term (x, y)-path for a path in G

that has x and y as endpoints.

9

Throughout this paper we use Z, Z+ and Z− for the sets of integers, non-negative

and non-positive integers respectively. Finally, we use N for the set of positive integers.

2.1.1 Parameterized algorithms and kernels

An instance of a parameterized problem consists of (x, k), where k is called the parameter.

Thus a parameterized problem Π is a subset of Σ∗×Z for some finite alphabet Σ such that

for all (x1, k1), (x2, k2) ∈ Σ∗×Z with k1, k2 < 0 it holds that (x1, k1) ∈ Π ⇐⇒ (x2, k2) ∈
Π. A central notion in parameterized complexity is fixed parameter tractability, which

means, for a given instance (x, k), solvability in time f(k) ·p(|x|), where f is an arbitrary

function of k and p is a polynomial in the input size. The notion of kernelization is

formally defined as follows.

Definition 2.1. [Kernelization] Let Π ⊆ Σ∗ × Z be a parameterized problem and g

be a computable function. We say that Π admits a kernel of size g if there exists an

algorithm K, called kernelization algorithm, or, in short, a kernelization, that given

(x, k) ∈ Σ∗ × Z+, outputs, in time polynomial in |x|+ k, a pair (x′, k′) ∈ Σ∗ × Z+ such

that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

(b) max{|x′|, k′} ≤ g(k).

For every (x, k) ∈ Σ∗ × Z−, the algorithm outputs a trivial equivalent instance. When

g(k) = kO(1) or g(k) = O(k) then we say that Π admits a polynomial or linear kernel

respectively.

In this paper, we study parameterized problems on graphs. However, in many cases

we have to deal with annotated graph problems whose input is a pair (G,S), where S is

a set of annotated vertices of G. For such problems the task is to find a solution that is

contained in S. For this reason, we use the term parameterized graph problem for every

subset Π of Σ∗ × Z, where in each instance I = (x, k) ∈ Σ∗ × Z the string x is encoding

either a graph G = (V,E) or a pair (G,S) with S ⊆ V and the integer k encodes the

parameter.

2.1.2 Tree-width

Let G = (V,E) be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T))

where T is a tree and X is a collection of subsets of V such that:

• ∀e = {u, v} ∈ E, ∃t ∈ V (T) : {u, v} ⊆ Xt and

• ∀v ∈ V , T [{t | v ∈ Xt}] is non-empty and connected.

10

We call the vertices of T nodes and the sets in X bags of the tree decomposition (T,X).

The width of (T,X) is equal to max{|Xt|−1 | t ∈ V (T)} and the treewidth of G = (V,E)

is the minimum width over all tree decompositions of G. We denote the treewidth of a

graph G by tw(G).

A nice tree decomposition is a triple (T,X , r) where (T,X) is a tree decomposition

where the tree T is rooted on some vertex r ∈ V (T) and the following conditions are

satisfied:

• Every node of the tree T has at most two children;

• if a node t has two children t1 and t2, then Xt = Xt1 = Xt2 (we call t a join node);

and

• if a node t has one child t1, then either |Xt| = |Xt1 |+ 1 and Xt1 ⊂ Xt (in this case

we call t1 introduce node) or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (in this case we call t1
forget node).

It is possible to transform a given tree decomposition (T,X) into a nice tree decompo-

sition (T ′,X ′, r) where the root r is any vertex of T in time O(|V |+ |E|) [10].

2.2 Boundaried Graphs

Here we define the notion of boundaried graphs and various operations on them.

Definition 2.2. [Boundaried Graphs] A boundaried graph is a graph G with a set

B ⊆ V (G) of distinguished vertices and an injective labelling λ from B to the set Z+.

The set B is called the boundary of G and the vertices in B are called boundary vertices

or terminals. Given a boundaried graph G, we denote its boundary by δ(G), we denote

its labelling by λG, and we define its label set by Λ(G) = {λG(v) | v ∈ δ(G)}. Given a

finite set I ⊆ Z+, we define FI to denote the class of all boundaried graphs whose label

set is I. Similarly, we define F⊆I =
⋃
I′⊆I FI′. We also denote by F the class of all

boundaried graphs. Finally we say that a boundaried graph is a t-boundaried graph if

Λ(G) ⊆ {1, . . . , t}.

Definition 2.3. [Gluing by ⊕] Let G1 and G2 be two boundaried graphs. We denote

by G1 ⊕G2 the graph (not boundaried) obtained by taking the disjoint union of G1 and

G2 and identifying equally-labeled vertices of the boundaries of G1 and G2. In G1 ⊕G2

there is an edge between two labeled vertices if there is either an edge between them in

G1 or in G2.

Definition 2.4. Let G = G1 ⊕G2 where G1 and G2 are boundaried graphs. We define

the glued set of Gi as the set Bi = λ−1
Gi

(Λ(G1)∩Λ(G2)), i = 1, 2. For a vertex v ∈ V (G1)

we define its heir h(v) in G as follows: if v 6∈ B1 then h(v) = v, otherwise h(v) is the

result of the identification of v with an equally labeled vertex in G2. The heir of a vertex

11

in G2 is defined symmetrically. The common boundary of G1 and G2 in G is equal to

h(B1) = h(B2) where the evaluation of h on vertex sets is defined in the obvious way.

The heir of an edge {u, v} ∈ E(Gi) is the edge {h(u), h(v)} in G.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say

that a boundaried graph belongs to a graph class G if the underlying graph belongs to

G.

2.3 Finite Integer Index

Definition 2.5. [Canonical equivalence on boundaried graphs.] Let Π be a pa-

rameterized graph problem whose instances are pairs of the form (G, k). Given two bound-

aried graphs G1, G2 ∈ F , we say that G1 ≡Π G2 if Λ(G1) = Λ(G2) and there exist a

transposition constant c ∈ Z such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that the relation ≡Π is an equivalence relation. Observe that c could be negative

in the above definition. This is the reason we extended the definition of parameterized

problems to include negative parameters also.

Next we define a notion of “transposition-minimality” for the members of each equiv-

alence class of ≡Π .

Definition 2.6. [Progressive representatives] Let Π be a parameterized graph prob-

lem whose instances are pairs of the form (G, k) and let C be some equivalence class of

≡Π. We say that J ∈ C is a progressive representative of C if for every H ∈ C there

exists c ∈ Z−, such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π⇔ (J ⊕ F, k + c) ∈ Π. (1)

The following lemma guaranties the existence of a progressive representative for each

equivalence class of ≡Π.

Lemma 2.7. Let Π be a parameterized graph problem whose instances are pairs of the

form (G, k). Then each equivalence class of ≡Π has a progressive representative.

Proof. We first examine the case where every instance of Π with a negative valued

parameter is a NO-instance.

Let C be an equivalence class of ≡Π. We distinguish two cases:

Case 1. Suppose first that for every H ∈ C, every F ∈ F , and every integer k ∈ Z it

holds that (H ⊕ F, k) 6∈ Π. Then we set J to be an arbitrary chosen graph in C and

c = 0. In this case, it is obvious that (1) holds for every (F, k) ∈ F × Z.

Case 2. Suppose now that for some H0 ∈ C, F0 ∈ F , and k0 ∈ Z it holds that that

(H0 ⊕ F0, k0) ∈ Π. Among all such triples, choose the one where the value of k0 is

12

minimized. Since every instance of Π with a negative valued parameter is a NO-instance,

it follows that k0 is well defined and is non-negative. We claim that H0 is a progressive

representative.

Let H ∈ C. As H0 ≡Π H, there is a constant c such that

∀(F, k) ∈ F × Z (H ⊕ F, k) ∈ Π⇔ (H0 ⊕ F, k + c) ∈ Π.

It suffices to prove that c ≤ 0. Assume for a contradiction that c > 0. Then, by taking

k = k0 − c and F = F0, we have that

(H ⊕ F0, k0 − c) ∈ Π⇔ (H0 ⊕ F0, k0 − c+ c) ∈ Π.

Since (H0 ⊕ F0, k0) ∈ Π it follows that (H ⊕ F0, k0 − c) ∈ Π contradicting the choice of

H0, F0, k0.

Suppose now that every instance of Π with a negative valued parameter is a YES-

instance. The proof of this case is symmetric to the previous one: just replace every

occurrence of “∈ Π” with a “6∈ Π” and every occurrence of “ 6∈ Π” with “∈ Π” and the

“NO-instance” with “YES-instance”.

Notice that two boundaried graphs with different label sets belong to different equiv-

alence classes of ≡Π . Hence for every equivalence class C of ≡Π there exists some finite

set I ⊆ Z+ such that C ⊆ FI . We are now in position to give the following definition.

Definition 2.8. [Finite Integer Index] A parameterized graph problem Π whose in-

stances are pairs of the form (G, k) has Finite Integer Index (or simply has FII), if and

only if for every finite I ⊆ Z+, the number of equivalence classes of ≡Π that are subsets

of FI is finite. For each I ⊆ Z+, we define SI to be a set containing exactly one pro-

gressive representative of each equivalence class of ≡Π that is a subset of FI . We also

define S⊆I =
⋃
I′⊆I SI′.

2.4 Structures and its properties

We first define the notions of structure and arity of a structure.

Definition 2.9. [Structure and arity] A structure is a tuple where the first element

of the tuple is a graph G and the remaining elements of the tuple are either subsets of

V, subsets of E, vertices in G or edges in G. The arity of the structure is the number of

elements in the tuple.

Given a structure α of arity p and an integer i ∈ {1, . . . , p} we let α[i] denote the

i’th element of α. The graph of a structure α is denoted by Gα and it appears as the

first element of the structure, that is, it is α[1]. Appending a subset S of V (Gα) to a

structure α of arity p produces a new structure, denoted by α′ = α � S, of arity p + 1

with the first p elements of α′ being the elements of α and α′[p+ 1] = S. Appending an

13

edge set, a vertex, or an edge to a structure is defined similarly. For example, consider

the structure α = (Gα, S, e), of arity 3 where S ⊆ V (Gα) and e ∈ E(Gα). Let also

S′ be some subset of V (Gα) and let u ∈ V (Gα). Appending S′ to α results to the

structure α′ = α � S′ = (Gα, S, e, S
′), while appending u to α′ results to the structure

α′′ = α′ � u = (Gα, S, e, S
′, u).

Next we define the notions of type of a structure and property of structures.

Definition 2.10. [Type of structure] The type of a structure of arity p is another

tuple of arity p, denoted by type(α), where the first element type(α)[1] is graph, while

for every i ∈ {2, . . . , p}, type(α)[i] is vertex, edge, vertex set or edge set according to

what the i’th element of α is. Note that we distinguish between a set containing a single

vertex or edge from just a single vertex or edge.

Definition 2.11. [Properties of structures] A property of structures is a function

σ that assigns to each structure a value in {true, false}.

2.5 Counting Monadic Second Order Logic and its properties

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical con-

nectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of edges,

the quantifiers ∀, ∃ that can be applied to these variables, and the following five binary

relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation

is that the edge d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u and

v are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of monadic second-order logic, if we have atomic

sentences testing whether the cardinality of a set is equal to q modulo r, where q and r

are integers such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called the

counting monadic second-order logic. Thus CMSO is MSO with the following atomic

sentence for a set S:

cardq,r(S) = true if and only if |S| ≡ q (mod r).

We refer to [8, 24, 23] for a detailed introduction on CMSO.

A CMSO sentence ψ where some of the variables are free can be evaluated on a

structure α by instantiating the free variables of ψ by the elements of α. In order to

14

determine which variables of ψ are instantiated by which elements of α we need to

introduce some conventions.

In a CMSO-sentence ψ, each free variable x has a rank rx ∈ N \ {1} associated to

it. Thus a CMSO-sentence ψ can be seen as a string accompanied by a tuple of integers

containing one integer rx for each free variable x of ψ.

We say that type(α) matches ψ if the arity of α is at least max rx, where the

maximum is taken over each free variable x of ψ and for each free variable x of ψ,

type(α)[rx] corresponds to the kind of the variable x. For an example, if x is a vertex

set variable, then type(α)[rx] = vertex set. Finally we say that α matches ψ if type(α)

matches ψ. For each free variable x of ψ and a structure α that matches ψ the corre-

sponding element of x in α is α[rx].

Definition 2.12. [Property σψ] Each CMSO-sentence ψ defines a property σψ on

structures as follows: For every structure α that does not match ψ the value of σψ(α) is

equal to false, otherwise the value of σψ(α) is the result of the evaluation of ψ with each

free variable x of ψ instantiated by α[rx].

Note that it is not necessary that every element of α corresponds to some variable

of ψ. However, it is still possible that the sentence ψ can be evaluated on the structure

α and, in this case, the evaluation of the sentence does not depend on all the elements

of the structure.

A property σ is CMSO-definable if there exists a sentence ψ such that σ = σψ. In

this case we say that the CMSO-sentence ψ defines σ.

Observation 1. For every CMSO-definable property σ there exists a CMSO-sentence

ψ that defines σ and has the following additional features.

1. Each variable of ψ has a unique name.

2. ψ does not use the adj operator,

3. ψ does not have conjunctions,

4. ψ does not have universal quantifiers.

Proof. Let ψ′ be a CMSO-sentence defining σ. We construct another CMSO-sentence

ψ defining σ so that ψ satisfies Properies (1)–(4). For Property (1), we rename each

variable so that it has a unique name. When we rename a free variable x of ψ of rank

rx to x′ we let x′ have rank rx′ = rx in ψ′.

For Property (2), we replace each occurrence of adj(x, x′) by ∃x′′ ∈ E : inc(x′′, x) ∧
inc(x′′, x′). For Properties (3) and (4), just use the fact that ∧ and ∀ can be expressed

using ∨, ∃, and ¬ by De Morgan’s laws.

We call CMSO-sentences satisfying Properties (1)–(4) of Observation 1 normalized

CMSO-sentences.

15

2.6 Boundaried structures

In this subsection we extend the notion of boundaried graphs to boundaried structures.

Definition 2.13. [Boundaried structure] A boundaried structure is a tuple where

the first element is a boundaried graph G and the remaining elements are either subsets

of V (G), subsets of E(G), vertices in V (G), edges in E(G), or the symbol ?. For a

boundaried structure α, α[i] is the i’th element of α and Gα = α[1] is always a boundaried

graph.

Definition 2.14. [Type of a boundaried structure] The type of the boundaried

structure is defined similarly to the type of a structure; for a boundaried structure α of

arity p, type(α) is a tuple of arity p, where the first element of type(α) is boundaried

graph, while for every i ∈ {2, . . . , p}, type(α)[i] is vertex, edge, ?, vertex set, or edge set

according to what α[i] is.

Definition 2.15. [Type matching] Given a CMSO-formula ψ, we say that type(α)

matches ψ if the arity of α is at least max rx, where the maximum is taken over each

free variable x of ψ and for every free variable x of ψ

• if x is a vertex variable then type(α)[rx] ∈ {?, vertex}

• if x is a edge variable then type(α)[rx] ∈ {?, edge}

• if x is a vertex set variable then type(α)[rx] = vertex set

• if x is a edge set variable then type(α)[rx] = edge set

We say that α matches ψ if type(α) matches ψ.

We denote by A the set of all boundaried structures. Given some p ∈ N, we denote by

Ap the set of all boundaried structures of arity p and given a finite set I ⊆ Z+ we denote

by ApI the set of all boundaried structures of arity p whose boundaried graph has label

set I. Notice that according to this definition, A1
I is essentially the same as FI . Finally,

we say that a boundaried structure α is a t-boundaried structure if Λ(Gα) ⊆ {1, . . . , t}.

Definition 2.16. [Compatiblity] For two boundaried structures α and β we say that α

and β are compatible, we denote this by α ∼c β, if the following conditions are satisfied.

• α and β have the same arity p.

• For every i ≤ p, type(α)[i] = type(β)[i] 6= ? or exactly one out of type(α)[i],

type(β)[i] is a vertex or edge and exactly one of them is a ?.

• For every i ∈ {2, . . . , p} such that both α[i] and β[i] are vertices, α[i] ∈ δ(Gα),

β[i] ∈ δ(Gβ) and λGα(α[i]) = λGβ (β[i]).

16

• For every i such that both α[i] and β[i] are edges, α[i] ∈ E(Gα[δ(Gα)]), β[i] ∈
E(Gβ[δ(Gβ)]) and λGα(α[i]) = λGβ (β[i]) (here we extend the function λ to sets in

the obvious way).

Definition 2.17. [Gluing of boundaried compatible structures] When two bound-

aried structures α and β are compatible, the operation of gluing α and β is defined as

follows.

• α⊕ β is a structure γ with the same arity, say p, as α and β.

• Gγ = Gα ⊕Gβ.

• For every i ∈ {2, . . . , p} such that both α[i] and β[i] are both vertex sets or both

edge sets, we define γ[i] = h(α[i]) ∪ h(β[i]).

• For every i ∈ {2, . . . , p} such that both α[i] and β[i] are vertices or both are edges

we have h(α[i]) = h(β[i]) (by compatibility) and we set γ[i] = h(α[i]) = h(β[i]).

If α[i] = ? we set γ[i] = h(β[i]) whereas if β[i] = ? we set γ[i] = h(α[i]). By

compatibility, exactly one of these cases apply for every i.

3 A variant of Courcelle’s Theorem

In this subsection we give a proof of a variant of the classical Courcelle’s Theorem [24,

22, 23], which we use in the proofs of our results.

We define the compatibility equivalence relation ≡c on boundaried structures as fol-

lows. We say that α ≡c β if for every boundaried structure γ,

α ∼c γ ⇐⇒ β ∼c γ.

Clearly ≡c is an equivalence relation. We now make the following observation.

Observation 2. For every arity p and finite set I ⊆ Z+, the relation ≡c has a finite

number of equivalence classes when restricted to ApI .

Proof. Define the compatibility signature of a boundaried structure α to be a string s(α)

that encodes the following information about α:

• Λ(Gα)

• type(α).

• For every i such that α[i] is a vertex, s(α) encodes whether α[i] ∈ δ(Gα), and if

so, it encodes λGα(α[i]).

• For every i such that α[i] is an edge, s(α) encodes whether α[i] ∈ E(Gα[δ(Gα)]),

and if so, it also encodes λGα(α[i]).

17

Clearly, for every fixed I and p, the compatibility signature s(α) can be encoded by a

number of bits that depends only on I and p and hence there are only finitely many

different compatibility signatures for boundaried structures in ApI . It is easy to verify

that whether a boundaried structure α ∈ ApI is compatible with a boundaried structure

γ ∈ Ap can be deduced solely from γ and the compatibility signature of α. Thus, if

two boundaried structures α and β have the same compatibility signatures then α ≡c β.
This completes the proof.

Definition 3.1. [Canonical equivalence on structures.] For a property σ of struc-

tures, we define the corresponding canonical equivalence relation ≡σ on boundaried struc-

tures. For two boundaried structures α and β we say α ≡σ β if α ≡c β and for all

boundaried structures γ compatible to α (and thus also to β), we have

σ(α⊕ γ) = true⇔ σ(β ⊕ γ) = true.

It is easy to verify that ≡σ is an equivalence relation. We say that a property σ of

structures is finite state if, for every p ∈ N and I ⊆ Z+, the equivalence relation ≡σ has

a finite number of equivalence classes when restricted to ApI . Given a CMSO-sentence ψ,

we say that ≡σψ is the canonical equivalence relation corresponding to ψ and we simply

denote this relation by ≡ψ.

In our arguments, the following lemma will be crucial. While it is an implicit con-

sequence of the results [8, 24, 23, 22, 1, 18, 27], in the rest of this section, we give a

complete and self-contained proof.

Lemma 3.2. Every CMSO-definable property on structures has finite state.

Proof. Our aim is to prove that for every p ∈ N and finite I ⊆ Z+, and CMSO-definable

property σ, the equivalence relation ≡σ has a finite number of equivalence classes when

restricted to ApI . For this we will define, for every normalized CMSO-sentence ψ, a

function sgnψ that takes as input a boundaried structure and outputs a string in {0, 1}∗.
To prove the result it suffices to show the following two properties of the function sgnψ:

(i) for all p ∈ N, J ⊆ Z+, the set sgnψ(ApI) is finite.

(ii) for every two boundaried structures α and β, if sgnψ(α) = sgnψ(β) then α ≡σ β.

We need the following claim:

Decoder Claim: In order to prove Property (ii), it is enough to prove that for every

CMSO-sentence ψ defining a property σ, there exist two functions

decc : {0, 1}∗ ×Ap → {true, false}
decψ : {0, 1}∗ ×Ap → {true, false}

18

such that for every pair α ∈ ApI and γ ∈ Ap we have that

decc(sgnψ(α), γ) = true ⇐⇒ α ∼c γ. (2)

and for every pair α ∈ ApI and γ ∈ Ap with α ∼c γ it holds that

decψ(sgnψ(α), γ) = true ⇐⇒ σ(α⊕ γ) = true. (3)

Proof of Decoder Claim: For the proof of the above claim, assume that for some α, β ∈
ApI , it holds that

sgnψ(α) = sgnψ(β). (4)

Then for all γ ∈ Ap, it holds that

α ∼c γ ⇔(2) decc(sgnψ(α), γ) = true⇔(4) decc(sgnψ(β), γ) = true⇔(2) β ∼c γ,

hence α ≡c β. Further, for all γ ∈ Ap such that α ∼c γ it holds that

σ(α⊕ γ) = true ⇔(3) decψ(sgnψ(α), γ) = true

⇔(4) decψ(sgnψ(β), γ) = true

⇔(3) σ(β ⊕ γ) = true,

and thus α ≡σ β, as required. This completes the proof of the decoder claim.

We start by partially defining the outputs of sgnψ as follows. If α does not match ψ

then sgnψ(α) is the null string, denoted by ε, otherwise, sgnψ encodes the compatibility

signature of α (as defined in the proof of Observation 2) and additional information

about α that will be specified later in the proof.

The existence of a function decc satisfying (2) follows directly from the proof of

Observation 2.

We define the function decψ such that decψ(ε, γ) = false for every boundaried struc-

ture γ. Also decψ(sgnψ(α), γ) = false whenever type(α⊕ γ) does not match ψ. Observe

that this can be checked using the compatibility signature of α (that is already encoded

in sgnψ(α)) and γ. Thus decψ satisfies (3) for all pairs α, γ such that α ⊕ γ does not

match ψ.

In the remainder of the proof, we will complete the definition of sgnψ and we will

define decψ for all pairs sgnψ(α), γ such that α ⊕ γ match ψ. This should be done in a

way such that (i) holds for sgnψ and (3) holds for decψ.

We now define sgnψ and decψ and prove that they have the claimed properties for

the case where α matches ψ and ψ is an atomic CMSO-sentence. An atomic CMSO-

sentence is a sentence of the form “u ∈ S”, “e ∈ S”, “u = v”, “e = d”, “inc(d, u)”, or

“cardq,r(S)” where S is a set variable, u and v are vertex variables, e and d are edge

variables and r ∈ N \ {1} and q ∈ {0, . . . , r − 1}. In this case, we append to sgnψ(α)

certain information about α that

19

(i) encodes G[δ(Gα)],

(ii) encodes λGα ,

(iii) for every vertex variable x, encodes whether α[rx] = ? or not (recall that rx is the

rank of x). If α[rx] 6= ?, then sgnψ(α) encodes whether α[rx] ∈ δ(Gα) and, if this

is the case, also encodes λGα(α[rx]),

(iv) for every edge variable x, encodes whether α[rx] = ? or not. If α[rx] 6= ?, sgnψ(α)

also encodes whether α[rx] ⊆ δ(Gα) and if this is the case, also encodes λGα(α[rx]),

(v) for every vertex set variable x, encodes λGα(α[rx] ∩ δ(Gα)),

(vi) for every edge set variable x, encodes λGα(α[rx]∩E(δ(Gα))) (here λGα is extended

to sets of unordered pairs in the natural way),

(vii) for every vertex variable x such that α[rx] 6= ? and every vertex set variable x′,

encodes whether α[rx] ∈ α[rx′].

(viii) for every edge variable x such that α[rx] 6= ? and every edge set variable x′, encodes

whether α[rx] ∈ α[rx′].

(ix) for every pair of vertex variables x, x′ where α[rx] 6= ? 6= α[rx′], encodes whether

{α[rx], α[rx′]} ∈ E(Gα),

(x) for every vertex variable x and every edge variable x′, where α[rx] 6= ? 6= α[rx′],

encodes whether α[rx] ∈ α[rx′] (i.e, whether α[rx′] is incident to α[rx]),

(xi) if ψ is “cardq,r(x)” where x is either a vertex set or an edge set variable, encodes

|α[rx]| (mod r),

(xii) for every pair of vertex variables x, x′ where α[rx] 6= ? 6= α[rx′], encodes whether

α[rx] = α[rx′],

(xiii) for every pair of edge variables x, x′ where α[rx] 6= ? 6= α[rx′], encodes whether

α[rx] = α[rx′],

To see that sgnψ(α) satisfies Property (i), it is enough to verify that, for every α ∈ ApI ,
the length of sgnψ(α) is upper bounded by a function depending only the atomic formula

ψ, the integer p, and the set I.

We now define decψ(sgnψ(α), γ) for the case where ψ is an atomic CMSO-formula and

α⊕ γ matches ψ and prove that decψ satisfies (3) for this case. For this, we distinguish

cases depending on the kind of ψ. During our case analysis, we use quotes “ ” in order

to delimit the string that corresponds to a formula and we use the symbol ◦ to denote

the concatenation operation between strings. For example, if ψ = “∃x∀y ¬φ(x, y)”, then

ψ = “∃x∀y” ◦ “¬φ(x, y)”.

20

We give a detailed proof in the case where ψ = “x ∈ x′”. We also provide a brief

description of the proofs for the remaining cases that can all be formalized in a similar

fashion.

Case 1: ψ = “x ∈ x′” where x is a vertex variable and x′ is a vertex set variable. Then

decψ(sgnψ(α), γ) is computed by the procedure in Table 3:

if α[rx] 6= ? (using the compatibility signature of α)

then if α[rx] ∈ α[rx′] (using (vii))

then return true

else if α[rx] ∈ δ(Gα) (using (iii))

then if λ−1
Gγ

(λGα(α[rx])) ∈ γ[rx′] (using (iii))

then return true

else return false

else return false

else if γ[rx] ∈ γ[rx′] (notice that γ[rx] 6= ?, since α ∼c γ)

then return true

else if γ[rx] ∈ δ(Gγ)

then if λ−1
Gα

(λGγ (γ[rx])) ∈ α[rx′] (using (iii) and (v))

then return true

else return false

else return false

Table 1: The procedure of the Case 1 in the proof of Lemma 3.2.

It can be easily verified that the above procedure outputs true if and only if (α ⊕
γ)[rx] ∈ (α⊕ γ)[rx′] that is, if and only if σ(α⊕ γ) = true. Furthermore, every query of

the above procedure can be answered by inspecting sgnψ(α) and γ. The numbers in the

parentheses in the above procedure correspond to the items of the encoding of sgnψ(α)

that are used to answer each query about α. This completes the proof of Case 1.

Case 2: ψ = “x ∈ x′” where x is an edge variable and x′ is a edge set variable. Here

the function decψ should decide whether σ(α⊕γ) is true which, in this case, is the same

as asking whether (α ⊕ γ)[rx] ∈ (α ⊕ γ)[rx′] is true. This last question is equivalent to

asking whether one of the following holds

α[rx] ∈ α[rx′] (5)

γ[rx] ∈ γ[rx′] (6)

α[rx] ∈ E(Gα[δ(Gα)]) and λGα(α[rx]) ∈ λGγ (γ[rx′] ∩ E(Gγ [δ(Gγ)])) (7)

γ[rx] ∈ E(Gγ [δ(Gγ)]) and λGγ (γ[rx]) ∈ λGα(γ[rx′] ∩ E(Gα[δ(Gα)])) (8)

Each query in (5)–(8) can be answered given γ and sgnψ(α) (but no access to α itself).

21

Case 3: ψ = “x = x′” where both x and x′ are vertex variables. Here the function decψ
should decide whether σ(α⊕γ) is true which, in this case, is the same as asking whether

(α⊕ γ)[rx] = (α⊕ γ)[rx′] is true. This last question is equivalent to asking whether one

of the following holds

α[rx] = α[rx′] 6= ? (9)

γ[rx] = γ[rx′] 6= ? (10)

α[rx] ∈ δGα and γ[rx′] ∈ δGγ and λGα(α[rx]) = λGγ (γ[rx′]) (11)

α[rx′] ∈ δGα and γ[rx] ∈ δGγ and λGα(α[rx′]) = λGγ (γ[rx]). (12)

The above is correct because α ∼c γ implies that at most one of α[rx] and γ[rx] is a

? and, whenever neither of them are ?’s, it holds that α[rx] ∈ δGα , γ[rx] ∈ δGγ , and

λGα(α[rx]) = λGγ (γ[rx]) and the same holds for α[rx′] and γ[rx′]. Again, each query

in (9)–(12) can be answered given γ and sgnψ(α).

Case 4: ψ = “x = x′” where both x and x′ are edge variables. This case is very similar

to the Case 3 and is omitted.

Case 5: ψ = “inc(x, x′)” where x is an edge variable and x′ is a vertex variable. Again,

here the function decψ should decide whether σ(α ⊕ γ) is true and this is equivalent to

(α⊕ γ)[rx′] ⊆ (α⊕ γ)[rx]. This last question is equivalent to asking whether one of the

following holds

? 6= α[rx′] ⊆ α[rx] (13)

? 6= γ[rx′] ⊆ γ[rx] (14)

α[rx′] ∈ δ(Gα) and λGα(α[rx′]) ∈ λGγ (γ[rx]) (15)

γ[rx′] ∈ δ(Gγ) and λGγ (γ[rx′]) ∈ λGα(α[rx]) (16)

As in Case 3, the above is correct because of the fact that α ∼c γ and it is enough to

verify that each query in (13)–(16) can be answered given γ and sgnψ(α).

Case 6: ψ = “cardq,r(x)” where x is a vertex set variable. The function decψ should

decide whether σ(α⊕ γ) is true which in this case means that

|(α⊕ γ)[rx]| ≡ q (mod r).

This, in turn, is equivalent to

|α[rx]|+ |γ[rx]| − |λGα(α[rx] ∩ δ(Gα)) ∩ λGγ (γ[rx] ∩ δ(Gγ))| ≡ q (mod r) (17)

It is easy to see that (17) can be evaluated given γ and sgnψ(α). This proves Property

(ii), therefore the statement of the lemma holds when ψ is an atomic sentence.

To complete the proof we now complete the definition of sgnψ for every non-atomic

normalized CMSO-sentence ψ and we will define decψ for all pairs sgnψ(α), γ such that

22

α ⊕ γ match ψ. As in the case of atomic formulas, this should be done in a way such

that (i) holds for sgnψ and (3) holds for decψ.

By using induction, we assume that sgnψ′ and decψ′ have been defined such that sgnψ′

satisfies Property (i) and decψ′ satisfies (3) for every normalized CMSO-sentence ψ′ and

has length smaller than ψ. This, together with the decoder claim implies Property (ii)

for ψ′, namely that

∀α′, β′ ∈ A sgnψ′(α′) = sgnψ′(β′)⇒ α′ ≡ψ′ β′. (18)

One of the following cases applies:

Case 1. ψ = “¬” ◦ ψ′, where both ψ and ψ′ have the same free variables whose rank is

the same in ψ and ψ′. From the induction hypothesis, we know that there exist sgnψ′

and decψ′ such that sgnψ′ satisfies Property (i) and decψ′ satisfies (3). We define

sgnψ(α) = sgnψ′(α) (19)

We also define

decψ(sgnψ(α), γ) = ¬decψ′(sgnψ′(α), γ) (20)

Notice that, in (20), decψ is indeed a function of sgnψ(α) and γ because of the definition

of sgnψ(α) in (19). By induction hypothesis, for every p ∈ N and I ⊆ Z+, sgnψ(ApI) =

sgnψ′(ApI) is finite, yielding that sgnψ satisfies Property (i).

To prove that decψ satisfies (3), let α ∈ ApI and γ ∈ Ap with α ∼c γ. Then

σψ(α⊕ γ) = ¬σψ′(α⊕ γ) = ¬decψ′(sgnψ′(α)) =(20) decψ(sgnψ(α), γ)

where the second equation holds because of the induction hypothesis.

Case 2. ψ = ψ1 ◦ “ ∨ ” ◦ ψ2 where ψ1 and ψ2 have the same free variables and the free

variables have the same rank in ψ, ψ1, and ψ2. From the induction hypothesis, we know

that there exist sgnψ1
, sgnψ2

, decψ1 , and decψ2 such that sgnψ1
and sgnψ2

both satisfy

Property (i) while decψ1 and decψ2 both satisfy (3).

We define

sgnψ(α) = encode(sgnψ1
(α), sgnψ2

(α)) (21)

where encode is a function that receives two strings and encodes them as a single string.

We also define two functions decode1 and decode2 such that

decodei(encode(s1, s2)) = si, for i ∈ {1, 2}.

We now define

decψ(sgnψ(α), γ) = decψ1(decode1(sgnψ(α)), γ)

∨ decψ2(decode2(sgnψ(α)), γ)

23

From (21), we have that for every p ∈ N and I ⊆ Z+,

sgnψ(ApI) ⊆ encode(sgnψ1
(ApI), sgnψ2

(ApI)) ∪ {ε} (22)

By the induction hypothesis, sgnψi(A
p
I) is finite, for i ∈ {1, 2}. This, together with (22),

implies that sgnψ satisfies Property (i).

To prove that decψ satisfies (3), observe that for all α ∈ ApI , γ ∈ Ap such that α ∼c γ,

σψ(α⊕ γ) = true ⇐⇒ (σψ1(α⊕ γ) = true)
∨

(σψ2(α⊕ γ) = true)

⇐⇒ (decψ1(sgnψ1
(α), γ) = true)

∨
(decψ2(sgnψ2

(α), γ) = true)

⇐⇒ (decψ1(decode1(sgnψ(α)), γ) = true)∨
(decψ2(decode2(sgnψ(α)), γ) = true)

⇐⇒ decψ(sgnψ(α), γ) = true.

The first equivalence holds because of the definition of ψ, the second by the induction

hypothesis, the third by the definition of decodei, and the last one by the definition of

decψ.

Case 3. ψ = “∃x ⊆ V (G)”◦ψ′, where ψ has p free variables and ψ′ has p+1 free variables,

the ranks of the free variables of ψ and ψ′ are the same, except for the variable x which

is a free variable in ψ′ but is not free in ψ and the rank of x in ψ′ is p + 1. From the

induction hypothesis, we know that there exist sgnψ′ and decψ′ such that sgnψ′ satisfies

Property (i) and decψ′ satisfies (3). We define

sgnψ(α) = encode({sgnψ′(α � x) | x ⊆ V (Gα)}) (23)

where, given a set W of signatures the string encode(W) encodes all members of W. We

also define the function decode that receives as an entry a string s and outputs the set

of strings that are encoded to it, in particular decode(encode(W)) =W. We now define

decψ(sgnψ(α), γ) =
∨

s∈decode (sgnψ(α))

y ⊆ V (Gγ)
such that invsgnψ′(s) ∼c (γ � y)

σψ′(invsgnψ′(s)⊕ (γ � y)) (24)

where, given a string s encoding a signature, invsgnψ′(s) returns the lexicographically

smallest boundaried structure α? such that sgnψ′(α?) = s. First observe that the function

decψ is indeed a function of sgnψ(α) and γ. By the construction of sgnψ, for all p ∈ N
and every finite I ⊆ N, it holds that

sgnψ(ApI) ∈ encode(2sgnψ′ (Ap+1
I)) ∪ {ε}

which proves that sgnψ satisfies Property (i) (given a set X we denote by 2X the set of

all its subsets). It remains to prove that decψ satisfies (3), namely that for all α ∈ ApI

24

and γ ∈ AI such that α ∼c γ, the following hold

decψ(sgnψ(α), γ) = true⇒ σψ(α⊕ γ) = true (25)

decψ(sgnψ(α), γ) = true⇐ σψ(α⊕ γ) = true (26)

To prove (25), assume that decψ(sgnψ(α), γ) = true. Thus there exist some y ⊆ V (Gγ)

and s ∈ decode(sgnψ(α)) such that invsgnψ′(s) ∼c (γ � y) and

σψ′(invsgnψ′(s)⊕ (γ � y)) = true. (27)

As decode(sgnψ(α)) = {sgnψ′(α�x) | x ⊆ V (Gα)}, we may select an x ⊆ V (Gα) such that

s = sgnψ′(α�x). Therefore, the construction of invsgnψ′ ensures that sgnψ′(invsgnψ′(s)) =

s = sgnψ′(α � x). From (18), invsgnψ′(s) ≡ψ′ α � x. This means that (α � x) ∼c (γ � y),

σψ′(invsgnψ′(s)⊕ (γ � y)) = σψ′((α � x)⊕ (γ � y)), and, from (27), it follows that

σψ′((α � x)⊕ (γ � y)) = true.

Recall that (α � x)⊕ (γ � y) = (α⊕ γ) � (x ∪ y), therefore

σψ′((α⊕ γ) � (x ∪ y)) = true.

which, by the definition of ψ, implies that σψ(α⊕ γ) = true and (25) follows.

It now remains to prove (26). Assume that the value of σψ(α ⊕ γ) == true . Thus,

by the definition of ψ, there exist some x ⊆ V (Gα) and some y ⊆ V (Gγ) such that

(α � x) ∼c (γ � y) and

σψ′((α � x)⊕ (γ � y)) = true (28)

Let s = sgnψ′(α �x) and observe, by (23), that s ∈ decode(sgnψ(α)). By the definition of

invsgnψ′ we have that sgnψ′(invsgnψ′(s)) = sgnψ′(α�x) = s. By (18), invsgnψ′(s) ≡ψ′ α�x.
Hence, from (28), we obtain that invsgnψ′(s) ∼c (γ � y) and

σψ′(invsgnψ′(s)⊕ (γ � y)) = true.

Notice that s and y certify, in (24), that decψ(sgnψ(α), γ) = true, yielding (26).

(Multi) case 4. ψ = “∃x ⊆ E(G)”◦ψ′ or ψ = “∃x ∈ V (G)”◦ψ′ or ψ = “∃x ∈ E(G)”◦ψ′.
The proof of the first case is the same as the proof of Case 3. The proof for the remaining

two cases differs from the proof of Case 3 only in that when the variables of x an y in

the proof are quantified as vertices or edges of the vertex or edge set respectively of a

boundaried structure, they may also take the value ?.

As the above case analysis is complete, the proof follows.

25

4 Derivation of our results

In this section we give two master theorems from which all our results will be derived.

We start with fundamental notions of our paper. These are the notions of protrusion,

protrusion replacement, and protrusion decomposition.

Definition 4.1. [t-protrusion] Given a graph G, we say that a set X ⊆ V is an

t-protrusion of G if |∂(X)| ≤ t and tw(G[X]) ≤ t.

Definition 4.2. [(f, a)-protrusion replacement family] Let Π be a parameterized

graph problem, let f : Z+ → Z+ be a non-decreasing function and let a ∈ Z+. An (f, a)-

protrusion replacement family for Π is a collection A = {Ai | i ≥ 0} of algorithms, such

that algorithm Ai receives as input a pair (I,X), where

• I is an instance of Π whose graph and parameter are G and k ∈ Z,

• X is an i-protrusion of G with at least f(i) · ka vertices,

and outputs an equivalent instance I∗ such that, if G∗ and k∗ are the graph and the

parameter of I∗, then |V (G∗)| < |V (G)| and k∗ ≤ k.The running time of a (f, a)-

protrusion replacement family is the running time of Ai.

Definition 4.3. [(α, β)-Protrusion decomposition] An (α, β)-protrusion decompo-

sition of a graph G is a partition P = {R0, R1, . . . , Rρ} of V (G) such that

• max{ρ, |R0|} ≤ α,

• each R+
i = NG[Ri], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and

• for every i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0.

We call the sets R+
i , i ∈ {1, . . . , ρ}, the protrusions of P.

4.1 Meta-algorithmic properties

We define the following two properties for a parameterized graph problem Π.

A [Protrusion replacement:] There exists an (f, a)-protrusion replacement family

A for Π, for some function f : Z+ → Z+ and some a ∈ Z+.

B [Protrusion decomposition:] There exists a constant c such that, if G and

k ∈ Z+ are the graph and the parameter of a YES-instance of Π then G admits a

(c · k, c)-protrusion decomposition.

We also consider the following weaker version of the combinatorial property:

26

B∗ [Weak protrusion decomposition:] There exist a constant c′ and a non-de-

creasing function g : Z+ → Z+ such that, for every x ∈ Z+, if G and k ∈ Z+ are

the graph and the parameter of a YES-instance of Π such that all c′-protrusions

of G are of size at most x, then G has a (g(x) · k, g(x))-protrusion decomposition.

To see that B implies B∗, set c′ = 1 and consider the function g, with g(x) = c,

where c is the constant in the definition of B.

4.2 The meta-algorithm

All our kernelization algorithms are based on the following procedure that makes use of

some (f, a)-protrusion replacement family A = {Ai | i ≥ 0}. In the following procedure,

given a set R ⊆ V (G), we define CR as the set of connected components of G \ R that

have treewidth at most |R|. Let XR be the set of vertices that are either in R or in some

of the connected components of CR.

Meta-kernelization(t)

Input: An instance I of a parameterized graph problem.

Output: An equivalent instance I ′.

If k ≥ 0 and |I| ≤ k, we return I. While there exists some R ⊆
V (G) of size at most 2t such that |XR| ≥ f(2 · |R|) · ka, apply

algorithm A2·|R| with the pair (I,XR) as input and replace I by

the output I ′ of this algorithm. In case the parameter k′ of I ′ is

negative, then output a trivial YES or NO instance of Π depending

on whether (I ′,−1) ∈ Π or not.

Lemma 4.4. Procedure Meta-kernelization(t) runs in |I|O(t) steps. Moreover, it outputs

an instance with a graph G such that for all i ∈ {0, . . . , t}, all i-protrusions of G have

size at most f(2i) · ka.

Proof. Notice that the while-loop of the procedure will be applied less than n = |I| times,

since each iteration decreases the size of the graph by at least one. In each iteration of

the outer loop we have to consider O(|I|2t) different choices for R. For each choice of R

the set XR can be computed in linear time using the algorithm of [10]. That way, the

procedure requires O(|I|2t+2) steps in total. To show that the input specifications of the

algorithm A2·|R| are satisfied when it is called, we argue that every time the algorithm

A2·|R| is applied to (I,XR), XR is a 2 · |R|-protrusion of the graph G in the instance of

I. For this, notice that ∂G(XR) ⊆ R and tw(G[XR]) ≤ tw(G[XR \R]) + |R| ≤ 2|R|.
Let I ′ be the output of Meta-kernelization(t) and G be the graph of I ′. Assume

towards a contradiction that for some j ∈ {0, . . . , t}, G contains a j-protrusion X of

size > f(2j) · ka. Let R = ∂G(X). Observe that |R| ≤ j and that every connected

component C of G \ R that contains at least one vertex of X is contained in X. Thus

27

tw(C) ≤ j, therefore X ⊆ XR. But then, XR is a 2j-protrusion of G of size ≥ f(2j) ·ka,
contradicting the fact that I ′ is the output of Meta-kernelization(t).

4.3 Two master theorems

Our results can be deduced from the following two master theorems. While their proofs

are similar in spirit, we present them separately in order to illustrate the way properties

A, B, and B∗ are combined.

Theorem 4.5. If a parameterized graph problem Π has property A for some nonnegative

constant a and property B for some constant c, then Π admits a kernel of size O(ka+1).

Proof. Let A = {Ai | i ≥ 0} be an (f, a)-protrusion replacement family for Π. We claim

that the required kernelization algorithm is Meta-kernelization(c).

Suppose that I is a YES-instance of Π. Meta-kernelization(c) procedure transforms I

to a YES-instance I∗ of Π. Assume that G∗ and k∗ are the graph and the parameter of I∗

respectively. First of all we assume that k∗ ≥ 0 else Meta-kernelization(c) returns a trivial

YES or NO instance. Let P = {R0, R1, . . . , Rρ} be a (c ·k∗, c)-protrusion decomposition

of G∗ for some ρ ≤ c · k∗, whose existence follows from property B. Notice that k∗ ≤ k.
Therefore, from Lemma 4.4, we have that

|V (G∗)| ≤ |R0|+
ρ∑
i=1

|Ri| ≤ c · k + c · k · f(2c) · ka = c · k · (f(2c) · ka + 1).

Hence, if the above procedure outputs an instance whose graph has more than c·k·(f(2c)·
ka+1) vertices, then the (I, k) is a NO-instance and in this case the algorithm outputs a

trivial NO-instance of Π. Otherwise, by Lemma 4.4, the algorithm outputs, in O(|I|2c+2)

steps, an equivalent instance with a graph on O(ka+1) vertices, as required.

When a = 0, we can use the weaker condition B∗ and have a linear kernel.

Theorem 4.6. If a parameterized graph problem Π has property A for a = 0, and

property B∗ for some constant c, then Π admits a linear kernel.

Proof. Let A = {Ai | i ≥ 0} be an (f, 0)-protrusion replacement family for Π. (Notice

that in this proof it is important that a = 0.)

Let also g : Z+ → Z+ be a function such that, for every x ∈ Z+, if G and k are the

graph and the parameter of a YES-instance of Π such that all c-protrusions of G have

size at most x, then G has a (g(x) · k, g(x))-protrusion decomposition. We claim that

the required kernelization algorithm is Meta-kernelization(c). Let t = g(f(2c)).

Suppose now that I is a YES-instance of Π. Meta-kernelization(c) procedure trans-

forms I to a YES-instance I∗ of Π. Assume that G∗ and k∗ are the graph and the pa-

rameter of I∗ respectively. First of all we assume that k∗ ≥ 0 else Meta-kernelization(c)

returns a trivial YES or NO instance. By Lemma 4.4, I∗ has no c-protrusion of size at

28

least f(2c). By applying Condition B∗ for x = f(2c), we have that G∗ has a (t · k∗, t)-
protrusion decomposition P = {R0, R1, . . . , Rρ} for some ρ ≤ t · k∗. Notice that k∗ ≤ k.
By Lemma 4.4, we have that

|V (G∗)| ≤ |R0|+
ρ∑
i=1

|Ri| ≤ t · k + t · k · f(2c) = t · k · (f(2c) + 1).

Hence, if the above procedure outputs an instance whose graph has more than t · k ·
(f(2c) + 1) vertices, then the algorithm outputs a trivial NO-instance of Π. Otherwise,

by Lemma 4.4, the algorithm outputs, in O(|I|2t+2) steps, an equivalent instance on

O(k) vertices, as required.

We now have all necessary notions to present how the meta-algorithmic theorems

mentioned in the introduction are derived from Master Theorems 4.5 and 4.6.

4.4 Problems having the algorithmic and combinatorial properties

Our meta-algorthmic results follow by combining the following six results. The first four

imply the protrusion replacement property A.

• Every annotated p-min-CMSO[ψ] problem has the protrusion replacement prop-

erty A for a = 1. (Lemma 5.8, Subsection 5.2)

• Every annotated p-eq-CMSO[ψ] problem has the protrusion replacement property

A for a = 2. (Lemma 5.12, Subsection 5.3)

• Every annotated p-max-CMSO[ψ] has the protrusion replacement property A for

a = 1. (Lemma 5.17, Subsection 5.4)

• Every parameterized graph problem Π that has FII has the protrusion replacement

property A for a = 0. (Lemma 5.19, Subsection 5.5)

The two last results imply the protrusion decomposition properties B and B∗.

• Every r-coverable problem has the protrusion decomposition property B. (Lemma 6.1,

Subsection 6.2)

• Every r-quasi-coverable problem has the weak protrusion decomposition property

B∗. (Lemma 6.4, Subsection 6.3).

4.5 Derivation of Theorems 1.1, 1.2, and 1.3

All our main results are consequences of Master Theorems 4.5 and 4.6. Theorem 1.1

follows from Master Theorem 4.5 and Lemmata 5.8, 5.12, 5.17, and 6.1. Moreover,

Theorem 1.3 follows from Master Theorem 4.6 and Lemmata 5.19 and 6.4. We conclude

this section with the proof of Theorem 1.2

29

of Theorem 1.2. Suppose that Π is NP-hard and its annotated version Πα is in NP. Con-

sider an algorithm that, given an instance I = (G, k) of Π, applies first the kernelization

algorithm of Theorem 1.1 as a subroutine on the annotated instance ((G,V (G)), k),

that is, all the vertices of G are set to be annotated. This subroutine outputs an equiv-

alent annotated instance I ′ = ((G′, Y ′), k) of Πα where the number of vertices in G′

is a polynomial function of k. The next step of the algorithm is to apply a polyno-

mial time many-to-one reduction from Πα to Π on I ′ and obtain an equivalent instance

I ′′ = (G′′, k′′) where |I ′′| is a polynomial function of |I ′|. This reduction exists from the

Cook–Levin theorem, as Πα ∈ NP and Π is NP-hard. Then |I ′′| is a polynomial function

of k and this two-step polynomial-time algorithm is the desired kernelization algorithm

for Π. The reduction from Πα to Π might output an instance I ′′ with parameter k′′

where k′′ is exponential in |I ′′| because k′′ could be encoded in binary. However, since Π

is a p-min/eq/max-CMSO[ψ] problem, (I ′′, k′′) ∈ Π if and only if (I ′′, k′′′) ∈ Π, where

k′′′ = min{k′′, |I ′′|+ 1}. The kenrelization algorithm outputs (I ′′, k′′′).

5 Reduction Rules

In this section we prove the existence of protrusion replacement families for p-

min/eq/max-CMSO[ψ] graph problems and for parameterized problems that have FII.

5.1 Model checking on structures

In order to prove our reduction rules we consider an extension of p-min/eq/max-CMSO

problems to a setting where the input is a structure rather than a graph. Specifically

we consider the following problems.

Min/Max-CMSO on Structures

Input: A structure α and a CMSO sentence ψ.

Output: A minimum/maximum size subset S of V (G) (or E(G))

such

that (α � S) |= ψ.

Eq-CMSO on Structures

Input: A structure α, a CMSO sentence ψ, and an integer k.

Output: A subset S of V (G), (or E(G)) |S| = k such that (α�S) |=
ψ.

Observe that in the above problems the CMSO sentence is part of the input and not

fixed as in the case of p-min/eq/max-CMSO[ψ] problems. We will repeatedly apply

the following result from [18, Theorem 5], see also [8].

30

Proposition 5.1. There exists a computable function f : Z+ × Z+ → Z+ and an algo-

rithm that solves Min/Max/Eq-CMSO on Structures in f(tw(Gα), |ψ|) · |V (Gα)|
steps.

Proposition 5.1 is a slight strengthening of Theorem 5 of [18]; what is shown there

explicitly is the corresponding version where the input is a graph rather than a structure.

Arnborg et al. [8] show the variant of Proposition 5.1 for MSO logic rather than CMSO

logic. Either of these proofs can be made to work both on structures and with CMSO

logic.

The construction of each protrusion replacement family depends on whether we

are dealing with an annotated p-min-CMSO[ψ], p-eq-CMSO[ψ], or p-max-CMSO[ψ]

problem, or whether the problem in question has FII. For the case of annotated prob-

lems, the constructions consist of three parts. In the first two parts, we focus on reducing

the set of annotated vertices, and in the last part we reduce the set of vertices. In all

cases, we assume that we are given a sufficiently large t-protrusion. In the following

discussion we deal with annotated p-min/eq/max-CMSO[ψ] problems where the set S

in question is a set of vertices. The case where S is a set of edges can be dealt with in

an identical manner.

5.2 Protrusion replacement families for annotated p-min-CMSO[ψ]
Problems

We start from the existence of a protrusion replacement family for annotated p-min-

CMSO[ψ] problems. The technique employed in this section will act as a template

for other types of annotated problems. Recall that in an annotated p-min-CMSO[ψ]

problem Πα we are given a structure (G, Y) and an integer k. The objective is to find a

set S ⊆ Y of size at most k such that (G,S) models some CMSO sentence ψ. For our

reduction rule, we are also given a sufficiently large t-protrusion X. In the first step of the

reduction, we show that the set Y ∩X can be substituted in O(|X|) steps by a new set Z

of O(k) vertices such that ((G, Y), k) is a YES-instance if and only if ((G,Z∪(Y \X)), k)

is a YES-instance. In the second step we show that the t-protrusion X can be partitioned

into O(k) t′-protrusions, where t′ = O(t), such that each t′-protrusion contains vertices

from Z only in its (bounded size) boundary. In the third and final step of the reduction

rule, we replace the largest t′-protrusion with an equivalent, but smaller, t′-boundaried

graph. For the case of p-min-CMSO[ψ] problems, these three reduction steps correspond

to Lemmata 5.3, 5.4, and 5.6 respectively.

We start by proving a lemma that lets us analyze the interior of a protrusion without

bothering about the rest of the graph.

Lemma 5.2. There is an algorithm that given two boundaried structures (GX , YX) and

(GR, SR) of type (graph, vertex set) and a CMSO-sentence ψ finds a minimum size set

SX ⊆ YX such that (GX , SX)⊕(GR, SR) |= ψ in time |V (GX⊕GR)|·f(|ψ|, tw(GX⊕GR)).

31

Proof. Let (G′, Y ′, S′R) = (GX , YX , ∅) ⊕ (GR, ∅, SR). Finding the desired set SX ⊆ Y

now amounts to finding a minimum size set S′X ⊆ Y ′ such that (G′, S′X ∪S′R) |= ψ. This

is easily formulated as Min-CMSO on Structures and hence may be solved in the

desired running time by Proposition 5.1.

Reducing the set of annotated vertices. The first step of our reduction rule is

based on the following lemma.

Lemma 5.3. Let Πα be an annotated p-min-CMSO[ψ] problem and let t be an integer.

Then there exists an algorithm that given an instance ((G, Y), k) of Πα and a t-protrusion

X of G, outputs in O(|X|) steps an equivalent instance ((G, Y ′), k) of Πα, where |Y ′ ∩
X| = O(k) and Y ′ ⊆ Y.

We remark that the constants hidden in the “O”-notation of the complexity of the

algorithm and the size of its output depend only on the length of the CMSO-sentence ψ

defining Πα and the constant t. From now onwards, we will not explicitly mention this.

Proof. Let ψ be the CMSO-sentence mentioned in the definition of Πα. Lemma 3.2 im-

plies that the canonical equivalence relation ≡σψ has finitely many equivalence classes on

the set of boundaried structures of arity two with label set {1, . . . , t}. Let MinRep(ψ, t)

be a set containing a representative (a boundaried structure of arity two) for each equiv-

alence class of ≡σψ with the minimum number of vertices in the graph of a structure.

Given G, Y and X we define the sets B = ∂G(X), R = (V (G) \ X) ∪ B and the

boundaried structures (GX , YX) and (GR, YR) as follows. The boundaried graphs GX
and GR are just G[X] and G[R] respectively. Both have boundary B, with labels from

{1, . . . , t} such that GX ⊕GR = G. Similarly YX = Y ∩X while YR = Y \X, such that

(G, Y) = (GX , YX)⊕ (GR, YR).

For every structure α = (GαR, S
α
R) ∈ MinRep(ψ, t) we find using Lemma 5.2 a

minimum size set SαX ⊆ YX such that (GX , S
α
X)⊕α |= ψ. Since |MinRep(ψ, t)| and the

size of each structure in MinRep(ψ, t) depends only on |ψ| and t, and the treewidth of

G[X] is at most t, this takes time O(|X|). Now, define

Y ′X =
⋃

α∈MinRep(ψ,t)

{
SαX if |SαX | ≤ k,
∅ otherwise.

We set Y ′ = Y ′X ∪ YR (formally Y ′X and YR are vertex sets of different graphs, so

actually Y ′ is the second element of the 2-tuple of (GX , Y
′
X) ⊕ (GR, YR), i.e., Y ′ =

((GX , Y
′
X) ⊕ (GR, YR))[2], but this is just semantics). Since |MinRep(ψ, t)| depends

only on |ψ| and t the construction of Y ′ implies |Y ′ ∩X| = O(k).

To complete the proof, it remains to show that ((G, Y ′), k) ∈ Πα if and only if

((G, Y), k) ∈ Πα. For the forward direction we have that Y ′ ⊆ Y and hence feasible

solutions to ((G, Y ′), k) are also feasible for ((G, Y), k). We now turn to proving the

32

reverse direction. Let S ⊆ Y , |S| ≤ k be such that (G,S) |= ψ. Let SX = X ∩ S and

SR = S \X. Observe that (GX , SX)⊕(GR, SR) = (G,S) and that |SX |+ |SR| = |S| ≤ k.

Choose α = (GαR, S
α
R) ∈MinRep(ψ, t) such that α ≡σψ (GR, SR). Let SαX ⊆ YX be the

set computed for α in the previous paragraph. Since

(GX , SX)⊕ α |= ψ ⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ ⇐⇒ true

it follows that |SαX | ≤ |SX | ≤ k. Thus SαX ⊆ Y ′X . Let S′ = SαX ∪ SR (again, formally SαX
and SR are vertex sets of different graphs, so actually S′ = ((GX , S

α
X) ⊕ (GR, SR))[2]).

We have that S′ ⊆ Y ′, |S′| ≤ |SαX | + |SR| ≤ |SX | + |SR| = |S| ≤ k. Finally we observe

that

(G,S′) |= ψ

⇐⇒ (GX , S
α
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , S
α
X)⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Partitioning Protrusions. In the second step of the reduction rule, the t-protrusion

X is partitioned into O(k) smaller t′-protrusions for some t′ = O(t).

Lemma 5.4. Let G be a graph, Y be a subset of its vertices, and k be an integer. Let

also X be a t-protrusion and Z = X ∩ Y such that |Z| ≤ k. There is an O(|X|) step

algorithm that outputs a collection Q of (4t + 2)-protrusions such that X =
⋃
Q∈QQ,

|Q| = O(k), and for every Q ∈ Q, Z ∩Q ⊆ ∂G(Q).

Proof. We assume that G[X] is connected, otherwise we work independently on its con-

nected components. We find a nice tree decomposition of G[X] and then we add ∂G(X)

to all its bags. We denote the resulting tree decomposition by (T,X) and, clearly, it has

width most 2t.

The decomposition (T,X) can be constructed in O(|X|) steps, see e.g. [10]. Now we

mark a subset of the nodes of T. For each vertex z ∈ Z we mark, if exists, the forget

node tz with the property that {z} = Xtz \Xt′z , where tz is the child of t′z in T. As each

vertex is forgotten at most once in a nice tree decomposition, so far we have marked at

most |Z|+ 1 nodes of T. Now, as long as this is possible, we keep marking each bag that

is the lowest common ancestor of two already marked nodes. Using a standard counting

argument for trees, it follows that, in the worst case, this operation doubles the number

of marked nodes. Hence, there are at most O(|Z|) marked nodes; we denote this set by

M. We say that two nodes t1, t2 ∈M are linked if these nodes are the only marked nodes

of the (t1, t2)-path in T. We define the set

P = {(t1, t2) | t1 and t2 are linked nodes of M and t1 is a predecessor of t2}.

33

We observe that |P | = O(|Z|) and each marked node belongs to some pair in P. Let C
be the set of the connected components of G[X] \

⋃
t∈M Xt. By the construction of M,

the neighborhood of a connected component C in C may intersect either a single bag Xt

of T, or two bags Xt1 , Xt2 of T such that (t1, t2) ∈ P. In the first case, we define R(C)

to be some pair in P that contains t as an endpoint (if there are many such pairs, we

make an arbitrary choice). In the second case, we define R(C) = {t1, t2}. Given a pair p

of P, we use the notation L−1 to denote the union of the vertex sets of all the connected

components of C that map to p. It is now easy to see that that R = {L−1(p) | p ∈ P} is

a partition of G[X] \
⋃
t∈M Xt. As each vertex from Z is in some bag corresponding to

a marked node, none of the sets in R intersects Z. Moreover the neighborhood in G of

each set in R is a subset of at most two bags of (T,X) and thus its neighborhood has at

most 2(2t+ 1) vertices. We now define the set Q = {V (R) ∪ ∂G(V (R)) | R ∈ R}. Then

each member Q of Q is an (4t + 2)-protrusion of G where Z ∩ Q ⊆ ∂G(Q). Moreover,⋃
Q∈Q = X and the lemma follows as |Q| = |P | = O(k).

We will also need the following simple decomposition lemma for t-protrusions.

Lemma 5.5. If a graph G contains a t-protrusion X where |X| > c > 0, then it

also contains a (2t + 1)-protrusion Y where c < |Y | ≤ 2c. Moreover, given a tree-

decomposition of X of width at most r, a tree decomposition of Y of width at most 2t

can be found in O(|X|) steps.

Proof. If |X| ≤ 2c, we are done. Assume that |X| > 2c and let

(T,X = {Xt}t∈V (T), t)

be a nice tree-decomposition of G[X], rooted at some, arbitrary chosen, node t of T.

Given a vertex x of the rooted tree T, we denote by D(x) the subset of V (T) containing

x and all its descendants in T and by Tx the subtree of T rooted at x. Let B ⊆ V (T)

be the set containing each vertex x of T with the property that the vertices appearing

in
⋃
y∈D(x)Xy (i.e. the vertices of the nodes corresponding to x and its descendants)

are more than c. As |X| ≥ 2c, B is a non-empty set. We choose b to be a member of

B whose descendants in T do not belong in B. The choice of b and the fact that T is a

binary tree ensure that c < |
⋃
y∈D(b)Xy| ≤ 2c. We define Y = ∂G(X) ∪

⋃
y∈D(b)Xy and

observe that

(Tb,X ′ = {∂G(X) ∪Xt}t∈D(b), b) (29)

is a tree decomposition of G[Y]. As |∂G(X)| ≤ t, the width of the tree decomposition

in (29) is at most 2t. Moreover, it holds that ∂G(Y) ⊆ ∂G(X) ∪ Xb, therefore Y is a

(2t+ 1)-protrusion of G.

Reducing Protrusions. In the third phase of our reduction rule, we find a protrusion

to replace, and perform the replacement.

34

Lemma 5.6. Let Πα be an annotated p-min/eq-CMSO[ψ] problem. Then for every

integer t there is a c1 ∈ Z+ (depending only on |ψ| and t) and an algorithm that given

an instance ((G, Y), k) of Πα and a t-protrusion X of G, where c1 < |X| ≤ 2c1 and

X ∩ Y ⊆ ∂G(X), outputs, in O(|X|) steps, an equivalent instance ((G∗, Y ∗), k) of Πα

such that |V (G′)| < |V (G)|.

Proof. We define an equivalence relation between boundaried structures of type

(graph, vertex set) as follows: Let α1 = (G1, Y1) and α2 = (G2, Y2) be two boundaried

structures with labelling functions λ1 : δ(G1) → {1, . . . , t} and λ2 : δ(G2) → {1, . . . , t}
respectively, such that Y1 ⊆ δ(G1) and Y2 ⊆ δ(G2).

We say that α1 ≈ α2 if the following conditions are satisfied:

1. Λ(G1) = Λ(G2)

2. λ1(Y1) = λ2(Y2)

3. for every S1 ⊆ Y1 and S2 ⊆ Y2 such that λ1(S1) = λ2(S2), it follows that

(G1, S1) ≡σψ (G2, S2).

Notice that ≈ is an equivalence relation. Because, in the above definition, the sets S1

and S2 cannot have more than t vertices, the number of equivalence classes of ≈ depends

only on t and the number of equivalence classes of ≡σψ on boundaried structures of

arity two whose label set is a subset of {1, . . . , t}. By Lemma 3.2 the number of such

equivalence classes is finite and upper bounded by a function of |ψ| and t. Thus the

number of equivalence classes of ≈ is also upper bounded by a function of |ψ| and t.

Let S be a set of minimum size representatives of the equivalence classes of ≈ and let

c1 = maxα∈S |V (Gα)|.

LetG, Y andX be a graph and vertex sets as in the statement of the Lemma. We now

define the sets B = ∂G(X), R = (V (G)\X)∪B and the boundaried structures (GX , YX)

and (GR, YR) as follows. The boundaried graphs GX and GR are just G[X] and G[R]

respectively. Both have boundary B, with labels from {1, . . . , t} such that GX⊕GR = G.

Similarly YX = Y ∩ X while YR = Y \ X, such that (G, Y) = (GX , YX) ⊕ (GR, YR).

Observe that |V (GX)| = |X| > c1.

Our algorithm has in its source code hard-wired a table that for every boundaried

structure α of type (graph, vertex set) with label set from {1, . . . , t} and |V (Gα)| ≤ 2c1

contains the β ∈ S such that β ≈ α. The size of this table is a constant that depends only

on |ψ| and t. The algorithm looks up in the table and finds the representative (G′X , Y
′
X) ∈

S such that (G′X , Y
′
X) ≈ (GX , YX). By construction we have |V (G′X)| ≤ c1 < |V (GX)|.

The algorithm outputs the instance ((G′, Y ′), k) where (G′, Y ′) = (G′X , Y
′
X)⊕ (GR, YR).

Since |V (G′X)| < |V (GX)| it follows that |V (G′)| < |V (G′)| and it remains to argue that

the instances ((G, Y), k) and ((G′, Y ′), k) are equivalent.

Suppose that ((G, Y), k) is a YES-instance and let S ⊆ Y , |S| ≤ k (|S| = k for

p-eq-CMSO[ψ]) be such that (G,S) |= ψ. Let SX = X ∩ S and SR = S \X. Observe

that (GX , SX) ⊕ (GR, SR) = (G,S), SX = SX ∩X ⊆ Y ∩X ⊆ ∂(X), and that |SX | +

35

|SR| = |S|. Let S′X be the subset of δ(G′X) such that λG′
X

(S′X) = λGX (SX). Since

SX ⊆ YX ⊆ δ(GX) it follows that |SX | = |S′X |. Furthermore, property 3 of ≈ yields

that (GX , SX) ≡σψ (G′X , S
′
X). Let S′ = S′X ∪ SR (formally S′X and SR are vertex sets

of different graphs, so we set S′ = ((G′X , S
′
X)⊕ (GR, SR))[2]). Since SR ∩ δ(GR) = ∅ we

have that |S′| = |S′X |+ |SR| = |SX |+ |SR| = |S|. Thus, if |S| ≤ k then |S′| ≤ k, while if

|S| = k then |S′| = k. Finally we observe that

(G′, S′) |= ψ

⇐⇒ (G′X , S
′
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ

⇐⇒ (G,S) |= ψ ⇐⇒ true.

This concludes the forward direction of the proof. The reverse direction is symmetric.

Lemmata 5.3, 5.4, and 5.6 together yield a reduction rule for all annotated p-min-

CMSO[ψ] problems.

Lemma 5.7. Let Πα be an annotated p-min-CMSO[ψ] problem. Then for every t,

there is a constant c2 > 0 (depending only on |ψ| and t) and an algorithm that, given

an instance ((G, Y), k) of Πα and a t-protrusion X with |X| > c2k, outputs, in O(|X|)
steps, an equivalent instance ((G∗, Y ∗), k) of Πα such that |V ∗| < |V |.

Proof. Let |∂G(X)| = t. The algorithm starts by applying Lemma 5.3 to X, and pro-

ducing an equivalent instance ((G, Y ′), k) where |Y ′ ∩ X| ≤ ak, for some constant a

depending only on |ψ| and t. Let Z = Y ′ ∩X. The next step is to apply Lemma 5.4 and

construct a collection Q of (4t+ 2)-protrusions such that X =
⋃
Q∈QQ, Z ∩Q ⊆ ∂G(Q)

for each Q ∈ Q, and |Q| ≤ bk for some constant b depending only on |ψ| and t. Let c1

be the constant as guaranteed by Lemma 5.6 when applied on (8t+ 4)-protrusions, and

set c2 = c1 · b. By the pigeon-hole principle, some (4t+ 2)-protrusion Q in Q has size at

least |X|/bk > c1. We apply Lemma 5.5 and obtain a (8t + 4)-protrusion Q′ ⊆ Q such

that Z ∩Q′ ⊆ ∂(Q′) and c1 < |Q′| ≤ 2c1. Finally we apply the algorithm of Lemma 5.6

on Q′ and construct an equivalent instance of Πα as required.

We are now ready to prove the following result.

Lemma 5.8. Every annotated p-min-CMSO[ψ] problem has the protrusion replacement

property A for a = 1.

Proof. According to the terminology that we introduced in Section 4, we have to prove

that there exist an (f, 1)-protrusion replacement family A for Πα. Indeed, this directly

follows from Lemma 5.7 if we define f : Z+ → Z+ such that for every r, f(r) is the

constant c2 of Lemma 5.7.

36

5.3 Protrusion replacement for annotated p-eq-CMSO[ψ] Problems

In this section we give a reduction rule for annotated p-eq-CMSO[ψ] problems. The rule

is very similar to the one for the p-min-CMSO[ψ] problems described in the previous

section. The main difference between the two problem variants is that we now need

to keep track of solutions of every possible size between 0 and k, instead of just the

smallest one. Because of this, we require the protrusion to contain at least ck2 vertices

instead of ck vertices, in order to be able to reduce it. We start by proving adaptations

of Lemmata 5.2 and 5.3 to p-eq-CMSO[ψ] problems.

Lemma 5.9. There is an algorithm that given two boundaried structures (GX , YX) and

(GR, SR) of type (graph, vertex set),a CMSO-sentence ψ and non-negative integer k, finds

a SX ⊆ YX of size k such that (GX , SX)⊕ (GR, SR) |= ψ or concludes that no such set

exists in time |V (GX ⊕GR)| · f(|ψ|, tw(GX ⊕GR)).

Proof. Let (G′, Y ′, S′R) = (GX , YX , ∅) ⊕ (GR, ∅, SR). Finding the desired set SX ⊆ Y

now amounts to finding a set S′X ⊆ Y ′ of size k such that (G′, S′X ∪ S′R) |= ψ. This

is easily formulated as Eq-CMSO on Structures and hence may be solved in the

desired running time by Proposition 5.1.

Lemma 5.10. Let Πα be an annotated p-eq-CMSO[ψ] problem and let t be an integer.

Then there exist an algorithm that given an instance ((G, Y), k) of Πα and a t-protrusion

X of G, outputs in O(k|X|) steps an equivalent instance ((G, Y ′), k) of Πα, where |Y ′ ∩
X| = O(k2) and Y ′ ⊆ Y.

Proof. The proof of the lemma starts exactly as in the proof of Lemma 5.3. For a CMSO-

sentence ψ defining Πα, Lemma 3.2 implies that the canonical equivalence relation ≡σψ
has finitely many equivalence classes on the set of boundaried structures of arity two

with label set {1, . . . , t}. We denote by MinRep(ψ, t) a set containing a representative

(a boundaried structure of arity two) for each equivalence class of ≡σψ with the minimum

number of vertices in the graph of a structure. For given G, Y and X, we define the sets

B = ∂G(X), R = (V (G)\X)∪B and the boundaried structures (GX , YX) and (GR, YR)

as follows. The boundaried graphs GX and GR are just G[X] and G[R] respectively.

Both have boundary B, with labels from {1, . . . , t} such that GX ⊕GR = G. Similarly

YX = Y ∩X while YR = Y \X, such that (G, Y) = (GX , YX)⊕ (GR, YR).

For every structure α = (GαR, S
α
R) ∈ MinRep(ψ, t) and every integer i ≤ k we use

Lemma 5.9 to find a set Sα,iX ⊆ YX such that |Sα,iX | = i and (GX , S
α
X) ⊕ α |= ψ. If no

such set exists we set Sα,iX = ∅. Since |MinRep(ψ, t)| and the size of each structure in

MinRep(ψ, t) depends only on ψ and t, and the treewidth of G[X] is at most t, this

takes time O(k|X|). Now, define

Y ′X =
⋃

α∈MinRep(ψ,t)
i≤k

Sα,iX

37

We set Y ′ = Y ′X ∪YR (formally Y ′X and YR are vertex sets of different graphs, so actually

Y ′ = ((GX , Y
′
X) ⊕ (GR, YR))[2]). Since |MinRep(ψ, t)| depends only on |ψ| and t the

construction of Y ′ implies |Y ′ ∩X| = O(k2).

To complete the proof, it remains to show that ((G, Y ′), k) ∈ Πα if and only if

((G, Y), k) ∈ Πα. For the forward direction we have that Y ′ ⊆ Y and hence feasible

solutions to ((G, Y ′), k) are also feasible for ((G, Y), k). We now turn to proving the

reverse direction. Let S ⊆ Y , |S| = k be such that (G,S) |= ψ. Let SX = X ∩ S and

SR = S \X. Observe that (GX , SX)⊕(GR, SR) = (G,S) and that |SX |+ |SR| = |S| = k.

Choose α = (GαR, S
α
R) ∈MinRep(ψ, t) such that α ≡σψ (GR, SR). Set i = |SX |, and let

Sα,iX ⊆ YX be the set computed for α and i in the previous paragraph. The existence of

Sα,iX of size i is guaranteed by the fact that

(GX , SX)⊕ α |= ψ ⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ ⇐⇒ true.

By construction Sα,iX ⊆ Y ′X . Let S′ = Sα,iX ∪ SR (again, formally Sα,iX and SR are vertex

sets of different graphs, so actually S′ = ((GX , S
α,i
X) ⊕ (GR, SR))[2]). We have that

S′ ⊆ Y ′. Further, since SR∩ δ(GR) = ∅ we have that |S′| = |Sα,iX |+ |SR| = |SX |+ |SR| =
|S| = k. Finally we observe that

(G,S′) |= ψ

⇐⇒ (GX , S
α,i
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , S
α,i
X)⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Lemma 5.11. Let Πα be an annotated p-eq-CMSO[ψ] problem. Then for every t, there

is a constant c2 ∈ Z+ (depending only on |ψ|, and t) and an algorithm that, given an

instance ((G, Y), k) of Πα and a t-protrusion X with |X| > c2k
2, outputs in O(k · |X|)

steps an equivalent instance ((G∗, Y ∗), k) of Πα such that |V ∗| < |V |.

Proof. The algorithm starts by applying Lemma 5.10 to X, and producing an equivalent

instance ((G, Y ′), k) where |Y ′ ∩X| ≤ ak2, for some constant a depending only on |ψ|
and t. Let Z = Y ′ ∩X. The next step is to apply Lemma 5.4 and construct a collection

Q of (4t+ 2)-protrusions such that X =
⋃
Q∈QQ, Z ∩Q ⊆ ∂G(Q) for each Q ∈ Q, and

|Q| ≤ bk2 for some constant b depending only on |ψ| and t. Let c1 be the constant as

guaranteed by Lemma 5.6 when applied on (8t+ 4)-protrusions, and set c2 = c1 · b. By

the pigeon-hole principle, some (4t+2)-protrusion Q in Q has size at least |X|/bk2 > c1.

We apply Lemma 5.5 and obtain a (8t+ 4)-protrusion Q′ ⊆ Q such that Z ∩Q′ ⊆ ∂(Q′)

and c1 < |Q′| ≤ 2c1. Finally we apply the algorithm of Lemma 5.6 on Q′ and construct

an equivalent instance of Πα as required.

We are now ready to prove the following result.

38

Lemma 5.12. Every annotated p-eq-CMSO[ψ] problem has the protrusion replacement

property A for a = 2.

Proof. According to the terminology that we introduced in Section 4, we have to prove

that there exists an (f, 2)-protrusion replacement family A for Πα. Indeed, this directly

follows from Lemma 5.11 if we define f : Z+ → Z+ such that for every r, f(r) is the

constant c2 in the proof of the same lemma.

5.4 Protrusion replacement for annotated p-max-CMSO[ψ] Problems

We now give a reduction rule for annotated p-max-CMSO[ψ] problems. The rule is

still similar to the ones described in the two previous sections, but differs more from the

p-min-CMSO[ψ] problems than p-eq-CMSO[ψ] did. We start by proving a variant of

lemma 5.2 for p-max-CMSO[ψ] problems.

Lemma 5.13. There is an algorithm that given two boundaried structures (GX , YX) and

(GR, SR) of type (graph, vertex set) and a CMSO-sentence ψ finds a set SX ⊆ V (GX)

such that (GX , SX)⊕ (GR, SR) |= ψ and |SX ∩ YX | is maximized. The running time of

the algorithm is |V (GX ⊕GR)| · f(|ψ|, tw(GX ⊕GR)).

Proof. Let (G′, Y ′, S′R, V
′) = (GX , YX , ∅, V (GX)) ⊕ (GR, ∅, SR, ∅). Finding the desired

set SX now amounts to finding a set S′X ⊆ V ′ such that (G′, S′X ∪S′R) |= ψ and |S′X ∩Y ′|
is maximized. This is easily formulated as Max-CMSO on Structures and hence

may be solved in the desired running time by Proposition 5.1.

Lemma 5.14. Let Πα be an annotated p-max-CMSO[ψ] problem and let t be an integer.

There exists an algorithm that given an instance ((G, Y), k) of Πα and a t-protrusion X

of G, outputs in O(|X|) steps an equivalent instance ((G, Y ′), k) of Πα, where |Y ′∩X| =
O(k) and Y ′ ⊆ Y.

Proof. By Lemma 3.2, for a CMSO-sentence ψ defining Πα, the canonical equivalence

relation ≡σψ has finitely many equivalence classes on the set of boundaried structures

of arity two with label set {1, . . . , t}. As in proofs of Lemmata 5.3 and 5.10, we define

the following objects. We set MinRep(ψ, t) to be a set containing a representative (a

boundaried structure of arity two) for each equivalence class of ≡σψ with the minimum

number of vertices in the graph of a structure. Also for G, Y and X, we define sets

B = ∂G(X), R = (V (G)\X)∪B, and the boundaried structures (GX , YX) and (GR, YR)

as follows. Again, the boundaried graphs GX = G[X] and GR = G[R] have boundary

B with labels from {1, . . . , t} such that GX ⊕ GR = G. Similarly YX = Y ∩ X while

YR = Y \X, such that (G, Y) = (GX , YX)⊕ (GR, YR).

By making use of Lemma 5.13, for every structure α = (GαR, S
α
R) ∈ MinRep(ψ, t),

we find a set SαX ⊆ V (GX) such that (GX , S
α
X) ⊕ α |= ψ and |SX ∩ YX | is maximized.

Since |MinRep(ψ, t)| and the size of each structure in MinRep(ψ, t) depends only on

39

|ψ| and t, and the treewidth of G[X] is at most t, this takes time O(|X|). If |SαX∩YX | ≤ k,

let ŜαX = SαX ∩YX . On the other hand, if |SαX ∩YX | > k, set ŜαX to be a set of arbitrarily

chosen k vertices from SαX ∩ YX . Now, define

Y ′X =
⋃

α∈MinRep(ψ,t)

ŜαX .

We set Y ′ = Y ′X ∪YR (formally Y ′X and YR are vertex sets of different graphs, so actually

Y ′ = ((GX , Y
′
X) ⊕ (GR, YR))[2]). Since |MinRep(ψ, t)| depends only on |ψ| and t the

construction of Y ′ implies |Y ′ ∩X| = O(k).

To complete the proof, it remains to show that ((G, Y ′), k) ∈ Πα if and only if

((G, Y), k) ∈ Πα. For the forward direction we have that Y ′ ⊆ Y , and hence for any set

S ⊆ V (G) such that (G,S) |= ψ and |S∩Y ′| ≥ k we also have that |S∩Y | ≥ k. We now

turn to proving the reverse direction. Let S ⊆ V (G), |S∩Y | ≥ k be such that (G,S) |= ψ.

Let SX = X ∩S and SR = S \X. Observe that (GX , SX)⊕ (GR, SR) = (G,S) and that

|SX ∩ YX |+ |SR ∩ YR| = |S ∩ Y | ≥ k. Choose α = (GαR, S
α
R) ∈MinRep(ψ, t) such that

α ≡σψ (GR, SR). Let SαX ⊆ V (GX) be the set computed for α in the previous paragraph.

Since

(GX , SX)⊕ α |= ψ ⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ ⇐⇒ true

it follows that |SαX ∩ YX | ≥ |SX ∩ YX |. Furthermore we have that |SαX ∩ Y ′X | ≥ |ŜαX | ≥
min(|SX ∩ YX |, k).

Let S′ = SαX ∪ SR (again, formally SαX and SR are vertex sets of different graphs, so

actually S′ = ((GX , S
α
X)⊕ (GR, SR))[2]). We have that

|S′ ∩Y ′| ≥ |SαX ∩Y ′X |+ |SR ∩YR| ≥ min(|SX ∩YX |, k) + |SR ∩YR| ≥ min(|S ∩Y |, k) ≥ k.

Finally we observe that

(G,S′) |= ψ

⇐⇒ (GX , S
α
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , S
α
X)⊕ α |= ψ

⇐⇒ true.

This concludes the proof.

Lemma 5.15. Let Πα be an annotated p-max-CMSO[ψ] problem. Then for every

integer t there is a c1 ∈ Z+ (depending only on |ψ| and t) and an algorithm that given

an instance ((G, Y), k) of Πα and a t-protrusion X of G, where c1 < |X| ≤ 2c1 and

X ∩ Y ⊆ ∂G(X), outputs, in O(|X|) steps, an equivalent instance ((G∗, Y ∗), k) of Πα

such that |V (G′)| < |V (G)|.

40

Proof. Let ψ be the CMSO-sentence mentioned in the definition of Πα. By Lemma 3.2,

the canonical equivalence relation ≡σψ has finitely many equivalence classes on the set of

boundaried structures of arity two with label set {1, . . . , t}. Let MinRep(ψ, t) be a set

containing a representative (a boundaried structure of arity two) for each equivalence

class of ≡σψ with the minimum number of vertices in the graph of a structure. We now

define an equivalence relation ≈ between boundaried structures α = (Gα, Yα) of type

(graph, vertex set) that satisfy Yα ⊆ δ(Gα). Let α1 = (G1, Y1) and α2 = (G2, Y2) be two

boundaried structures with labelling functions λ1 : δ(G1)→ {1, . . . , t} and λ2 : δ(G2)→
{1, . . . , t} respectively, such that Y1 ⊆ δ(G1) and Y2 ⊆ δ(G2). We say that α1 ≈ α2 if

the following conditions are satisfied:

1. Λ(G1) = Λ(G2)

2. λ1(Y1) = λ2(Y2)

3. for every S1 ⊆ V (G1) there is a S2 ⊆ V (G2) such that λ1(S1 ∩ δ(G1)) = λ2(S2 ∩
δ(G2)), and (G1, S1) ≡σψ (G2, S2).

4. for every S2 ⊆ V (G2) there is a S1 ⊆ V (G1) such that λ1(S1 ∩ δ(G1)) = λ2(S2 ∩
δ(G2)), and (G1, S1) ≡σψ (G2, S2).

Notice that ≈ is an equivalence relation. Further, consider two boundaried structures

α1 = (G1, Y1) and α2 = (G2, Y2) such that Λ(G1) = Λ(G2), λ1(Y1) = λ2(Y2), and for

each subset L ⊆ {1, . . . , t} the sets

{β ∈MinRep(ψ, t) : ∃S1 ⊆ V (G1), λ1(S1 ∩ δ(G1)) = L ∧ (G1, S1) ≡σψ β}

and

{β ∈MinRep(ψ, t) : ∃S2 ⊆ V (G2), λ2(S2 ∩ δ(G2)) = L ∧ (G2, S2) ≡σψ β}

are the same. It is easy to verify that in this case (G1, Y1) ≈ (G2, Y2). Thus the

number of equivalence classes of ≈ is upper bounded by a function of |ψ| and t. Let

S be a set of minimum size representatives of the equivalence classes of ≈ and let

c1 = maxα∈S |V (Gα)|.

Let G, Y and X be a graph and vertex sets as in the statement of the Lemma. We

now define the sets B = ∂G(X), R = (V (G) \ X) ∪ B and the boundaried structures

(GX , YX) and (GR, YR) as follows. The boundaried graphs GX = G[X] and GR = G[R]

have boundary B with labels from {1, . . . , t} such that GX ⊕ GR = G. We define

YX = Y ∩X and YR = Y \X, such that (G, Y) = (GX , YX) ⊕ (GR, YR). Observe that

|V (GX)| = |X| > c1.

Our algorithm has in its source code hard-wired a table that for every boundaried

structure α of type (graph, vertex set) with label set from {1, . . . , t} and |V (Gα)| ≤ 2c1

contains the β ∈ S such that β ≈ α. The size of this table is a constant that depends only

on |ψ| and t. The algorithm looks up in the table and finds the representative (G′X , Y
′
X) ∈

41

S such that (G′X , Y
′
X) ≈ (GX , YX). By construction we have |V (G′X)| ≤ c1 < |V (GX)|.

The algorithm outputs the instance ((G′, Y ′), k) where (G′, Y ′) = (G′X , Y
′
X)⊕ (GR, YR).

Since |V (G′X)| < |V (GX)| it follows that |V (G′)| < |V (G′)| and it remains to argue that

the instances ((G, Y), k) and ((G′, Y ′), k) are equivalent.

Suppose ((G, Y), k) is a YES-instance and let S ⊆ V (G), |S ∩ Y | ≥ k be such that

(G,S) |= ψ. Let SX = X ∩ S and SR = S \ X. Observe that (GX , SX) ⊕ (GR, SR) =

(G,S), SX∩YX ⊆ δ(GX), and that |SX∩YX |+|SR∩YR| = |S∩Y |. Let S′X be a subset of

V (G′X) such that λG′
X

(S′X ∩ δ(G′X)) = λGX (SX ∩ δ(GX)) and (G′X , S
′
X) ≡σψ (GX , SX).

The existence of such a set S′X is implied by property (3) of ≈. Since YX ⊆ δ(GX),

Y ′X ⊆ δ(G′X), ΛGX (YX) = ΛG′
X

(Y ′X) and ΛGX (SX ∩ δ(GX)) = ΛG′
X

(S′X ∩ δ(G′X)) we

have that |SX ∩ YX | = |S′X ∩ Y ′X |.
Let S′ = S′X ∪ SR (formally S′X and SR are vertex sets of different graphs, so we

set S′ = ((G′X , S
′
X) ⊕ (GR, SR))[2]). Since SR ∩ δ(GR) = ∅ we have that |S′ ∩ Y ′| =

|S′X ∩ Y ′X | + |SR ∩ YR| = |SX ∩ YX | + |SR ∩ YR| = |S ∩ Y |. Thus, if |S ∩ Y | ≥ k then

|S′ ∩ Y ′| ≥ k. Finally we observe that

(G′, S′) |= ψ

⇐⇒ (G′X , S
′
X)⊕ (GR, SR) |= ψ

⇐⇒ (GX , SX)⊕ (GR, SR) |= ψ

⇐⇒ (G,S) |= ψ ⇐⇒ true.

This concludes the forward direction of the proof. The reverse direction is symmetric,

but using property 4 of ≈ rather than property 3.

Lemma 5.16. Let Πα be an annotated p-max-CMSO[ψ] problem. Then for every t,

there is a constant c2 > 0 (depending only on ψ, and t) and an algorithm that, given

an instance ((G, Y), k) of Πα and a t-protrusion X with |X| > c2k, outputs, in O(|X|)
steps, an equivalent instance ((G, Y ∗), k) of Πα such that |V ∗| < |V |.

Proof. Let |∂G(X)| = t. The algorithm starts by applying Lemma 5.14 to X, and pro-

ducing an equivalent instance ((G, Y ′), k) where |Y ′ ∩ X| ≤ ak, for some constant a

depending only on |ψ| and t. Let Z = Y ′ ∩X. The next step is to apply Lemma 5.4 and

construct a collection Q of (4t+ 2)-protrusions such that X =
⋃
Q∈QQ, Z ∩Q ⊆ ∂G(Q)

for each Q ∈ Q, and |Q| ≤ bk for some constant b depending only on |ψ| and t. Let c1

be the constant as guaranteed by Lemma 5.15 when applied on (8t+4)-protrusions, and

set c2 = c1 · b. By the pigeon-hole principle, some (4t+ 2)-protrusion Q in Q has size at

least |X|/bk > c1. We apply Lemma 5.5 and obtain a (8t + 4)-protrusion Q′ ⊆ Q such

that Z ∩Q′ ⊆ ∂(Q′) and c1 < |Q′| ≤ 2c1. Finally we apply the algorithm of Lemma 5.15

on Q′ and construct an equivalent instance of Πα as required.

Now we show the following result.

42

Lemma 5.17. Every annotated p-max-CMSO[ψ] has the protrusion replacement prop-

erty A for a = 1.

of Lemma 5.17. According to the terminology that we introduced in Section 4, we have

to prove that there exists an (f, 1)-protrusion replacement family A for Π. Indeed, this

directly follows from Lemma 5.16 if we define f : Z+ → Z+ such that for every r, f(r)

is the constant c2 in the statement of the same lemma.

5.5 A protrusion replacement family based for problems that have FII

In the previous sections we gave reduction rules for annotated p-min/eq/max-CMSO[ψ]

problems. These reduction rules, together with the results proved later in this article will

give quadratic or cubic kernels for the problems in question. However, for many problem

a linear kernel is possible. In this section we provide reduction rules for graph problems

that have FII. These reduction rules will yield linear kernels. The main reduction lemma

is the following.

Lemma 5.18. Let Π be a problem that has FII. Then for every t ∈ Z+, there exists a

c ∈ Z+ (depending on Π and t), and an algorithm that, given an instance (G, k) of Π

and a t-protrusion X in G with |X| > c, outputs, in O(|X|) steps, an equivalent instance

(G∗, k∗) of Π where |V (G∗)| < |V (G)| and k∗ ≤ k.

Proof. Recall that we denote by S⊆[2t+1] a set of (progressive) representatives for ≡Π

restricted to boundaried graphs with label sets from {1, . . . , 2t+ 1}. Let

c = max
{
|V (Y)|

∣∣ Y ∈ S⊆[2t+1]

}
.

Our algorithm has in its source code hard-wired a table that stores for each bound-

aried graph GY in F⊆[2t+1] on at most 2c vertices a boundaried graph G′Y ∈ S⊆[2t+1]

and a constant µ ≤ 0 such that GY ≡Π G′Y , and specifically

∀(F, k) ∈ F × Z : (GY ⊕ F, k) ∈ Π ⇐⇒ (G′Y ⊕ F, k + µ) ∈ Π. (30)

The existence of such a constant µ ≤ 0 is guaranteed by the fact that S⊆[2t+1] is a set of

progressive representatives.

We now apply Lemma 5.5 and find a (2t+ 1)-protrusion Y of G where c < |Y | ≤ 2c.

Split G into two boundaried graphs GY = G[Y] and GR = G[(V (G) \ Y) ∪ ∂(Y)] as

follows. Both GR and GY have boundary ∂(Y), and since |∂(Y)| ≤ 2t+ 1 we may label

the boundaries of GY and GR with labels from [2t + 1] such that G = GY ⊕ GR. As

c < |V (GY)| ≤ 2c the algorithm can look up in its table and find a G′Y ∈ S⊆[2t+1] and a

constant µ such that GY ≡ G′Y and GY , G′Y and µ satisfy Equation 30. The algorithm

outputs

(G∗, k∗) = (G′Y ⊕GR, k + µ).

Since |V (G′Y)| ≤ c < |V (GY)| and k∗ ≤ k+µ ≤ k it remains to argue that the instances

(G, k) and (G∗, k∗) are equivalent. However, this is directly implied by Equation 30.

43

We are now in position to prove Lemma.

Lemma 5.19. Every parameterized graph problem Π that has FII has the protrusion

replacement property A for a = 0.

Proof. According to the terminology that we introduced in Section 4, we have to prove

that there exists an (f, 0)-protrusion replacement family A for Π. Indeed, this directly

follows from Lemma 5.18 if we define f : Z+ → Z+ such that for each r, f(r) is the

constant c in the statement of the same lemma.

6 Combinatorial results

We start this section with some necessary definitions from graph theory.

6.1 Definitions from graph theory

Let e = {u, v} be an edge of a graph G = (V,E). We obtain the graph G/e by contracting

e. This means that the edge e is removed and its endpoints u, v, are merged into a new

vertex ve, such that each edge incident to either u or v is incident to ve. Note that loops

and multiple edges can appear as a result of edge contractions. More formally, let f

be a function mapping u, v to ve and all remaining vertices in V \ {u, v} to itself. The

contraction of e results in a new graph G/e = (V ′, E′), where V ′ = (V \ {u, v}) ∪ {ve},
E′ = E \ {e}, and for every w ∈ V , w′ = f(w) ∈ V ′ is incident with an edge e′ ∈ E′ if

and only if, the corresponding edge, e ∈ E is incident with w in G. When we have to

remain in the class of simple graphs, loops and multiple edges resulting by contractions

are deleted.

A graph H is a minor of a graph G, we write H ≤mn G, if H can be obtained by

contracting some edges of a subgraph of G. A graph class C is minor-closed if every minor

of every graph in C also belongs to C. A minor-closed graph class C is H-minor-free if

H /∈ C.
Given a graph G = (V,E), we define the (normal) distance between two of its vertex

sets X and Y as the shortest path distance between them, i.e. the minimum length of

a path with endpoints in X and Y, and denote it by distG(X,Y). Given a set S ⊆ V of

vertices, we denote by Br
G(S) the set of all vertices that are within distance at most r

from some vertex of S in G.

We also need some notions from topological graph theory. All concepts that we do

not define here can be found in the book [61]. The Euler genus eg(Σ) of a nonorientable

surface Σ is equal to the nonorientable genus g̃(Σ) (or the crosscap number). The Euler

genus eg(Σ) of an orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of

Σ. We say that a graph G is Σ-embedded if it is accompanied with an embedding of the

graph into Σ. We also sometimes refer to an embedding as to a drawing of G in Σ. We

treat edges and loops (in some proofs we will also allow loops and multiple edges) as

44

subsets of the surface Σ that are homeomorphic to the open interval (0, 1). We define the

endpoints of an edge e as the set of points of Σ that are in the closure of e but not in e.

We call by face of a Σ-embedded graph G any connected component of Σ\(E(G)∪V (G)).

All embeddings we consider are 2-cell embeddings, which are embeddings with each face

being homeomorphic to a disk.

Given a Σ-embedded graph G, we define its radial graph RG as an embedded graph

whose vertices are the vertices and the faces of G (each face f of G is represented by

a point vf in it). Roughly, each point vf is adjacent to all vertices v incident to f .

However, a face can be incident “several times” with the same vertex, and RG can have

multiple edges. For a point vf in the face f and vertex v incident with f , we draw

a maximum number of multiple edges in f such that for every pair of multiple edges

e and e′ the open disc bounded by these edges intersects G. Thus RG is a bipartite

multigraph, embedded in the same surface as G. Radial graphs provide an alternative

way of viewing radial distance defined in Section 1: the radial distance of a pair of

vertices in G corresponds to their normal distance in RG. The relation between radial

and normal metrics is captured by the following observation.

Observation 3. If G is a Σ-embedded graph, then for every set S ⊆ V and every r ∈ Z+,

it holds that Br
G(S) ⊆ R2r

G (S).

6.2 Decomposition lemma for coverable problems

In this section we show the following decomposition result.

Lemma 6.1. Every r-coverable problem has the protrusion decomposition property B.

In order to prove Lemma 6.1, we have to show that every r-coverable problem satisfies

combinatorial property B, i.e. admits a protrusion decomposition. Lemma 6.1 follows

directly from the following lemma.

Lemma 6.2. Let r be a positive integer and let G = (V,E) be a graph embedded in

a surface Σ of Euler genus g that contains a set S of vertices, |S| ≤ k, such that

Rr
G(S) = V. Then G has an (αk, β)-protrusion decomposition for some constants α and

β than depend only on r and g.

Indeed, since a problem is r-coverable, there is a set S, |S| ≤ r ·k, such that Rr
G(S) =

V. Then combinatorial property B holds for c = r ·max{α, β}.

The rest of this subsection is devoted to the proof of Lemma 6.2. We start from a

series of definitions and preliminary results. The first observation follows directly from

the definition of protrusion decomposition.

Observation 4. If G has an (αk, β)-protrusion decomposition, then the same holds for

every subgraph of G.

45

The following proposition is a consequence of the result from [30] on the treewidth

of graphs with bounded genus and diameter.

Proposition 6.3. There exists function f1 : Z+ × Z+ → Z+ such that if G = (V,E) is

a graph of Euler genus at most g such that V = Br
G(v) for some v ∈ V , then tw(G) ≤

f1(r, g).

For the purposes of the proof of the next lemma, we permit the existence of multiple

edges or loops in the embedding. Thus contracting edges can create multiple edges or

loops which we do not delete. We call a face trivial if it is incident with at most two

edges. We call a loop empty if it is the boundary of some face of G.

A walk of length λ in a multigraph G is a sequence C = v0e1v1 · · · eλvλ of alternating

vertices and edges of G such that for every i ∈ {1, . . . , λ}, the vertices vi−1 and vi are

the endpoints of edge ei. Thus an edge or a vertex can appear many times in a walk. If

in the previous definition we additionally demand that v0 = vλ, then the walk is a closed

walk.

We are ready to proceed with the proof of the lemma.

of Lemma 6.2. Let us note that by adding edges we do not increase distances between

vertices. Thus by Observation 4, we may assume that all the faces in the embedding of

G in Σ are triangular, meaning that they are incident with at most 3 edges, and that G

is connected.

For every v ∈ S, we construct a breadth-first search tree Tv of depth at most r rooted

at v. Because Br
G(S) = V , we have that every vertex of G is in some Tv for some v ∈ S.

While some vertices can be within distance r from several vertices of S, by suitably

modifying these trees, we may assume that every vertex is assigned to exactly one tree.

That way, the vertex sets of the trees in T = {Tv | v ∈ S} form a partition of V.

We denote by H the graph obtained from G after contracting all the edges of the

trees in T . Notice that V (H) = S, and as G is triangulated, every face of H is incident

to at most 3 edges. We further simplify H as follows.

• As long as there are two edges incident with a trivial face, we delete one of them;

• As long as there is an empty loop, we delete it.

We denote the resulting graph by H̃. Again, every face of H̃ is incident to at most 3

edges. Also V (H̃) = S.

Using Euler’s formula for graphs embedded in surfaces, see e.g. [61, (4.4)], we derive

that H̃ has at most 2k+ 2g− 4 faces and at most 3k+ 3g− 6 edges. The edges of H̃ can

be seen as the edges of G which were not contracted or deleted during the construction

of H̃. For every edge ẽ of H̃, we denote by e the corresponding edge of G.

Let ẽ be an edge of H̃ with endpoints u, v ∈ S. Let xu and xv be the endpoints of the

corresponding edge e in G. If u = v, then xu and xv are vertices of Tv. If u 6= v, then xu

46

is a vertex of Tu and xv is a vertex of Tv. In both cases, there are unique paths Pu,xu in

Tu and Pv,xv in Tv from u to xu, and from v to xv correspondingly. Each of these paths

is of length at most r. We set Pe = Pu,xu ∪ {e} ∪ Pv,xv . Let us note that if u = v, then

Pe is a closed walk, and if u 6= v, then it is a path. The length of Pe is at most 2r + 1.

Let G̃ be the graph obtained from G by contracting for every edge ẽ of H̃ all edges

except e in the corresponding walk Pe. Thus besides S, the vertex set of G̃ contains all

vertices of G not covered by walks Pe. By construction, G̃[S] ⊇ H̃. We take the drawing

of G̃ in Σ and observe that G̃[S] contains the drawing of H̃ in Σ. In the drawings of G̃

and H̃, every face f of H̃ covers a subset of vertices Xf of G̃. The set Xf is separated

in G̃ by the vertices incident to f from the remaining vertices of the graph G̃.

In G̃, every vertex v 6∈ S belongs to some set Xf . Thus, in G, every vertex is either

in some Xf or belongs to some walk Pe. We define vertex subset R0 of G, as the union

of the vertices of all walks corresponding to edges of H̃, i.e.

R0 =
⋃

ẽ∈E(H̃)

V (Pe).

Sets R0 and Xf , f ∈ F̃ , have the following properties.

Claim 1. |R0| ≤ k + 2r(3k + 3g − 6).

of Claim. There are at most 3k + 3g − 6 edges in H̃ and each edge corresponds in G to

a walk of length at most 2r + 1 connecting vertices of S. There are at most k vertices

in S and thus |R0| ≤ k + 2r(3k + 3g − 6).

Let C1, C2, . . . , C` be the connected components of G \ R0. We use the following

properties of these connected components.

Claim 2. ∣∣{i : |NG(Ci)| ≥ 3}
∣∣ ≤ 2|R0| − 2g − 4, (31)

∑
{i : |NG(Ci)|≥3}

|NG(Ci)| ≤ 6|R0|+ 6g − 12. (32)

of Claim. Make a new graph G′ from G by deleting all components Ci such that

|N(Ci)| < 3, contracting each component Ci with |N(Ci)| ≥ 3 to a single vertex, remov-

ing all edges between vertices in R0, and removing double edges and self loops. Thus G′

is bipartite simple graph and therefore every face of G′ is incident to at least 4 edges.

This fact, together with Euler’s formula yields the claim. Here (31) counts the number

of vertices of G′ in the bipartition corresponding to components, while (32) counts the

number of edges in G′.

47

Claim 3. For each connected component Ci of G \ R0, the treewidth of G[N [Ci]] is at

most f1(4r + 2, g).

Proof. By construction of R0, the component Ci is a subset of Xf for some face f of

H̃. The face f is incident to at most 3 vertices, say x, y and z. In the graph G̃, the

neighborhood of Xf is a subset of {x, y, z}. Hence in the graph G, the set NG(Xf) is

a subset of vertices which were contracted to x, y, or z. Thus, also for Ci it holds that

NG(Ci) is a subset of the vertices which were contracted to x, y, or z.

For any vertex u in Ci there is a path on at most r vertices starting in u and ending

in S. This path must contain a vertex u′ in NG(Ci), and from u′ we can reach {x, y, z}
in at most r steps. It follows that from any vertex in Ci we can reach {x, y, z} in at most

2r steps. Since x can reach y and z in 2r + 1 steps it follows that N [Ci] is covered by a

ball of radius 4r + 2 centered at x. Then by Proposition 6.3, the treewidth of G[N [Ci]]

is at most f1(4r + 2, g).

For each i ≤ ` define Gi = G[N(Ci)]. By Claim 3 we have that the treewidth of Gi
is at most t = f1(4r + 2, g). Next we claim the following.

Claim 4. For every i, there exists a set Yi ⊆ V (Gi) such that

• NG(Ci) ⊆ Yi,

• |Yi| ≤ 2|NG(Ci)|(t+ 1),

• Every connected component of Gi \ Yi has at most 2(t+ 1) neighbors in Yi.

of Claim. The proof of this claim is almost identical to the proof of Lemma 5.4. Here

the role of the set Z is given to NG(Ci). We compute a nice tree decomposition of Gi
and mark all upper most forget nodes of the decomposition forgetting vertices of N(Ci).

We keep marking each lowest common ancestor of marked nodes, as long as possible.

The vertices contained in all marked bags form the set Yi.

We use Claim 4 to find sets Yi for every Gi and define the set

R = R0 ∪
⋃

{i : |N(Ci)|≥3}

Yi.

We partition the remaining set of vertices V (G)\R into sets Q1, Q2, . . . , Qq, where every

Qi is the union of connected components of G\R with the same neighborhood in R. We

claim that P = (R, {Qi}1≤i≤q) is the desired (αk, β)-protrusion decomposition of G.

First, we have the following bound on |R|.

|R| ≤ |R0|+
∑

{i : |N(Ci)|≥3}

|Yi| ≤ |R0|+ 2(t+ 1)
∑

{i : |N(Ci)|≥3}

|N(Ci)| = O(k)

48

Here the last bound follows from (32) together with the bound of Claim 1 that |R0| =

O(k)

There are at most |R| sets Qi such that |N(Qi)| = 1. By Euler’s formula there are at

most 3|R|+ 3g − 6 sets Qi with exactly two neighbors in R. Again, by Euler’s formula,

exactly as in (31), the number of sets Qi with at least three neighbors in R is at most

2|R|+ 2g − 4. Hence q ≤ 6|R|+ 5g = O(k).

By Claim 4, we have that |N(Qi)| ≤ 2(t + 1) for every i. Furthermore, for every i

we have that each connected component of G[Qi] is in fact Cj for some j, and hence by

Claim 3, G[Qi] has treewidth at most t. Hence G[N [Qi]] is a protrusion with treewidth at

most 3t+ 2 and boundary size at most 2(t+ 1). This completes the proof of Lemma 6.2.

6.3 Decomposition lemma for quasi-coverable problems

In this section we prove the following decomposition lemma.

Lemma 6.4. Every r-quasi-coverable problem has the weak protrusion decomposition

property B∗.

Given the definition of r-quasi-coverability, Lemma 6.4 is a direct consequence of the

following graph-theoretic result.

Lemma 6.5. There exist functions ζ1 and ζ2 such that the following holds: Let r, g, p,

and k be non-negative integers and let G = (V,E) be a graph embedded in a surface Σ

of Euler genus g such that

• G contains a set S of vertices, where |S| ≤ k and tw(G \Rr
G(S)) ≤ r, and

• for every λ ≤ ζ1(r, g), G has no λ-protrusion of size at least p.

Then G has a (ck, c)-protrusion decomposition, where c = ζ2(g, r, p).

Indeed, we set g = r in Lemma 6.5. Then combinatorial propertry B∗ holds for

c′ = ζ1(r, g) and g(x) = ζ2(r, r, x).

The rest of this section is devoted to the proof of Lemma 6.5. Let us outline first the

main ideas of the proof. Let S be a subset of V of size k such that removal of balls of

radius r (in radial distance) around vertices of S from G, results in a graph of treewidth

at most r. We enlarge the set S by adding at most k new vertices and we want the new

set S′ to satisfy the following property:

• Balls of radius µ (in radial distance) around vertices of S′ cover all vertices of G,

where µ is a constant depending on r, p and g.

49

If we succeed to find such a set S′, then we can use Lemma 6.2 to obtain a (ck, c)-

protrusion decomposition of G for some constant c. To find the required set S′, we show

how to construct a superset S′ of S of size at most 2k, such that for every vertex v

at distance ≥ 2µ from S′ in the graph G \ Bµ
G(v) there are at most two connected

components containing vertices of S′. This construction is given in Lemma 6.6. To

prove that S′ is the required set, we have to prove that every vertex of G is at radial

distance µ from some vertex of S′. The proof of this fact is based on the proof that

in graphs embedded in a surface of bounded genus, two connected sets embedded at a

large radial distance from each other and non-separable by “small” separators, form an

obstruction for having “small” treewidth (Lemma 6.11). Because the treewidth of the

graph G \Rr
G(S′) is at most r, we obtain that if there is a vertex v at distance > µ from

S′, then a ball of radius p around this vertex should be separated from the remaining

graph by a small separator. This yields that G has a protrusion containing a ball of

radius p around v, and thus of size at least p. But by the assumption of the lemma,

there is no such a protrusion. Thus every vertex v is within distance ≤ µ from S′.

We proceed with the proof of Lemma 6.5.

Constructing S′ from S. Let G be a graph, H be a subgraph of G and S ⊆ V (G). An

S-component of H is a connected component of H containing some of the vertices of S.

Lemma 6.6. Let µ be a positive integer, G = (V,E) be a connected graph, and S be a

subset of V. Then there is a set S′ ⊇ S such that

• |S′| ≤ max{2|S| − 2, 1}, and

• for every v ∈ V \B2µ
G (S′), graph G \Bµ

G(v) has at most two S′-components.

Proof. We use induction on |S|. As the lemma is obvious when |S| ≤ 2, we assume that

|S| = k > 2 and that the lemma holds for all sets S of smaller sizes. Suppose that

G contains a vertex u such that distG(u, S) ≥ 2µ + 1 and G− = G \ Bµ
G(u) has at

least three S-components. (If there is no such a vertex u, we are done.) We denote

these components by C1, . . . , Ch, h ≥ 3, and we denote by Ch+1, . . . , C`, the connected

components of G− not containing vertices from S. For i ∈ {1, . . . , `}, we define

Si = (S ∩ V (Ci)) ∪ {u},

and

Gi = G[Bµ
G(u) ∪ V (Ci)].

Notice that each Si is a vertex subset of the connected graph Gi and that 1 ≤ |Si| ≤
|S| − 1 = k− 1. This means that the induction hypothesis holds for Gi and Si. Thus for

every i ∈ {1, . . . , `}, there is a set S′i ⊇ Si such that |S′i| ≤ max{2|Si| − 2, 1}, and

∀v ∈ V (Gi) \B2µ
Gi

(S′i), graph Gi \Bµ
Gi

(v) has at most two S′i-components. (33)

50

We now set S′ =
⋃

1≤i≤` S
′
i. Clearly, S′ ⊇ S. Notice also that u appears in every S′i,

while each other vertex of S′ appears in exactly one of S′1, . . . , S
′
h. Therefore,

|S′| = (
h∑
i=1

|S′i|)− (h− 1)

≤ 2 · (
h∑
i=1

|Si|)− 2h− h+ 1

= 2 · (
h∑
i=1

|Si \ {u}|) + 2h− 3h+ 1

= 2|S| − h+ 1 ≤ 2k − 2.

(For the last inequality, we use the assumption that h ≥ 3.)

We claim that for every v ∈ V \B2µ
G (S′), the graph G \Bµ

G(v) has at most two S′-

components. Without loss of generality, let us assume that v belongs to the connected

component C1 of G− = G\Bµ
G(u). By (33), in the corresponding graph G1, the subgraph

G1 \Bµ
G1

(v) has at most two S′1-components, where S′1 = V (G1) ∩ S′, and one of these

components contains u. The distance from u to v is at least 2µ+ 1 and hence the whole

ball Bµ
Gv

(v) is contained in C1. Therefore every vertex w ∈ S′ \ S1 is connected with u

in G by a path avoiding Bµ
G(v). Hence, G \Bµ

G(v) has at most two S′-components.

Treewidth obstructions. The main result of this subsection is Lemma 6.11 which

can be seen as an extension of the following result: if a graph of bounded genus has

two vertices which are far apart (in the radial distance) and cannot be separated by a

small separator, then the treewidth of the graph is large. However for the purposes of the

proof, we need an extension of this result for two “radially” connected and non-separable

vertex sets.

To prove Lemma 6.11 we need several combinatorial results. We use the following

proposition from [51] (see also [61, Proposition 4.2.7]).

Proposition 6.7. Let G be a graph embedded in a surface Σ of Euler genus g, x, y ∈
V (G), and let P be a collection of pairwise internally vertex disjoint paths from x to y

such that no two of them are homotopic. Then, |P| ≤ h(g), where

h(g) =

{
g + 1 if g ≤ 1

3g − 2 if g ≥ 2.

Let G = (V,E) a graph and let X,Y, and Z be pairwise disjoint subsets of V. We say

that Y separates X and Z if X and Z are in different connected components of G \ Y.
We say that Y is a minimal (X,Z)-separator if no subset of Y separates X and Z. For

S ⊆ V, we say that S is connected in G if G[S] is a connected graph.

The following properties of minimal separators of connected vertex sets in triangu-

lated graphs are important for obtaining treewidth obstructions.

51

Lemma 6.8. Let G be a triangulated graph embedded in a surface Σ with Euler genus

g and let S be a minimal separator for connected vertex subsets X1 and X2 of G. Then

S has at most h(g) connected components.

Proof. Let C1, C2, . . . , Cr be the connected components of G \ S. Without loss of gen-

erality, we assume that C1 contains X1 and C2 contains X2. For each component Ci
we select a vertex xi ∈ Ci, i ∈ {1, . . . , r}. We call the vertices in S separation vertices

and the vertices {x1, x2, . . . , xr} satellite vertices. From G we construct graph H by

exhaustively contracting or removing edges according to the following rules:

• We contract all edges except the edges with one endpoint being a satellite vertex

and the other endpoint a separation vertex.

• We delete loops which are not surface separating, and as long as possible, we delete

one of the multiple edges incident with a trivial faces, i.e. face incident with two

edges.

Notice that every connected component Ci is contracted to a single vertex xi and every

connected component of G[S] is also contracted to a single vertex. In addition, each

application of the above rules results in a triangulated graph, thus H is triangulated.

Let S′ be the vertices of H resulted in contracting of G[S]. The vertices of S′ form

a minimal (x1, x2)-separator in H, and thus each of xi, i ∈ {1, 2}, is adjacent to all

vertices of S′. Hence there exist |S′| internally vertex disjoint paths of length two from

x1 to x2 in H. Because H is triangulated, these (x, y)-paths are pairwise non-homotopic,

otherwise some edge in H[S′] could be further contracted or deleted. Combining this

with Proposition 6.7, we deduce that |S′| ≤ h(g). The lemma now follows by observing

that each connected component of S shrinks to a single vertex of S′, therefore S has

|S′| ≤ h(g) connected components.

We say that two vertex subsets X,Y of graph G touch if either X ∩ Y 6= ∅ or there

exist an edge of G with one endpoint in X and the other in Y. A bramble of G is a

collection B of mutually touching connected subsets of V (G). The order of a bramble B
is the minimum size of a set S that intersects all its elements. The bramble number of

G is the maximum order a bramble of G may have.

The following min-max characterization of treewidth was proved in [69].

Proposition 6.9. The treewidth of a graph is one less than its bramble number.

We define functions f1, f2 such that f1(x, y) = (x+1)y and f2(x, y) = x(
(

(x+1)y
x+1

)
)+1.

The following lemma can be seen as a generalization of [69, (3.2)].

Lemma 6.10. Let q, t be non-negative integers and let r1 = f1(t, q) and r2 = f2(t, q).

Let G be a graph and let X = {X1, . . . , Xr1} be a collection of mutually disjoint connected

vertex sets of G. Let also Y = {Y1, . . . , Yr2} be a collection of mutually disjoint vertex sets

of G, each with at most q connected components and such that for every i ∈ {1, . . . , r1}
and j ∈ {1, . . . , r2}, Xi ∩ Yj 6= ∅. Then tw(G) ≥ t.

52

Proof. For every set Yj , j ∈ {1, . . . , r2}, we select its connected component Y ′j inter-

secting the largest number of sets from X . Because every Yj has at most q connected

components, set Y ′j intersects at least t+ 1 = r1/q sets from X .
Let now R be the intersection graph of sets X and Y ′ = {Y ′1 , . . . , Y ′r2}. Then R is a

bipartite graph with bipartition (X ,Y ′) , and every vertex from Y ′ has degree ≥ t + 1

in R. We remove edges from R such that in the resulting graph all vertices of Y ′ have

degree exactly t+ 1. In the new graph the vertices from Y ′ have at most(
|X |
t+ 1

)
=

(
(t+ 1)q

t+ 1

)
distinct neighbourhoods in X . Because

|Y ′| = |Y| = t

(
(t+ 1)q

t+ 1

)
+ 1,

we deduce that there should be at least t+1 vertices of Y ′ with the same neighbourhood

in X . Let IY be the indices of these vertices in Y and let IX be the indices of their

neighbours in X .
It follows that for every (i, j) ∈ IX × IY , Xi ∩ Y ′j 6= ∅, and, as both Xi and Y ′j are

connected, Xi ∪ Y ′j is also a connected set. Moreover, because |IX | = |IY | = t + 1, it

follows that for every set S of t vertices in G, there are i ∈ IX and j ∈ IY such that

S ∩ (Xi ∪ Y ′j) = ∅. We can now conclude that the collection {Xi ∪ Y ′j | (i, j) ∈ IX × IY}}
is a bramble in G of order t + 1. Therefore, the bramble number of G is at least t + 1

and the lemma follows from Proposition 6.9.

Let G be a graph embedded in some surface Σ. We define the radial completion of

G as the graph obtained from drawing of G in Σ together with its radial graph RG. We

denote the radial completion of G by WG. Let us remark that WG is triangulated and

that RG is a spanning subgraph of WG. Notice that every two adjacent vertices in WG

have some common neighbour in RG. This implies the following observation.

Observation 5. Let G be a graph embedded in some surface Σ. Then for every pair

x, y ∈ V (RG), it holds that distWG
(x, y) ≤ distRG(x, y) ≤ 2 · distWG

(x, y).

Loosely speaking, the following lemma says that in a graph of small treewidth which

is embedded on a surface of fixed genus, every two connected sets will be either radially

close or will be be separated by a small set. Let h be the function from Lemma 6.8, and

f1, f2 be the functions defined before Lemma 6.10.

Lemma 6.11. Let G be a graph embedded in a surface Σ of Euler genus g, t be a positive

integer, and C,Z,Z1, C1 be disjoint subsets of V (WG) such that

• C and C1 are connected in WG,

• Z separates C from Z1 ∪ C1 and Z1 separates C ∪ Z from C1 in WG,

53

Z Z1

C1

M

C

Figure 1: A visualization of the statement of Lemma 6.11.

• distWG
(Z,Z1) ≥ 3 · f2(t+ 1, h(g)) + 3, and

• G contains f1(t + 1, h(g)) internally vertex-disjoint paths from C ∩ V (G) to C1 ∩
V (G).

Then tw(G[V (M) ∩ V (G)]) > t, where M is the union of all connected components of

WG \ (Z ∪Z1) that have at least one neighbor in Z and at least one neighbor in Z1. (See

Fig. 1.)

Proof. We set µ = f1(t + 1, h(g)) and λ = f2(t + 1, h(g)). Let P1, . . . , Pµ be internally

vertex-disjoint paths in G from C ∩V (G) to C1 ∩V (G). Each of these paths Pi contains

at least one subpath with one endpoint in Z and the other in Z1, and with all internal

vertices in M. We denote by P ′1, . . . , P
′
µ′ the set of such subpaths. Then µ′ ≥ µ.

For j ∈ {1, . . . , 3λ+2}, let Aj be the set of all vertices of WG that are within distance

exactly j from Z and belonging to M. Notice that each Aj is a (Z,Z1)-separator and

thus also a (C,C1)-separator of WG. Clearly, each Aj contains as a subset a minimal

(C,C1)-separator Yj of WG. As each Yj is also a (Z,Z1)-separator, it should contain at

least one internal vertex of every path in P ′1, . . . , Pµ′ . Moreover, by its definition, Aj
should be a subset of M.

As WG is triangulated, by Lemma 6.8, each WG[Yj] contains at most h(g) connected

components. Recall that, by the definition of WG, for each vertex x ∈ V (WG) \ V (G),

the graph induced by its neighborhood is a connected subgraph of G. Using this fact,

we obtain that Y +
j = B1

WG
(Yj) ∩ V (G) has also at most h(g) connected components in

G for j ∈ {2, . . . , 3λ+ 1}.
Let I = {1, . . . , λ} and notice that, for any two distinct h, l ∈ I, Y +

3h and Y +
3l are

vertex-disjoint subgraphs of G[V (M) ∩ V (G)]. For j ∈ {1, . . . , µ′}, we define P ′′j as the

path obtained from P ′j after removing its endpoints. Observe now that P ′′1 , . . . , P
′′
µ′

are connected vertex-disjoint subgraphs of G[V (M) ∩ V (G)], and each of these graphs

54

intersect all graphs Y +
3j . Applying Lemma 6.10 for µ graphs from {P ′′1 , . . . , P ′′µ′} and λ

graphs from {Y +
3j | j ∈ I}, we deduce that tw(G[V (M) ∩ V (G)]) ≥ t + 1 > t and the

lemma follows.

Final step. To conclude the proof of the main result of this section, we need the last

lemma. The following lemma essentially says that if (G, k) is a YES-instance of a quasi-

coverable problem Π where G has no big protrusions, then G has an r-dominating set of

size O(k) for some r that depends only on Π and g and therefore (G, k) can be treated

as a YES-instance of a coverable problem.

We define function f3(x, y) = 2 · f1(x + 1, h(y + 1)) where h is the function of

Lemma 6.8, and f1 is the function defined before Lemma 6.10.

Lemma 6.12. Let G = (V,E) be a graph embedded in a surface Σ of Euler genus g and

let p, t, and r be non-negative integers such that

• there exists a set S ⊆ V such that tw(G \Rr
G(S)) ≤ t;

• for λ ≤ f3(t, g), all λ-protrusions of G are of size less than p.

Then there exist a set S′ ⊆ V and a constant µ (depending on p, g, and r only) such that

• |S′| ≤ 2|S|, and

• Rµ
G(S′) = V.

Proof. To prove the lemma, we prove a slightly different statement: Under the as-

sumptions of the lemma, there is a set S′ ⊆ V (WG) such that |S′| ≤ 2|S| and

Bµ
WG

(S′) = V (WG). Then the statement of the lemma can be deduced from this al-

ternative statement by constructing set S′new as follows: first set S′new ← S′ and then

replace each vertex in S′ that does not belong to V (G) with one of its neighbors from

V (G). It remains to observe that Rµ+1
G (S′new) ⊇ Bµ

WG
(S′).

We put µ = 2p+2r+2+2µ′, where µ′ = 3·f2(t+1, h(g))+3, and proceed with the proof

of the above alternative statement. We first apply Lemma 6.6 for WG and S to obtain

a set S′ ⊇ S of vertices, where |S′| ≤ 2|S| and such that for every v ∈ WG \B2µ
WG

(S′),

graph WG \Bµ
WG

(v) has at most two S′-components. If B2µ
WG

(S′) = V (WG), then we are

done. Otherwise, let v ∈ WG \B2µ
WG

(S′). Let C1, C2 be S′-components of WG \Bµ
WG

(v)

(one of these components can be an empty set), and let Si = Ci ∩S′, i ∈ {1, 2}. We also

define subgraphs of WG as follows, W1 = WG \ C2 and W2 = WG \ C1.

We claim that at least one of the sets Ci, i ∈ {1, 2}, cannot be separated in Wi from

C = B2p
WG

(v) by a separator of size at most λ/2. Indeed, if it was the case, then in WG,

C is separable from C1 ∪C2, and thus from B2r
WG

(S′) ⊆ C1 ∪C2 by a separator of size at

most λ. By Observation 5, this means that in G, vertices RpG(v) can be separated from

Rr
G(S′) by a separator of size at most λ. Because tw(G \Rr

G(S′)) ≤ t this yields that

55

there is a λ-protrusion in G containing Rp
G(v). But |Rp

G(v)| ≥ p, and thus the size of

this protrusion is at least p in G, which contradicts to the assumption of the lemma.

Without loss of generality, let us assume that C1 is a S′-component of WG \Bµ
WG

(v)

that cannot be separated in W1 from C by a separator of size λ/2. By Menger’s theorem,

in graph W1 there are λ/2 internally vertex-disjoint paths from C to C1. We define Z

as the set of vertices at distance exactly 2p + 1 from v in W1, and Z1 as NW1(C1).

Then Z separates C from Z1 ∪ C1 and Z1 separates C1 from Z ∪ C. The distance in

W1 between Z and Z1 is at least µ′. Let M be the union of connected components of

W1\(Z1∪Z2) having at least one neighbour in Z and Z1. By Lemma 6.11, the treewidth

of the subgraph GM of G induced by M ∩ V (G) is more than t. On the other hand,

every vertex of M is at distance more than r + 1 in WG, and thus at radial distance at

least r+1 in G, from each vertex of S′, and thus of S. Hence tw(GM) ≤ tw(G\Rr
G(S)),

which is at most t by the assumption of the lemma. This contradiction concludes the

proof of the lemma.

of Lemma 6.5. By applying Lemma 6.12 for r = t and ζ1 = f3, we have that G contains

a set of vertices S′ where |S′| ≤ 2k such that Rµ
G(S′) = V (G), where µ is the constant

of Lemma 6.12. But then by Lemma 6.2, G has a (ck, c)-protrusion decomposition for

some c depending on g, r, and p as required.

7 Criteria for proving FII

To apply Theorem 1.3, to prove that a specific parameterized problem on graphs admits

a linear kernel we have to show that it has FII. This property is not always easy to prove

directly. In this section, we give some general criteria for establishing FII. These tools

are used in Section 8. Early results that establish that problems have FII were obtained

by Bodlaender and de Fluiter [11, 17, 26]; another criterion for FII was given by van

Rooij [71, Section 11.2].

7.1 Strong monotonicity

We first give a sufficient condition which implies that a large class of p-min/max-

CMSO[ψ] problems has FII. We prove it here for vertex versions of p-min/max-

CMSO[ψ] problems. By UI we denote the set of all boundaried structures of type

(graph, vertex set), whose boundaried graph has label set I.

Let Π be a p-min-CMSO[ψ] problem definable by some sentence ψ. We say that

a boundaried structure (G′, S′) whose boundaried graph has label set I is ψ-feasible

for some boundaried graph G with label set I if there exist some S ⊆ V (G) such that

(G⊕G′, S ∪S′) |= ψ. For a boundaried graph G with label set I, we define the function

ζG : UI → Z+ ∪ {∞} as follows. For a structure α = (G′, S′) ∈ UI we set

56

ζG(α)=

{
min{|S| |S ⊆ V (G) ∧ (G⊕G′, S ∪ S′) |= ψ} if α is ψ-feasible for G

∞ otherwise
(34)

Similarly, for Π p-max-CMSO[ψ] problems we define

ζG(α)=

{
max{|S| |S ⊆ V (G) ∧ (G⊕G′, S ∪ S′) |= ψ} if α is ψ-feasible for G

−∞ otherwise

Definition 7.1. A p-min-CMSO[ψ] problem Π is strongly monotone if there exists a

function f : Z+ → Z+ such that the following condition is satisfied. For every boundaried

graph G with label set I, there exists a subset W ⊆ V (G) such that for every (G′, S′) ∈ UI
such that ζG(G′, S′) is finite, it holds that (G⊕G′,W ∪S′) |= ψ and |W | ≤ ζG(G′, S′) +

f(|I|).

For completeness we give below the maximization counterpart of Definition 7.1.

Definition 7.2. A p-max-CMSO[ψ] problem Π is strongly monotone if there exists a

function f : Z+ → Z+ such that the following condition is satisfied. For every boundaried

graph G with label set I there exists a subset W ⊆ V (G) such that for every (G′, S′) ∈ UI
such that ζG(G′, S′) is finite, it holds that (G⊕G′,W ∪S′) |= ψ and |W | ≥ ζG(G′, S′)−
f(|I|).

7.2 FII for p-min/max-CMSO[ψ] problems

Lemma 7.3. Every strongly monotone p-min-CMSO[ψ] and every strongly monotone

p-max-CMSO[ψ] problem has FII.

Proof. We prove the lemma for a p-min-CMSO[ψ] problem; the proof for a p-max-

CMSO[ψ] problem is similar. Let Π be a strongly monotone p-min-CMSO[ψ] problem

and let I ⊆ Z+. Let MinRep(ψ, I) be a set containing a representative (a boundaried

structure of arity two) for each equivalence class of ≡σψ with the minimum number of

vertices in the graph of a structure. For brevity we denote MinRep(ψ, I) by S. From

Lemma 3.2 we know that |S| is bounded by some function of |ψ| and |I|.
Consider a boundaried graph G with label set I and define ζSG : S → Z+ ∪ {∞} to

be the function ζG with domain restricted to S. Let LSG = {ζSG(α) | α ∈ S} \ {∞}. We

first argue that if f is the function in the definition of the strong monotonicity of Π (i.e.,

Definition 7.1) and LSG 6= ∅, then

maxLSG −minLSG ≤ f(|I|) (35)

Since Π is strongly monotone, there exists W ⊆ V (G) such that for every (G′, S′) ∈ UI
where ζG(G′, S′) 6=∞, it holds that

(G⊕G′,W ∪ S′) |= ψ and (36)

|W | ≤ ζG(G′, S′) + f(|I|) (37)

57

Let α = (G′, S′) ∈ S such that ζSG(α) 6= ∞. Then (36) implies that ζSG(α) ≤ |W |.
This, together with (37), yields that |W | − f(|I|) ≤ ζSG(α) ≤ |W | and (35) holds. Hence

the minimum and the maximum finite values of ζSG can differ by at most f(|I|).
We now assign for each boundaried graph G with label set I a signature χG : S →

{0, . . . , f(|I|),∞} in a way that for each α ∈ S,

χG(α) = ζSG(α)−minLSG (38)

In (38), we make the agreement that infinite values remain infinite after subtracting an

integer. Notice that it is possible that in (38) minLSG may not exist and this happens

in the extreme case where LSG = ∅. In such a case, we set χG(α) =∞ for all α ∈ S.
We say that G1 ∼ G2 if and only if χG1 = χG2 and observe that ∼ is an equivalence

relation. Observe that the number of different signatures of boundaried graphs with

label set I is bounded by some function of |ψ| and |I|. Therefore, the same holds for the

number of equivalent classes of ∼ . To prove that ≡Π has FII, it is enough to prove that

∼ is a refinement of ≡Π, which means that if G1 ∼ G2, then G1 ≡Π G2. For this, we

claim that if G1 ∼ G2, then there exists some constant c ∈ Z (depending on G1 and G2)

such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π. (39)

To prove the above statement we first determine the constant c. As G1 ∼ G2, we have

that χG1 = χG2 . In the extreme case where χG1(α) = χG2(α) = ∞ for all α ∈ S, (39)

holds trivially for c = 0 as ∀(F, k) ∈ F × Z+ both sides of the equivalence are false

(for completeness, recall that according to the way we defined parameterized problems,

∀(F, k) ∈ F × Z− both sides of the equivalence in (39) have the same value). From now

onwards we assume that both minLSG1
and minLSG2

exist. Therefore, from (38), for each

α ∈ S, ζSG2
(α) = ζSG1

(α) −minLSG1
+ minLSG2

. We set c = minLSG2
−minLSG1

. and we

conclude that

∀α ∈ S ζSG2
(α) = ζSG1

(α) + c. (40)

Let (F, k) ∈ F ×Z and assume that (G1 ⊕ F, k) ∈ Π. This means that there exists a set

S ⊆ V (G1 ⊕ F) such that |S| ≤ k and

(G1 ⊕ F, S) |= ψ. (41)

Let SF = S ∩ V (F) and SG1 = S \ SF and observe that

|SG1 |+ |SF | ≤ k. (42)

We rewrite (41) as follows:

(G1, SG1)⊕ (F, SF) |= ψ. (43)

58

Let (F ′, S′F) ∈ S be the representative of (F, SF). As (F, SF) ≡σψ (F ′, S′F), (43)

implies that

(G1, SG1)⊕ (F ′, S′F) |= ψ

⇐⇒ (G1 ⊕ F ′, SG1 ∪ S′F) |= ψ (44)

From (34), (44) implies that ζG1(F ′, S′F) ≤ |SG1 |. From (40), we get ζSG2
(F ′, S′F) ≤

|SG1 |+ c which, again from (34), means that there exists SG2 , where

(G2 ⊕ F ′, SG2 ∪ S′F) |= ψ and (45)

|SG2 | ≤ |SG1 |+ c. (46)

We rewrite (45) as follows:

(G2, SG2)⊕ (F ′, S′F) |= ψ. (47)

As (F ′, S′F) ≡σψ (F, SF), (47) implies that

(G2, SG2)⊕ (F, SF) |= ψ

⇐⇒ (G2 ⊕ F, SG2 ∪ SF) |= ψ.

Moreover, |SG2 ∪ SF | ≤ |SG2 | + |SF | ≤(46) |SG1 | + c + |SF | ≤(42) k + c. We conclude

that (G2 ⊕ F, k + c) ∈ Π and we proved the one direction of (39). The other direction

is symmetric.

Remark 1. In Definitions 7.1 and 7.2 we defined the notion of strong monotonicity for

p-min/max-CMSO[ψ] problems where S is a subset of the vertices of the input graph.

If instead we ask S to be an edge subset then an analogue of Lemma 7.3 can be proved

in a similar manner.

Let G be a graph class. We say that G is CMSO-definable if there exist a sentence

ψ on graphs such that G = {G | G |= ψ} and, in such a case, we say that ψ defines the

class G. Recall that, given a parameterized graph problem Π and a graph class G, we

denote by Π e G the problem obtained by removing from Π all instances that encode

graphs that do not belong to G.
A necessary tool to adapt our results to problems on special graph classes is the

following. The proof follows directly by the definitions.

Lemma 7.4. Let Π be a parameterized problem on graphs and let G be a CMSO-definable

graph class. Then if Π has FII, so does Π e G.

8 Implications of our results

In this section we mention a few parameterized problems for which we can obtain either

polynomial or linear kernel using Theorems 1.1, 1.2, and 1.3. In Appendix we provide a

full list of the problems amenable to our approach.

59

8.1 Preliminary tools

All of our results concern problems defined on graphs of bounded genus. Recall that

we denote by Gg the class of all graphs of Euler genus at most g. In this way for every

parameterized problem Π on graphs, we define the problem Πg = Π e Gg, that contains

only YES-instances of Π, encoding graphs of Euler genus at most g. We need to distin-

guish the two variants Π and Πg. The reason for this is that, in many cases, for some

fixed value g, Πg admits a polynomial kernel while the general version Π is not even

believed to be fixed parameter tractable. A typical example is Planar Dominating

Set that admits a vertex kernel of size 67k while the general Dominating Set problem

is W[2]-complete [27].

The following lemma is a direct consequence of the definition of coverability and

quasi-coverability.

Lemma 8.1. Let Π1,Π2 be graph problems whose instances are of the form (G, k). Then

if Π1 ⊆ Π2 and Π2 is r-(quasi)-coverable, then so is Π1.

The next lemma is useful when we work on graphs of bounded genus.

Lemma 8.2. Let Π be a parameterized problem on graphs. If Π has FII, then for every

g ∈ Z+, Πg has FII.

Proof. Let Og be the set containing all minor-minimal elements of the class of graphs

with Euler genus more than g. According to the results of [60], Og is finite for each fixed

g. Notice that Gg = {G | ∀H∈Og H �mn G} and as minor checking can be expressed in

CMSO, the class Gg is CMSO-definable. Therefore, the lemma follows from Lemma 7.4.

8.2 Covering minors

A minor-model of a graph H in a graph G is a minimal subgraph F of G that contains

H as a minor. Notice that H ≤mn G if and only if G contains as a subgraph some

minor-model of H.

We give below a generic problem that subsumes many problems in itself. Let H be

a finite set of connected graphs containing at least one planar graph.

p-H-Deletion

Input: A graph G and k ∈ Z+.

Parameter: k.

Question: Is there S ⊆ V (G) such that |S| ≤ k and G \ S
does

not contain any of the graphs from H as a minor?

60

Lemma 8.3. If Π =p-H-Deletion, then for every g ∈ Z+, Πg is quasi-coverable.

Proof. Let (G, k) be a YES-instance for Πg. This means that there exists a set S ⊆ V (G)

of cardinality at most k such that none of the graphs in H is a minor of G\S. Let H be a

planar graph in H. As G \S excludes H as a minor and H is planar, it follows from [68]

that tw(G\S) ≤ cH for some constant that depends only on H. Set r = max{g, cH} and

take an embedding of G in a surface of genus at most g. Observe that G\Rr
G(S) ⊆ G\S,

therefore, tw(G \Rr
G(S)) ≤ tw(G \ S). Thus Πg has the r-quasi-coverability property

for some r depending on H and g.

Lemma 8.4. If Π =p-H-Deletion, then for every g ∈ Z+, Πg has FII.

Proof. Let ψ = [∀H ∈ H H �mn (G \ S)]. As minor-checking is CMSO-definable, ψ can

be written as a CMSO sentence, hence Π is a p-min-CMSO[ψ] problem. We now prove

that Π has FII. By Lemma 7.3 and 8.2, it suffices to prove that Π is strongly monotone.

Let G be a boundaried graph with label set I and the boundary δ(G) = B. Let S− be

a set of minimum size such that (G \ B) \ S− does not contain any of the graphs from

H as a minor and let W = S− ∪B.
Let (G′, S′) ∈ UI be a ψ-feasible structure. We first prove that (G⊕G′,W ∪S′) |= ψ.

For this, assume in contrary, that R is a minor-model of some H from H contained

in (G ⊕ G′) \ (W ∪ S′). As H is connected and B is a separator of G ⊕ G′, R should

be either a subgraph of G \ W = (G \ B) \ S−, or a subgraph of (G′ \ B) \ S′. The

first case contradicts to the choice of S−. In the second case, R would be a subgraph of

(G′ \B) \ S′, which contradicts the feasibility of (G′, S′).

We next prove that |W | ≤ ζG(G′, S′)+f(|I|), where f(|I|) = |I|. For (G′, S′) ∈ UI , let

S∗ ⊆ V (G) be a set of minimum size such that (G⊕G′)\(S∗∪S′) contains no graph from

H as a minor. Thus |S∗| = ζG(G′, S′). Notice that G \B does not contain vertices from

S′. Therefore for every H ∈ H, every minor-model R of H in G\B should be intersected

by vertices from S∗—otherwise R would also be a subgraph of (G ⊕ G′) \ (S∗ ∪ S′),
which is a contradiction. By the choice of S−, we have |S−| ≤ |S∗|. We conclude that

|W | = |S− ∪B| ≤ |S−|+ |B| ≤ |S∗|+ |B| = ζG(G′, S′) + f(|I|).

p-H-Deletion contains various problems as a special case. Some examples are

presented below (all of them are parameterized by solution size k).

• p-Vertex Cover : In this problem given an input graph G and a k ∈ Z+, the

objective is to test whether it is possible to remove at most k vertices from G and

obtain an edgeless graph. This problem is generated by taking H = {K2}.

• p-Feedback Vertex Set : In this problem given an input graph G and a k ∈ Z+,

the objective is to test whether it is possible to remove at most k vertices from G

and obtain an acyclic graph. This problem is generated by taking H = {K3}.

61

• p-Diamond Hitting Set : In this problem given an input graph G and a k ∈ Z+,

the objective is to test whether it is possible to remove at most k vertices from

G and obtain a graph where no edge is contained in more than one cycle. This

problem is generated by taking H = {K−4 } where K−4 is the graph obtained from

a K4 after removing an edge.

• p-Almost Outerplanar : In this problem given an input graph G and a k ∈
Z+, the objective is to test whether it is possible to remove at most k vertices

from G and obtain an outerplanar graph. This problem is generated by taking

H = {K4,K2,3}.

• p-Almost-t-bounded treewidth : In this problem given an input graph G and

a k ∈ Z+, the objective is to test whether it is possible to remove at most k vertices

from G and obtain a graph of treewidth bounded by some fixed constant t. This

problem is generated by taking H to be the set of minor minimal graphs with

treewidth > t (from the results in [68], this set always contains a connected planar

graph).

• p-Almost-t-bounded pathwidth : In this problem given an input graph G and

a k ∈ Z+, the objective is to test whether it is possible to remove at most k vertices

from G and obtain a graph of pathwidth bounded by some fixed constant t. This

problem is generated by taking H to be the set of minor minimal graphs with

pathwidth bigger than t.

8.3 Packing minors

We consider the following problem that, in a sense, is dual to the one examined in

Section 8.2. Again, let H be a finite set of connected graphs containing at least one

planar graph.

p-H-Packing
Input: A graph G and k ∈ Z+.

Parameter: k.

Question: Does there exist k vertex disjoint subgraphs G1, . . . , Gk of G

such

that each of them contains some graph from H as a minor.

For proving the quasi-coverability of p-H-Packing, we need to examine its relation

to p-H-Deletion.

Lemma 8.5. If Π =p-H-Packing, then for every g ∈ Z+, Πg is quasi-coverable.

62

Proof. Given two graphs G and H, we define covH(G), as the minimum size of a set

S ⊆ V (G) of vertices such that G \ S does not contain any minor model of H.

We also define

packH(G) = max{k | ∃ partition V1, . . . , Vk of V (G) such that

∀i∈{1,...,k} G[Vi] is a minor-model of H}.

Let H be a connected planar graph in H. To prove that Πg is quasi-coverable, we

show that Πg = ((Σ∗ × Z+) \ Πg) e Gg has the quasy-coverability property. In order to

do so, we prove that if (G, k) ∈ Πg, i.e., G ∈ Gg and has no H-packing into k sets, then

(G, ck) is a YES-instance for Πhd
g , where Πhd =p-H-Deletion, for some constant c that

depends only on g and H. By Lemma 8.5,p-H-Deletion is r-quasi-coverable, and thus

Πg would posses a quasi-coverability property.

Suppose that (G, k) ∈ Πg. This implies that packH(G) < k. According to the Erdős-

Pósa type of result of [40], for every two graphs H and W, where H is planar and W

is any graph, there exists a constant cH,W , depending only on H and W, such that for

every graph G excluding W as a minor, covH(G) ≤ cH,W ·packH(G). Let W be a graph

of Euler genus g+1. As the class Gg is closed under taking of minors, we have that every

graph in Gg excludes W as a minor. Applying the aforementioned result, we have that

covH ≤ cH,W ·k, therefore (G, c ·k) is a YES-instance for Πhd
g for some c depending only

on H and g, as required. This implies that Πg has a quasi-coverability property, hence

Πg is quasi-coverable.

Notice that whenH = {K3}, p-H-Packing is the p-Cycle Packing problem. Here,

given an input graph G and a k ∈ Z+, the objective is to check whether G contains k

vertex-disjoint cycles. While the general problem has FII for every choice of H, we

present the proof for this special case in order to clearly explain the machinery that we

use for such type of problems. After the end of the proof of Lemma 8.6, we outline how

to extend the proof for the general case.

Lemma 8.6. If Π =p-Cycle Packing, then for every g ∈ Z+, Πg has FII.

Proof. By Lemma 8.2, it is sufficient to prove that Π has FII. Let G be a boundaried

graph with label set I and with boundary δ(G) = B∗. The proof proceeds in three

stages: the first stage defines some characteristic of the problem that depends on the

boundary of the input boundaried graph. The second uses this characteristic to define

an equivalence relation on boundaried graphs that will have finite index, and the last

one proves that this equivalence relation is a refinement of ≡Π and therefore has finitely

many equivalence classes as well.

Characteristic. We define set R as the set of all matchings R (not necessarily maximal)

of a complete graph on the vertex set B∗. Let us remark, that matching R ∈ R is not

necessarily a subgraph of G; each graph in R corresponds to a set of mutually disjoint

63

pairs from B∗. We define ζG : R → Z+ so that, for every R ∈ R, the value ζG(R) is the

maximum number of cycles that can be contained in a subgraph J of G such that:

• ∆(J) ≤ 2, and

• for every edge {x, y} of R, J contains an (x, y)-path.

Let us remark that all (x, y)-paths of J are internally vertex disjoint. In case such a

graph J does not exist, we set ζG(R) = −∞. Function ζG can be seen as a way to encode

the tables of a dynamic programming for p-Cycle Packing on graphs of treewidth at

most |I|. The proof that follows can be seen as an alternate way to prove that such a

dynamic programming algorithm uses tables whose sizes depend only on |I|.

Definition of equivalence. Let x be the maximum number of vertex disjoint cycles in G.

Thus for every R ∈ R, we have ζG(R) ≤ x. We define the signature of G as the function

χG : R → {−|I|, . . . , 0} ∪ {−∞} such that

χG(R)=

{
ζG(R)− x if x− |I| ≤ ζG(R) ≤ x
−∞ otherwise

Notice that the number of different signatures is bounded by some function of |I|. Given

two boundaried graphs G1 and G2, we say that G1 ∼ G2 if and only if Λ(G1) = Λ(G2)

and χG1 = χG2 . Clearly, for every I ⊆ Z+, ∼ is an equivalence relation with finite

number of equivalence classes.

Refinement proof. The result will follow if we prove that ∼ is a refinement of ≡Π . For

this we claim that if G1 ∼ G2 then G1 ≡Π G2 or, equivalently, there is some constant c,

depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π. (48)

Suppose that G1 ∼ G2. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ Π. Our target is

to prove that (G2 ⊕ F, k + c) ∈ Π. (The proof for other direction of (48) is symmetric

and thus omitted.) Let us also assume that G1 and G2 are boundaried graphs with label

set I and δ(G1) = B.

The fact that (G1 ⊕ F, k) ∈ Π means that G1 ⊕ F contains a collection of k disjoint

cycles. Let C be such a collection of maximum size in G1 ⊕ F. Clearly, |C| ≥ k. We

partition C into four sets CG1 , CB, CBF , and CF , where

• CG1 are the cycles that are entirely inside G1,

• CB are the cycles of C that are not entirely in G1 or F,

• CBF are the cycles that are entirely inside F and intersect the boundary B, and

• CF are the cycles that are entirely inside F and do not intersect B.

64

Notice that |CB|+ |CBF | ≤ |I|. Graph G1 ∩ (
⋃
C∈CB C) is a collection of internally disjoint

paths between pairs of terminals in B. By replacing each of these paths by edges, we

create graph R ∈ R. Graph R represents the possibility of linking the pairs corresponding

to the edges in R by disjoint paths inside G1 in a way that these paths are disjoint from

the disjoint cycles in CG1 .

For i ∈ {1, 2}, let C∗i be a maximum size collection of cycles in Gi, and let xi = |C∗i |.
Notice that x1 and x2 depend only on G1 and G2. We claim that x1−|I| ≤ |CG1 |. Indeed,

C∗ = C∗1 ∪ CF is also a cycle packing in G1 ⊕ F. If |CG1 | < x1 − |I| = |C∗1 | − |I|, then

|C∗| = |C∗1 | + |CF | > |CG1 | + |I| + |CF | ≥ |CG1 | + |CB| + |CBF | + |CF | = |C|, contradicting

the maximality of C.
We set c = x2 − x1. By the definition of ζG, we have that |CG1 | ≤ ζG1(R) ≤ x1. We

conclude that x1−|I| ≤ ζG1(R) ≤ x1 and thus χG1(R) > −∞. As G1 ∼ G2, we have that

χG1(R) = χG2(R), and therefore ζG2(R) = ζG1(R) − x1 + x2 = ζG1(R) + c ≥ |CG1 | + c.

This in turn, means that G2 contains a collection of disjoint cycles CG2 and |CG2 | =

ζG2(R) ≥ |CG1 |+ c and |E(R)| internally vertex disjoint paths that are also disjoint from

the cycles in CG2 , one for each pair of vertices represented by the edges of R.

Notice now that if we take the union of these paths with the graph F ∩ (
⋃
C∈CB C),

we obtain a collection C′B of |CB| vertex disjoint cycles in G2 ⊕ F that are also disjoint

with the cycles from CG2 . The cycles from CG2 ∪ CB are disjoint from cycles CBF and CF .
Therefore, CG2 ∪ C′B ∪ CBF ∪ CF is a collection of cycles in G2 ⊕ F that has size at least

|CG1 |+c+|CB|+|CBF |+|CF | = k+c. We conclude that (G2⊕F, k+c) ∈ Π as required.

The proof that, in general, p-H-Packing has FII follows the same line as the proof of

Lemma 8.5. Instead of cycles we have minor-models of graphs in H and instead of paths

between terminals of the border, we have partial models that are parts of minor-models

of graphs in H that are cropped by G1. The signature χ is now encodes all the ways

such partial models might be “rooted” in the boundary. This can be done by the “folio”

structure introduced in [67] for doing dynamic programming for the minor checking

problem and the disjoint paths problem on graphs of bounded treewidth. Variants of

folios have been used for similar purposes in [2, 44, 52, 35].

8.4 Subgraph Covering and Packing

Let S be a finite set of connected graphs. We define the following two general problems.

p-S-Covering

Input: A graph G and k ∈ Z+.

Parameter: k.

Question: Is there a S ⊆ V (G) such that |S| ≤ k and G \ S contains

no subgraph isomorphic to a graph from S?

65

p-S-Packing
Input: A graph G and k ∈ Z+.

Parameter: k.

Question: Does there exist k vertex disjoint subgraphs G1, . . . , Gk of G

such

that each of them contains a subgraph isomorphic to a graph

in S?

Let us remark that it is not true in general, that if Π =p-S-Covering or Π =p-S-
Packing, then Πg is coverable. However, the problems become coverable if we modify

instances by applying the following simple preprocessing rule.

Redundant Vertex Rule: For a graph G, while this is possible,

delete a vertex that does not belong to any subgraph of G

isomorphic to any graph in S.

A graph G is RV-S-reduced if each its vertex belongs to a subgraph isomorphic to a

graph in S. We denote by R(S) the set of all RV-S-reduced graphs.

Lemma 8.7. Let Π be either p-S-Covering or p-S-Packing. There is a polynomial

time algorithm transforming (G, k) ∈ Πg into an equivalent instance (G′, k) ∈ ΠRV
g =

Πg eR(S).

Proof. Let s be the maximum diameter of a graph in S and let G be a graph of genus

g. We can perform the Redundant Vertex Rule in O(|V (G)|2) time by checking for every

vertex v ∈ V (G) if the subgraph Gs(v) induced by Bs
G(v) has a subgraph isomorphic to

a graph in S containing vertex v. By Proposition 6.3, the treewidth of Gs(v) is bounded

by some function of s and g only and thus for every v such a check can be performed in

time O(|V (G)|), see, e.g. [30].

We are now ready to prove the following lemma.

Lemma 8.8. Let Π be p-S-Covering or p-S-Packing. Then ΠRV
g is coverable.

Proof. Let s be the maximum diameter of a graph in S and let Υ =p-S-Covering. Let

(G, k) be a YES-instance of ΥRV
g and let S be a vertex set of size at most k such that

each subgraph of G that is isomorphic to some graph in S intersects S. Consider an

embedding of G in some surface of Euler genus at most g. As G ∈ R(S), every vertex

in G is within distance at most s from S. Therefore, Bs
G(S) = V (G). By Observation 3,

R2s
G (S) ⊇ Bs

G(S) and thus ΥRV
g has the r-coverability property for r = 2s.

Assume now that Ψ =p-S-Packing. To prove the coverability of ΨRV
g , we will

prove that Ψ̄RV
g = ((Σ∗ × Z+) \ΨRV

g) e Gg has the r-coverability property. Let c be the

maximum number of vertices in a graph of S. We claim that if (G, k) is a NO-instance

66

for ΨRV
g , where G ∈ Gg, then (G, ck) is a YES-instance of ΥRV

g . Indeed, as (G, k) is a

NO-instance, G does not contain k vertex disjoint subgraphs from S. A set S of vertices

of size ≤ k · c “hitting” all subgraphs of G isomorphic to graphs in S can be constructed

by the following greedy procedure:

Initialize S = ∅ and, as long as G contains a subgraph that is isomorphic to

some graph in S, add all its vertices to S and remove them from G.

Notice that the above procedure cannot be applied more than k − 1 times, otherwise

the removed graphs would constitute a vertex packing of graphs of S in G. When the

procedure cannot be applied anymore, the set S intersects every subgraph of G that is

isomorphic to some graph from S and |S| ≤ c·(k−1). Therefore (G, ck) is a YES-instance

of ΥRV
g , which is already shown to be coverable. Now the coverability of ΨRV

g follows

from Lemma 8.1.

Using a modification of the proof of Lemma 8.4, it is possible to show thatp-S-
Covering has FII. The proof that p-S-Packing has FII follows the same steps as in

the proof of Lemma 8.6. The only difference in all cases is that we work with subgraphs

instead of minors.

8.5 Domination and its variants

Given two integers r, q ∈ Z+, a graph G, and a set S ⊆ V (G), we say that S is a (q, r)-

dominating set of G if for every vertex x in V (G) \ S, there are at least q vertices in S

within distance at most r from x. We define a series of problems related to domination.

In all of them the input is a graph G and a parameter k ∈ Z+. We mention below the

variants and the questions corresponding to each of them.

• p-r-Dominating Set: Is there a (1, r)-dominating set S of size at most k in G?

For r = 1 the problem is known as p-Dominating Set.

• p-q-Threshold Dominating Set: Is there a (q, 1)-dominating set S of size at

most k in G?

• p-Efficient Dominating Set: Is there a (1, 1)-dominating set S of size at most

k in G such that G[S] is edgeless (i.e. S is an independent set) and each vertex

from V (G) \ S is adjacent to exactly one vertex in S. This problem is also known

as p-Perfect Code.

• p-Connected Dominating Set: Is there a (1, 1)-dominating set S of size at

most k in G such that G[S] is connected?

Lemma 8.9. If Π is one of the following problems: p-r-Dominating Set, p-q-

Threshold Dominating Set, p-Efficient Dominating Set, then for every g ∈ Z+,

Πg is coverable and has FII.

67

Proof. For all these problems, Πg is 2r-coverable by definition because if S is a (q, r)-

dominating set of G and G is embeddable in some surface of Euler genus at most g then,

by Observation 3, Br
G(S) ⊆ R2r

G (G).

By Lemma 8.2, it is enough to prove that each of the problems has FII. We start

from p-r-Dominating Set. Since p-r-Dominating Set is a p-min-CMSO[ψ] problem,

by Lemma 7.3, it is enough to prove that it is strongly monotone. For a boundaried

graph G with label set I and boundary δ(G) = B, let S′′ ⊆ V (G) be a minimum sized

r-dominating set of G. We put W = S′′ ∪ B. For a boundaried structure (G′, S′) ∈ UI ,
let S∗ ⊆ V (G) be a set of minimum size such that S∗ ∪ S′ is an r-dominating set of

G⊕G′. Thus ζG(G′, S′) = |S∗|. Observe that S∗ ∪B is an r-dominating set of G, hence

|S′′| ≤ |S∗|+ |B|. Therefore, |W | = |S′′∪B| ≤ |S′′|+ |B| ≤ |S∗|+2|I| = ζG(G′, S′)+2|I|.
Also observe that W ∪B is an r-dominating set of G′, and thus W ∪S′ is an r-dominating

set of G ⊕ G′. This implies that (G ⊕ G′, S ∪ S′) ∈ Π and the strong monotonicity of

p-r-Dominating Set follows.

The proof that p-q-Threshold Dominating Set is strongly monotone is based

on the same observations as the proof for p-r-Dominating Set and thus omitted. To

prove that p-Efficient Dominating Set has FII, we use the fact that

p-Efficient Dominating Set = p-1-Dominating Set e Geds,

where Geds is the class of all graphs that have an efficient dominating set. The equality

follows from a theorem of [9], asserting that if a graph G has an efficient dominating set,

then the size of the minimum efficient dominating set is equal to the size of the minimum

dominating set of G. As Geds is CMSO-definable, p-Efficient Dominating Set has

FII by Lemma 7.4.

In the remaining part of this subsection, we prove that when Π is p-Connected

Dominating Set, then Πg is coverable and has FII. For this we first need some auxiliary

definitions and results on connected domination. Given a graph G and a set V (G) we say

that a dominating set S is a component-wise connected dominating set of G if for every

connected component C of G, C[S∩V (C)] is connected. In particular, if G is connected,

then every component-wise dominating set of G is also a connected dominating set of G.

We need the following proposition attributed to [28]

Proposition 8.10. Let G be a connected graph and let Q be a dominating set of G such

that G[Q] has at most ρ connected components. Then there exists a set Z ⊆ V (G) of

size at most 2 · (ρ− 1) such that Q ∪ Z is a connected dominating set in G.

Lemma 8.11. Let G be a graph and let B be a subset of G. Let also R be a component-

wise connected dominating set of G. Then there exists a set S ⊇ R ∪ B that is also a

component-wise connected dominating set of G and has at most |R|+ 3|B| vertices.

Proof. Let C be the set of connected components of G. For C ∈ C, let BC = V (C) ∩
B and RC = R ∩ V (C). Observe that C[BC ∪ RC] cannot have more than 1 + |BC |

68

connected components. By Proposition 8.10, there exists a set ZC ⊆ V (C) such that

ZC ∪RC ∪BC induces a connected subgraph of C such that |ZC | ≤ 2|BC |. This means

that |BC ∪ RC ∪ ZC | ≤ |RC | + 3|BC |. Moreover, as RC is a dominating set of C, the

same holds for its superset BC ∪RC ∪ ZC . Therefore, the set S =
⋃
C∈C BC ∪RC ∪ ZC

is a component-wise dominating set of G that containing B ∪R. It is now easy to check

that |S| ≤ |R|+ 3|B|.

Lemma 8.12. Let G and G′ be boundaried graphs with label set I and boundary δ(G) =

B. Let also S∗ ⊆ V (G) and S′ ⊆ V (G′) such that S∗∪S′ is a component-wise connected

dominating set of G⊕G′. Then G contains a component-wise connected dominating set

S+ of size at most 3|B|+ |S∗|.

Proof. We first prove the lemma under the assumption that H = G⊕G′ is a connected

graph. Let us remark that G is not necessarily connected. Notice that Q = S∗ ∪ B
is a dominating set of G. Let C1, . . . , Cµ be the connected components of G and, for

each i ∈ {1, . . . , µ}, let Q1
i , . . . , Q

δi
i be the vertex sets of the connected components of

Ci[V (Ci) ∩Q]. We claim that
∑

1≤i≤µ δi ≤ |B|+ 1. Indeed, if S∗ ∪ S′ does not intersect

B, then since H[S∗ ∪ S′] is connected we have that G[S∗ ∪ S′] is connected and in this

case Q may have at most |B|+ 1 connected components, therefore
∑

1≤i≤µ δi ≤ |B|+ 1.

In case S∗∪S intersects B, then each connected component of Q should contain at least

one vertex of B, and, again, we have
∑

1≤i≤µ δi ≤ |B| < |B|+ 1.

We now apply Proposition 8.10 for the sets Q1
i , . . . , Q

δi
i of the graph Ci, for each

i ∈ {1, . . . , µ}. That way we find, for every i ∈ {1, . . . , µ}, a collection of sets Z1, . . . , Zµ,

where Zi is a connected dominating set of Ci. This means that S+ =
⋃

1≤i≤µ Zi is a

component-wise connected dominating set of G. By Proposition 8.10, |Zi| ≤ 2(δi − 1) +

|V (Ci) ∩Q|. We now have that:

|S+| =

µ∑
i=1

|Zi|

≤
µ∑
i=1

2(δi − 1) +

µ∑
i=1

|V (Ci) ∩Q|

≤ 2|B|+ |Q| = 3|B|+ |S∗|

as required.

If G ⊕ G′ is not a connected graph, then the required component-wise connected

dominating set is the union of the component-wise connected dominating sets obtained

if we apply the above proof for each of the connected components of G⊕G′.

We also need the following lemma. The proof is based on the definition of connected

dominating set and is omitted.

69

Lemma 8.13. Let G and G′ be boundaried graphs with label set I and boundary δ(G) =

B such that C = G ⊕ G′ is connected. Let also S∗ ⊆ V (G) and S′ ⊆ V (G′) be such

that S∗ ∪ S′ is a connected dominating set of C. Let S ⊆ V (G) be a component-wise

dominating set of G such that B ⊆ S. Then S ∪ S′ is a connected dominating set of

G⊕G′.

Lemma 8.14. If Π =p-Connected Dominating Set, then for every g ∈ Z+, Πg is

coverable and has FII.

Proof. The coverability of Πg is trivial. To show that p-Connected Dominating Set

has FII, we define the following auxiliary problem:

Π′ = {(G, k) | G has a component-wise connected dominating set S }

Notice that p-Connected Dominating Set = Π′ e Gcon, where Gcon is the class of

all connected graphs. Let us remark that Gcon is CMSO-definable and Π′ is a p-min-

CMSO[ψ] problem.

Let G be a boundaried graph with label set I and boundary δ(G) = B. Let R

be a minimum size component-wise dominating set of G. By Lemma 8.11, G has a

component-wise connected dominating set W that contains the boundary of G (B ⊆W
) as a subset and |W | ≤ |R|+ 3|I|.

For a boundaried structure (G′, S′) ∈ UI , let S∗ ⊆ V (G) be a set of minimum size

subset of G such that S∗ ∪ S′ is a component-wise connected dominating set of G⊕G′.
Thus ζG(G′, S′) = |S∗|. From Lemma 8.12, G contains a component-wise connected

dominating set S+ of size at most |S∗| + 3|I|. By the definition of R, we have that

|R| ≤ |S+| ≤ |S∗|+ 3|I| = ζG(G′, S′) + 3|I|, therefore |S| ≤ |R|+ 3|I| ≤ ζG(G′, S′) + 6|I|.
In order to prove that (G ⊕ G′,W ∪ S′) ∈ Π′, we have to show that W ∪ S′ is

component-wise connected dominating set of G⊕G′. Let C be the set of the connected

components of G ⊕ G′, and for every C ∈ C, we set GC = G[V (C)], G′C = G′[V (C)],

S∗C = S∗ ∩ V (C), WC = W ∩ V (C), S′C = S′ ∩ V (C), and BC = B ∩ V (C). Notice

that C = GC ⊕ G′C . As S∗ ∪ S′ is a component-wise dominating set of G ⊕ G′, we

have that the set S∗C ∪ S′C is a connected dominating set of C. Moreover, the fact that

S is a component-wise dominating set of G, implies that WC is also a component-wise

dominating set of GC . Recall that the boundary of G is contained in W, therefore B ⊆W
and this implies that BC ⊆WC . From Lemma 8.13, WC ∪S′C is a connected dominating

set of C. Therefore, W ∪S′ =
⋃
C∈CWC ∪S′C is a component-wise connected dominating

set of G⊕G′ as required.

Using ideas similar to those in the proof of Lemma 8.9, it is possible to prove that

other problems such as p-Connected Vertex Cover, p-Edge Dominating Set, or

p- Cycle Domination have FII.

70

8.6 Scattered sets

Given an r ∈ Z+, a graph G, and a set S ⊆ V (G), we say that S is an r-independent set

if every two vertices in S have distance greater than r.

We consider the following problem:

p-r-Scattered Set

Input: A graph G and a k ∈ Z+.

Parameter: k.

Question: Is there an r-independent set in G of size at least

k?

Lemma 8.15. For every positive integer r, and every g ∈ Z+, if Πr = r-Scatte-

red Set, then Πr
g is coverable.

Proof. To prove the coverability of Πr
g, we will prove that Ψg = ((Σ∗ × Z+) \ Πr

g) e Gg
has the r-coverability property for some constant c that depends on g and r. Let (G, k)

be a NO-instance of Πr
g. This means that G does not contain any r-independent set of

size k. According to the result in [29], G has an r-dominating set of size c · k where

c is a constant depending on the Euler genus of G (actually, the result of [29] holds

for much more general classes of sparse graphs that include graphs of bounded Euler

genus). Recall that, from Observation 3, given an embedding of G in a surface of Euler

genus ≤ g, we have that R2r
G ⊆ Br

G(S), therefore Ψg has the c-coverability property for

c = max{r, g}.

We present in details the proof of the following lemma as it is based on slightly

different ideas than the one used in Lemma 8.6.

Lemma 8.16. For every positive integer r, if Πr = p-r-Scattered Set, then Πg has

FII.

Proof. Using Lemma 8.2, we prove instead that Πr has FII. Below we prove this fact by

adapting the three-stage machinery of the proof of Lemma 8.6.

Characteristic. Let G be a boundaried graph with label set I and the boundary δ(G) =

B. Furthermore, let `G : I × I → {0, . . . , r} be a function that for i, j ∈ I defines

`G(i, j) = min
{

distG

(
λ−1(i), λ−1(j)

)
, r
}
.

That is, the shortest distance in G between λ−1(i) and λ−1(j) if it is at most r and if

it is more than r then `G(i, j) is r itself. Let also S be the set containing all functions

mapping the integers of I to integers in {0, . . . , r}∪{∞}. Given a σ ∈ S, we define ζG(σ)

as the maximum size of an r-independent set S in G with the property that for every

i ∈ I, the distance in G between λ−1(i) and every vertex in S is at least σ(i). As the

empty set is always such a set, it holds that ∀σ∈S ζG(σ) ≥ 0.

71

Definition of equivalence. Let σ(0) ∈ S such that ∀i∈λ(B) σ
(0)(i) = 0. We also set

xG = ζG(σ(0)). We have that ∀σ∈S ζG(σ) ≤ xG. We define a function χG : S → {−∞}∪
{−2t, . . . , 0} as follows:

χG(σ)=

{
ζG(σ)− xG if xG − 2t ≤ ζG(σ) ≤ xG
−∞ otherwise

Given two boundaried graphs G1 and G2, we say that G1 ∼ G2 if Λ(G1) = Λ(G2),

`G1 = `G2 and χG1 = χG2 . Notice that for every finite I ⊆ Z+, ∼ is an equivalence

relation with finitely many equivalence classes.

Refinement proof. The result will follow if we prove that ≡Πr is a refinement of ∼ .

For this we claim that if G1 ∼ G2 then G1 ≡Πr G2 or, equivalently, that there is some

constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Πr ⇔ (G2 ⊕ F, k + c) ∈ Πr. (49)

Suppose that G1 ∼ G2. This implies that Λ(G1) = Λ(G2). Let Λ(G1) = Λ(G2) = I and

|I| = t. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ Πr. Our target is to prove that

(G2 ⊕ F, k + c) ∈ Πr (the other direction of (49) is symmetric).

The fact that (G1⊕F, k) ∈ Πr means that (G1⊕F) contains an r-independent set S

where |S| ≥ k. Let B be the boundary of G1, that is, δ(G1) = B and let S1 = S ∩V (G1)

and SF = S \ S1. Let also λ1 and λ2 be the labelings of boundaries of G1 and G2,

respectively. We define σ as follows: for i ∈ I set σ(i) to be the minimum distance of

a vertex of S1 from λ−1
1 (i) in G1. By the definition of ζG1 , we have that ζG1(σ) ≥ |S1|.

Before we proceed, we need to prove the following claim:

Claim: |S1| ≥ xG1 − 2t. Let S′1 be an r-independent set of G1 such that |S′1| = xG1 .

Mark in S′1 all vertices that are within distance at most b r2c from B and denote by S∗1
the set of the non-marked vertices of S′1. Notice that S∗1 is an r-independent set of G1.

The proof of the claim is a consequence of the following two subclaims:

Subclaim 1: |S∗1 | ≥ xG1 − t. For this it is enough to prove that no more than |B| vertices

can be marked from S′1. Indeed if this is not the case, then there should exist two vertices

x and y in S′1 that are within distance at most b r2c from some vertex z of B. Then the

distance between x and y should be less than 2 · b r2c ≤ r, a contradiction to the fact that

S′1 is an r-independent set of G1.

Subclaim 2: |S1| ≥ |S∗1 | − t. For this, we mark in S the vertices of G1 ⊕ F that are

within distance at most b r2c from some vertex of B. As above, the marked vertices

cannot be more than |B|. Let S− be the set obtained from S after removing the marked

vertices. Notice that |S−| ≥ |S| − t, therefore |S− ∩ V (G1)| + |S− \ V (G1)| ≥ |S| − t.
Notice that S− ∩ V (G1) is an r-independent set of G1, therefore |S− ∩ V (G1)| ≤ xG.

Notice that S∗1 ∪ (S− \V (G1)) is an r-independent set of G1⊕F. Indeed if there are two

vertices x ∈ S∗1 and y ∈ S− \V (G1) within distance r, then either x or y would be within

72

distance b r2c from some vertex in B, a contradiction. We obtain that |S∗1 |+|S−\V (G1)| =
|S∗1 ∪ (S− \ V (G1))| ≤ |S| ≤ |S−|+ t = |S− ∩ V (G1)|+ |S− \ V (G1)|+ t and therefore,

|S∗1 | ≤ |S− ∩ V (G1)|+ t ≤ |S1|+ t.

We just proved that ζG1(σ) ≥ |S1| ≥ xG1 − 2t. This means that χG(σ) > −∞. As

G1 ∼ G2, we have that `G1 = `G2 and χG1(σ) = χG2(σ). By the definition of χG, we

obtain that ζG2(σ) = ζG1(σ)− ζG1(σ(0)) + ζG2(σ(0)) = ζG1(σ) + c ≥ |SG1 |+ c where c is a

constant depending only on G1 and G2. This implies that, there exists an r-independent

set SG2 in G2 with least |SG1 | + c vertices and for every i ∈ λ2(B), the distance in G2

between λ−1
2 (i) and the vertices in S2 is at least σ(i). The facts that `G1 = `G2 and

χG1(σ) = χG2(σ) together imply that SG2 ∪SF is an r-independent set of G2⊕F of size

|SG2 ∪SF | = |SG2 |+ |SF | ≥ |SG1 |+ |SF |+ c ≥ |S1|+ |SF |+ c ≥ k+ c. We conclude that

(G2, k + c) ∈ Πr, as required.

8.7 Problems on Directed Graphs

Our results also apply to problems on directed graphs whose underlying undirected

graph is of bounded genus. In this direction we mention three problems considered in

the literature. In all cases the input is a directed graph D = (V,A) where V is the set

of its vertices and A is the set of its directed edges (i.e., A ⊆ V × V).

• p-Directed Domination [4]: Is there a subset S ⊆ V of size at most k such that

for very vertex u ∈ V \ S there is a vertex v ∈ S such that (u, v) ∈ A? Such a set

S is called a directed dominating set of D.

• p-Independent Directed Domination2 [48]: Is there a subset S ⊆ V of size at

most k such that S is an independent set and for every vertex u ∈ V \ S there is

a vertex v ∈ S such that (u, v) ∈ A?

• p-Maximum Internal Out-branching [49]: Does D contain a directed rooted

spanning tree, an out-branching, with at least k internal vertices?

In order to formally state our results, we extend the notion of coverability to directed

graphs by applying the definitions to their underlying undirected graphs.

Lemma 8.17. The following statements hold:

• Let Π be either p-Independent Directed Domination, or p-Maximum Inter-

nal Out-branching. Then Πg is a coverable p-min-CMSO[ψ] problem.

• Let Π be p-Directed Domination. Then Πg is a coverable problem and has FII.

2In literature it is known as “p-Kernels”. We call it differently here to avoid confusion with problem

kernels.

73

Proof. Problems p-Independent Directed Domination and p-Directed Domina-

tion can easily be seen to be p-min-CMSO[ψ] problems while p-Maximum Internal

Out-branching can be proved to be a p-max-CMSO[ψ] problem. The strong mono-

tonicity of p-Directed Domination can be proved using the same arguments as in

the proof of Lemma 8.9. This, together with Lemmata 7.3 and 8.2, implies that for

Π=p-Directed Domination, Πg has FII.

p-Independent Directed Domination and p-Directed Domination are cov-

erable by definition. Let Π=p-Maximum Internal Out-branching. We claim that

if (D, k) 6∈ Π, then the underlying undirected graph of D has a dominating set of size at

most k − 1. For this let k0 = max{k′ | (D, k′) ∈ Π} and observe that k0 < k. Moreover,

it also holds that (D, k0) ∈ Π while (D, k0 + 1) 6∈ Π. These two facts together imply

that D has a rooted directed spanning tree with exactly k0 internal vertices and all other

vertices of D being its leaves. These internal vertices form a dominating set for the

underlying undirected graph of D. As k0 < k, the underlying undirected graph of D

has a dominating set of size at most k− 1. Then the coverability of Πg follows from the

coverability of p-Dominating Set and Lemma 8.1.

8.8 A direct proof of FII for a minimization problem

Although Lemma 7.3 is very useful for showing that a concrete problem has FII, some-

times a minimization problem may have FII even though it may not be strongly mono-

tone. For an example, consider the following problem. Let s ≥ 3 be an integer.

s-Cycle Transversal

Input: A graph G and a k ∈ Z+.

Parameter: k

Question: Is there an edge subset S ⊆ E(G) such that G′ = G \ S does

not contain

any cycle of length at most s (i.e. G′ has girth more than s)?

Notice that for each integer s ≥ 3, the above problem is the edge deletion counterpart

of Edge-S-Covering when S contains the cycles of size at least 3 and at most s.

Lemma 8.18. If Πs =s-Cycle Transversal, then Πs
g has FII.

Proof. Using Lemma 8.2, we prove instead that Πs has FII. We present the proof in

three stages, as we did in the cases of Lemmata 8.6 and 8.16.

Characteristic. Let G be a boundaried graph with label set I and the boundary δ(G) =

B. Let |I| = t. We use the term s-cycle for a cycle of length at most s. Let X be the

set of unordered pairs of distinct indices in I and H be the set containing all functions

from X to {0, . . . , s}. We define the function ζG : H → Z+ such that, given a function

f ∈ H, ζG(f) is the size of a minimum set of edges S in G such that the following hold:

74

• the graph G \ S has girth > s, and

• for every {i, j} ∈ I, the distance in G′ = G \ S between λ−1(i) and λ−1(j) is at

least f(i, j) + 1. That is, distG′(λ−1(i), λ−1(j)) ≥ f(i, j) + 1.

In case a set satisfying the above conditions does not exist, we set ζG(f) =∞.

Definition of equivalence. We denote by fmin the function in H where, for all {i, j} ∈ X,
fmin({i, j}) = 0.Notice that ζG(fmin) <∞ (just take S = E(G)). We set xG = ζG(fmin).

The definition of ζG implies that

∀f ∈ H xG ≤ ζG(f) (50)

We now define the signature of G as the function χG : H → {0, . . . , 3
(
t
2

)
} ∪ {∞}, where

χG(f)=

{
ζG(f)− xG if xG ≤ ζG(f) ≤ xG + 3

(
t
2

)
∞ otherwise

(51)

We say that G1 ∼ G2 if Λ(G1) = Λ(G2) and χG1 = χG2 . Notice that the number of

different signatures is bounded by some function of t and s. Clearly, for every I ⊆ Z+,

∼ is an equivalent relation with finitely many equivalence classes.

Refinement proof. The result will follow if we prove that ∼ is a refinement of ≡Π .

For this we claim that if G1 ∼ G2 then G1 ≡Π G2 or, equivalently, that there is some

constant c, depending on G1 and G2, such that

∀(F, k) ∈ F × Z (G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π. (52)

Suppose that G1 ∼ G2. Let (F, k) ∈ F × Z such that (G1 ⊕ F, k) ∈ Π. Our target

is to prove that (G2 ⊕ F, k + c) ∈ Π (the other direction of (52) is symmetric and is

omitted).

The fact that (G1 ⊕ F, k) ∈ Π, means that there is a set S ⊆ E(G1 ⊕ F) of edges

such that all cycles in (G1 ⊕ F) \ S have length > s. Recall that λG is an injective

labelling from the boundary of the graph to I. We denote by λ1, λ2 and λF the labelings

of the boundaried graphs G1, G2, and F respectively. Let B = λ−1
1 (Λ(G1) ∩ Λ(F)) and

B′ = λ−1
2 (Λ(G2) ∩ Λ(F)). Since G1, G2 and F are boundaried graphs with label set I

we have that |B|, |B′| = |I| = t. Let also SG1 = E(G1) ∩ S and SF = E(F) ∩ S. The set

C of s-cycles in G1 ∪ F is partitioned into three sets:

• C1 are the cycles in C that are entirely inside G1,

• CF are the cycles in C that are entirely inside F, and

• CB are the cycles in C that contain both edges that are not in G1 and edges that

are not in F, i.e., CB = C \ (CG1 ∪ CF).

75

Observe that SF intersects all s-cycles in CF and the set SG1 intersects all s-cycles in

C1. Observe that SG1 ∩ SF contains only edges with both endpoints in B, therefore

|SG1 ∩ SF | ≤
(
t
2

)
. This implies that

|SG1 |+ |SF | −
(
t

2

)
≤ |S|. (53)

Recall that xG1 = ζG1(fmin). We prove the following claim. Let xG1 denote the cardi-

nality of a minimum sized subset of E(G1) intersecting all s-cycles in G1.

Claim: |SG1 | ≤ xG1 + 3
(
t
2

)
.

Proof of Claim: Let S∗G1
be a minimum size subset of E(G1) intersecting all s-cycles in

G1. By definition, |S∗G1
| = xG1 . Notice that the set S∗G1

∪ SF meets all cycles in C1 ∪ CF .
Let C•B be the cycles of CB that are not met by S∗G1

∪ SF .
Our first aim is to find a set SB of at most 2

(
t
2

)
edges that interest all cycles of C•B.

Observe that each cycle in C•B meets at least two vertices in B. Let W be the set of pairs

in X that are met by the cycles in C•B. For each pair p = {x, y}, we denote by Qleft
p (resp,

Qright
p) the set of all (x, y)-paths in G1 that belong to cycles in C•B. We claim that for

each p = {x, y} where x, y ∈ B, at most one of the (x, y)-paths in Qleft
p can have length

at most s/2. Suppose in contrary that P1, P2 are two (x, y)-paths of G1 of length ≤ s/2.
The union of P1 and P2 contains a cycle Cx,y that is entirely in G1. By the definition of

C•B, we have that Cx,y does not contain any edge e from S∗G1
. This contradicts the fact

that S∗G1
intersects all s-cycles in G1. Therefore, for each p = {x, y} where x, y ∈ B, at

most one, say Qright
p , of the (x, y)-paths in Qright

p can have length at most s/2. Using the

same arguments on F, instead of G1, it follows that for each p = {x, y} where x, y ∈ B,
at most one, say Qleft

p , of the (x, y)-paths in Qleft
p can have length at most s/2.

We now construct the set SB by adding to it, for each pair p ∈ X, one edge from

the Qright
p and one edge from Qleft

p . As there are at most
(
t
2

)
pairs in X, we obtain that

|SB| ≤ 2
(
t
2

)
. We next prove that SB meets all cycles in C•B. For this, let C be a cycle in

C•B. Clearly, there are at least two internally vertex-disjoint paths contained in C (these

two paths may not contain all the vertices on C) that are entirely inside G1 or F and

have their endpoints in B. Since C is an s-cycle, we have that at least one, say Q, of

these paths should have length ≤ s/2. Let x and y be the endpoints of Q and p = {x, y}.
Clearly, Q belongs in one of Qleft

p or Qright
p . W.l.o.g., suppose that Q belongs in Qleft

p . As

Q has length at most s/2, then Q is the unique path in Qleft
p that has such a length. By

its construction, SB intersects Q and, as Q is a path of C, SB intersects C as well.

We just proved that SB intersects all s-cycles in C′B and contains at most 2
(
t
2

)
edges.

This implies that S∗G1
∪SB∪SF is intersecting all s-cycles in C. By the definition of S, we

have that |S| ≤ |S∗G1
∪SB ∪SF | ≤ |S∗G1

|+ |SB|+ |SF |. Therefore, |SG1 |+ |SF |−
(
t
2

)
≤(53)

|S| ≤ |S∗G1
|+ |SB|+ |SF | ≤ xG1 + 2

(
t
2

)
+ |SF |. We conclude that |SG1 | ≤ xG1 + 2

(
t
2

)
+
(
t
2

)
and the claim follows. �

76

For every pair {i, j} ∈ X, let s(i, j) be equal to s minus the distance between λ−1
F (i)

and λ−1
F (j) in F. We define the function f ∈ F as follows. For every pair {i, j} ∈ X, if

{λ−1
1 (i), λ−1

1 (j)} is an edge of SG1 ∩ SF then define

f(i, j) = max{1, s(i, j), }

else define f(i, j) = s(i, j). The choice of f and the definition of ζG1 , imply that

ζG1(f) ≤ |SG1 |. (54)

From (50) we have that xG1 ≤ ζG1(f). Moreover, from (54) and the above claim, we

obtain ζG1(f) ≤ xG1 + 3
(
t
2

)
. By (51), χG1(f) = ζG1(f)− xG1 . Recall now that G1 ∼ G2,

hence χG2(f) = χG2(f). This means that ζG2(f) = ζG1(f)+ c, where c = xG2−xG1 , and

clearly c depends only on G1 and G2.

Let SG2 be a subset of E(G2) such that ζG2(f) = |SG2 |. By the definition of ζG2 , SG2

has the following properties:

(A) the graph G2 \ SG2 has girth > s, and

(B) for every {i, j} ∈ X, the distance in G2 \SG2 between λ−1
2 (i) and λ−1

2 (j) is at least

f(i, j) + 1.

By the definition of f, and Properties (A) and (B), all s-cycles in G2 ⊕ F that are not

entirely in F are intersected by SG2 . Hence, S′ = SG2 ∪SF intersects all cycles in G2⊕F.
Moreover, by the definition of f we obtain that SG1 ∩ SF ⊆ SG2 . This implies that

S′ = SG2 ∪ SF = SG2 ∪ (SG1 ∩ SF) ∪ (SF \ (SG1 ∩ SF)) = SG2 ∪ (SF \ (SG1 ∩ SF)).

We now have that |S′| ≤ |SG2 | + |SF \ (SG1 ∩ SF)| = ζG2(f) + |SF \ (SG1 ∩ SF)| =

ζG1(f) + c + |SF \ (SG1 ∩ SF)| ≤(54) |SG1 | + |SF \ (SG1 ∩ SF)| + c = |SG1 ∪ SF | + c =

|S|+ c ≤ k + c. Therefore (G2 ⊕ F, k + c) ∈ Π and the lemma follows.

8.9 Summary of consequences of our results

In this section, we discuss some of the consequences of our main meta-algorithmic results,

namely Theorem 1.3 and Theorem 1.1.

We start with the consequences of Theorem 1.3 to minimization problems that have

FII.

Corollary 8.19. If g ∈ Z+ and if Π is one of the following problems: p-Vertex

Cover, p-Feedback Vertex Set, Almost Outperplanar, p-Diamond Hitting

Set, p-Almost-t-bounded treewidth, p-Almost-t-bounded pathwidth, p-H-
Deletion, p-Edge Dominating Set, p-Minimum-Vertex Feedback Edge Set,

p-Dominating Set, p-r-Dominating Set, p-q-Threshold Dominating Set, p-

Efficient Dominating Set, p- Connected Dominating Set, p-Connected Ver-

tex Cover, p-Cycle Domination, p-Directed Domination, p-S-Covering, p-

Minimum Partition Into Cliques, p-Edge Clique Cover, and p-s-Cycle Trans-

versal, then Πg admits a linear kernel.

77

Proof. The definitions of p-Vertex Cover, p-Feedback Vertex Set, p-Almost

Outerplanar, p-Diamond Hitting Set, p-Almost-t-bounded treewidth, p-

Almost-t-bounded pathwidth have been given in Subsection 8.2 and all of them are

special cases of the p-H-Deletion problem. They all have FII because of Lemma 8.4

and the quasi-coverability of Πg follows from Lemma 8.3. We remark that not all of

these problems are coverable.

p-Edge Dominating Set asks whether a graph G contains a set F of at most

k edges such that every other edge shares a common endpoint with some edge in F .

The coverability of Πg follows by the fact that the endpoints of the edges in F form a

dominating set of G. Moreover, the p-Edge Dominating Set problem can be easily

expressed as a p-min-CMSO[ψ] problem (with edge quantification) and the proof of its

strong monotonicity is similar to the one of Lemma 8.9. Therefore it has FII as well.

Using similar arguments one can prove that if Π=Minimum-Vertex Feedback Edge

Set – given an undirected graph G and a positive integer k the task is to find a spanning

tree T of G in which at most k vertices have a degree smaller than in G, then Πg is

quasi-coverable (however, it is not coverable). Moreover, Minimum-Vertex Feedback

Edge Set has FII because it can be expressed as a p-min-CMSO[ψ] problem and can

be proved to be strongly monotone with a proof that uses the ideas of Lemma 8.9.

p-Dominating Set, p-r-Dominating Set, p-q-Threshold Dominating Set, p-

Efficient Dominating Set, are defined in Subsection 8.5. All these problems are

coverable and have FII because of Lemma 8.9. Notice that for the first three problems

the FII property follows by expressing them as p-min-CMSO[ψ] problems and proving

that are are strongly monotone. However, p-Efficient Dominating Set is not strongly

monotone and the proof that it has FII uses a different idea.

p-Connected Dominating Set is also defined in Subsection 8.5. The coverability

of Πg and the FII property is proved in Lemma 8.14. Using similar ideas, the same

results can be proved also for Connected Vertex Cover.

The Cycle Domination problem asks whether a graph G contains a set S of at most

k vertices such that the removal of S together with its neighbours from G results in an

acyclic graph. This problem can be seen as a common extension of p-Feedback Vertex

Set and p-Dominating Set. Πg can be proven to be quasi-coverable with arguments

similar to those in the case of p-Feedback Vertex Set (p-Cycle Domination is not

a coverable problem). The problem is easily expressible as a p-min-CMSO[ψ] problem

and the proof that it is strongly monotone is a blend of the ideas of the proofs of

Lemmata 8.4 and 8.9.

p-Directed Domination is defined in Subsection 8.7. The coverability and the FII

property of Πg are proved in Lemma 8.17.

p-S-Covering has been defined in Subsection 8.4. The existence of a linear kernel

for this problem makes use of the Redundant Vertex Rule (Lemma 8.7), Lemma 8.8 (for

coverability) and the ideas in the proof of Lemma 8.4 (for the FII property).

The p-Minimum Partition Into Cliques problem asks whether the vertex set

78

of a graph G scan be partitioned into at most k sets each inducing a clique in G (in

other words, we are asking for a k-coloring of the complement of G). Let S be a set

containing a vertex from each clique. Notice that S is a dominating set of G. Therefore,

Πg is a coverable problem. To prove that it also has FII, one needs to express it as a

p-min-CMSO[ψ] problem and then to use arguments similar to those of Lemma 8.9 in

order to prove that it is strongly monotone.

The p-Edge Clique Cover asks whether a graph G contains a collection of at

most k cliques such that for every edge of G, both its endpoints belongs to some of

those cliques. We observe first that Πg is quasi-coverable. To see this, just notice that

if we consider a set with one vertex from each such clique, then the removal of the

closed neighbourhood of this set from G results to an edgeless graph. The proof that

the problem has FII is omitted in this paper.

Finally, p-s-Cycle Transversal has been defined in Section 8.8. While this prob-

lem is not strongly monotone, it has FII because of Lemma 8.18. To prove that it has a

linear kernel, one needs first to apply to its instances the following preprocessing routine:

remove each vertex that does not appear in some cycle of G of length ≤ s. This routine

can be seen as a special case of the Redundant Vertex Rule presented in Subsection 8.4

and, with a proof similar to the one of Lemma 8.7, one can show that it produces equiva-

lent instances. Under these circumstances, the coverability of Πg can be proved following

the arguments of Lemma 8.8.

We continue with the consequences of Theorem 1.3 to maximization problems that

have FII.

Corollary 8.20. If g ∈ Z+ and if Π is one of the following problems: p-r-Scattered

Set, p-Independent Set, p-Induced Matching, p-Triangle Edge Packing, p-

Maximum Internal Spanning Tree, p-Maximum Full-Degree Spanning Tree,

p-Cycle Packing, p-H-Packing, p-Triangle Vertex Packing, p-S-Packing, and

p-Edge Cycle Packing, then Πg admits a linear kernel.

Proof. The p-r-Scattered Set problem has been defined in Subsection 8.6. The cover-

ability of Πr
g is proved in Lemma 8.15, while the problem has FII because of Lemma 8.16.

We stress that the p-r-Scattered Set problem is, in general, not a strongly monotone

problem. The p-Independent Set problem asks whether a graph G contains a set of at

least k mutually non-adjacent vertices. If Π=p-Independent Set, then Πg is coverable

using an argument that is very similar to the one of Lemma 8.15. Similarly, one may

use the arguments of Lemma 8.16 to prove that the problem has FII. Alternatively, one

may express p-Independent Set as a p-max-CMSO[ψ] problem and then prove that

it is strongly monotone.

The p-Induced Matching problem asks whether a graph G contains a set of at

least k edges such that no vertex in G has as neighbours endpoints of more than one

edges in this set. The problem is quasi-coverable because every NO-instance without

79

isolated vertices has a (1, 3)-dominating of size at most k. Moreover, the FII property

uses ideas of the proof of 8.16. We stress that p-Induced Matching is not a strongly

monotone problem.

The p-Triangle Edge Packing problem asks whether a graph G contains at least

k triangles such that no two of them have any edge in common. The existence of a linear

kernel for this problem makes use of the Redundant Vertex Rule and is based in suitable

adaptations of the proofs of Lemma 8.8 (for coverability) and Lemma 8.4 (for the FII

property).

The p-Maximum Internal Spanning Tree problem asks whether a graph G has

a spanning tree with at least k internal vertices. The coverability of Πg follows by

observing that a NO-instance has a connected dominating set of less than k vertices.

The problem is not strongly monotone and proving that it has FII requires a direct proof

that we omit in this paper.

The p-Maximum Full-Degree Spanning Tree problem asks whether a graph G

has a spanning tree T containing at least k vertices of full degree (a vertex v of T has full

degree if NT (v) = NG(v)). Clearly, a NO-instance of Πg cannot have a 2-independent

set of size at least k, otherwise we grow can a spanning tree with ≥ k full-degree vertices

by starting from the neighbourhoods of the vertices in such a set. But then, using the

arguments of the proof of Lemma 8.15, G has a dominating set of size c · k where c is a

constant that depends on the Euler genus g of G. This implies the coverability of Πg.

For the FII property we only mention that the problem is not strongly monotone and a

specialized proof is required that is omitted in this paper.

The p-Cycle Packing, asks whether a graph contains at least k mutually vertex

disjoint cycles. This is a special case of the p-H-Packing problem where H = {K3}. For

both problems, the quasi-coverability of Πg follows from Lemma 8.5. The FII property

of p-Cycle Packing follows from Lemma 8.6 and this proof can be extended for the

general case of the p-H-Packing problem, as mentioned in the end of Subsection 8.3.

Notice that both problems are neither strongly monotone nor coverable.

The p-Triangle Vertex Packing problem asks whether a graph G contains a

set of at least k triangles where no two such triangles share some common vertex. p-

Triangle Vertex Packing is a special case of the p-S-Packing problem where S =

{K3}. The existence of a linear kernel for these problem makes use of the Redundant

Vertex Rule (Lemma 8.7), Lemma 8.8 (for coverability) and the ideas in the proof of

Lemma 8.6 (for the FII property).

p-Edge Cycle Packing asks whether a graph G contains a collection of at least

k mutually edge-disjoint cycles. To prove the quasi-coverability of Πg observe that

a NO-instance, cannot contain a collection of k vertex disjoint cycles. But then, by

the application of Erdős-Pósa property on bounded genus graphs (see, e.g. [40, 56]) G

contains a set of at most c · k vertices meeting all the cycles of G, where c is a constant

depending on the Euler genus g of G. The proof that the problem has FII is omitted.

80

Corollaries 8.19 and 8.20 unify and generalize results presented in [4, 5, 15, 16, 19,

41, 46, 47, 53, 59, 62, 72].

We conclude this subsection with some consequences of Theorem 1.1 for problems

that do not have FII.

Corollary 8.21. If g ∈ Z+ and if Π is one of the following problems: p-Independent

Dominating Set, p-Acyclic Dominating Set, p-Independent Directed Domi-

nation, p-Maximum Internal Out-branching, p-Odd Set, and p-Edge-S-Cove-

ring, then Πg admits a polynomial kernel.

Proof. The p-Independent Dominating Set problem asks whether a graph G con-

tains a dominating set of at most k mutually non-adjacent vertices. The p-Acyclic

Dominating Set problem asks whether a graph G contains a dominating set S of at

most k vertices such that G[S] is acyclic. While these problems do not have FII, they

can be both expressed as p-min-CMSO[ψ] problems and are obviously coverable.

Problems p-Independent Directed Domination and p-Maximum Internal

Out-branching have been defined in Subsection 8.7 and they do not have FII. Ac-

cording to Lemma 8.17, in both cases, Πg is a coverable p-min-CMSO[ψ] problem.

The p-Odd Set problem asks whether a graph G contains a set S of at most k

vertices such that for every vertex of G, the number of its neighbors in S is odd. Clearly,

such a set is a dominating set, therefore Πg is coverable. p-Odd Set does not have FII.

However, it can be expressed as a p-min-CMSO[ψ] problem (notice that here we have

to use the “counting” expressive power of CMSO).

Given some fixed finite collection of graphs S, the p-Edge-S-Covering problem

asks whether a graph G contains a set of at most k edges meeting every subgraph of

G that is isomorphic to a graph in S. For this problem, a linear kernel requires the

application of the Redundant Vertex Rule. The coverability of Πg follows similarly to

the proof of Lemma 8.8. Edge-S-Covering does not have, in general, FII (while it

has FII when if S contains only cliques). However, it is possible to formulate it as a

p-min-CMSO[ψ] problem.

Concluding this section, we mention that there are several problems that do not

satisfy the conditions of Theorems 1.3 and 1.1.

Apart from the problems mentioned in Corollary 8.20, other examples of p-max-

CMSO problems that do not have FII are p-Maximum Cut, p-Longest Path, and p-

Longest Cycle, see [26]. Notice that p-Maximum Cut is (trivially) quasi-coverable,

while p-Longest Path and p-Longest Cycle are not. In fact, p-Maximum Cut

admits a trivial 2k kernel on general graphs while p-Longest Path, and p-Longest

Cycle do not admit polynomial kernels unless coNP ⊆ NP/poly [12].

As an example of a problem that has FII but it is neither coverable or quasi-coverable,

we mention p-Hamiltonian Path Completion (asking whether the addition of at

most k edges in a graph can make it Hamiltonian). This problem can be expressed as a

81

p-min-CMSO[ψ] and it is possible to prove that it is strongly monotone. Therefore, it

has FII. However, none of our results apply on this problem as it is not quasi-coverable.

In fact, p-Hamiltonian Path Completion cannot have a kernel, unless P=NP, as

such a kernelization algorithm, for k = 1, would be a polynomial algorithm for the

Hamiltotonian Path Problem.

9 Open Problems and Further Directions

This paper gives the first meta-theorems on kernelization, where logical and combinato-

rial properties of problems lead to kernels of polynomial or linear sizes. Our results are

quite general in the sense that they can be applied to a large number of combinatorial

problems on graphs on fixed surfaces and generalize a large collection of known results.

Still, there are several directions in which our results could possibly be extended. We

conclude with some new problems and further research directions opened by our results.

Further extensions. The first natural question for further research is if our logical and

combinatorial properties can be extended to larger classes of problems. The property

that problems should satisfy some kind of coverability or quasi-coverability cannot be

omitted. For instance, even though the problem of finding a path of length k is express-

ible in first order logic, it does not admit a polynomial kernel on planar graphs, unless

coNP ⊆ NP/poly [12]. An interesting question for further research is

• Do all quasi-coverable CMSO problems admit a linear kernel on graphs of bounded

genus?

This question is interesting even restricting ourselves to planar graphs.

It is very natural to ask whether our results can be extended to more general classes

of graphs. The most natural candidates for such extensions are graphs of bounded local-

treewidth [42] and graphs of bounded expansion [63]. The first step in this direction is

done in [33].

Practical considerations. Our meta-theorems provide simple criteria to decide whether

a problem admits a polynomial or linear kernel on graphs of bounded genus. It is

expected that for concrete problems, tailor-made kernels will have much smaller constant

factors, than what would follow from a direct application of our results. However,

our approach might be useful for computer aided design of kernelization algorithms: a

computer program can in some cases output a set of rules that transform each protrusion

to a minimum size representative and estimate the obtained kernel size. This seems an

interesting and far from trivial algorithm-engineering problem. In general, finding linear

kernels with reasonably small constant factors for concrete problems on planar graphs or

graphs with small genus remains a worthy topic of further research.

82

Some concrete open problems. We conclude with some concrete problems that

cannot be resolved by our approach. These include p-Directed Feedback Vertex

Set [21] and p-Odd Cycle Transversal [66] to name a few. All these problems

are expressible in CMSO but none of them are known to be quasi-coverable. For p-

Directed Feedback Vertex Set no polynomial kernel is known even on planar

graphs. For p-Odd Cycle Transversal a randomized kernel for general graphs was

obtained recently in [57] but existence of a deterministic kernel even on planar graphs is

open.

Impact. The protrusion replacement technique for kernelization was introduced in

the preliminary conference version of this paper [13] appears to be useful in different

algorithmic approaches. They were used to obtain kernels for a wide set of bidimen-

sional problems on H-minor-free graphs [33, 38], vertex removal problems on general

and unit disc graphs [34], and problems on graphs excluding a fixed graph as a topolog-

ical minor [39, 54]. It was also used in the design of fast parameterized algorithms and

approximation algorithms [36, 37, 35, 50, 55, 54]

Acknowledgements. We thank Jiong Guo, Ge Xia, and Yong Zhang for sending us

the full versions of [46] and [72]. We also thank the anonymous reviewers of FOCS’09

and J. ACM for their valuable comments on previous versions of this paper.

References

[1] Karl Abrahamson and Michael Fellows. Finite automata, bounded treewidth and

well-quasiordering. In Graph structure theory (Seattle, WA, 1991), volume 147 of

Contemp. Math., pages 539–563, Providence, RI, 1993. Amer. Math. Soc.

[2] Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors.

In Proceedings of the 19th annual ACM-SIAM symposium on Discrete algorithms

(SODA 2008), pages 641–650. SIAM, 2008.

[3] Jochen Alber, Nadja Betzler, and Rolf Niedermeier. Experiments on data reduction

for optimal domination in networks. Annals OR, 146(1):105–117, 2006.

[4] Jochen Alber, Britta Dorn, and Rolf Niedermeier. A general data reduction scheme

for domination in graphs. In Proceedings of the 32nd Conference on Current Trends

in Theory and Practice of Computer Science (SOFSEM 2006):, volume 3831 of

Lecture Notes in Computer Science, pages 137–147, Berlin, 2006. Springer.

[5] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data

reduction for dominating sets. J. ACM, 51:363–384, 2004.

83

[6] Noga Alon and Shai Gutner. Kernels for the dominating set problem on graphs

with an excluded minor. Technical Report TR08-066, ECCC, 2008.

[7] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An

algebraic theory of graph reduction. J. ACM, 40:1134–1164, 1993.

[8] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-

decomposable graphs. Journal of Algorithms, 12:308–340, 1991.

[9] D. W. Bange, A. E. Barkauskas, and P. J. Slater. Efficient dominating sets in

graphs. In Applications of discrete mathematics (Clemson, SC, 1986), pages 189–

199, Philadelphia, PA, 1988. SIAM.

[10] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[11] Hans L. Bodlaender and Babette de Fluiter. Reduction algorithms for constructing

solutions in graphs with small treewidth. In Proceedings of the Second Annual Inter-

national Conference on Computing and Combinatorics, (COCOON 1996), volume

1090 of Lecture Notes Comp. Sci., pages 199–208. Springer, 1996.

[12] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin.

On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434,

2009.

[13] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket

Saurabh, and Dimitrios M. Thilikos. (Meta) kernelization. In Proceedings of the

50th Annual IEEE Symposium on Foundations of Computer Science, (FOCS 2009),

pages 629–638, Atlanta, Georgia, 2009. IEEE.

[14] Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup

for bounded treewidth. SIAM J. Comput., 27:1725–1746, 1998.

[15] Hans L. Bodlaender and Eelko Penninkx. A linear kernel for planar feedback ver-

tex set. In Proceedings of the 3rd international conference on parameterized and

exact computation (IPEC 2008), Lecture Notes Comp. Sci., pages 160–171, Berlin,

Heidelberg, 2008. Springer-Verlag.

[16] Hans L. Bodlaender, Eelko Penninkx, and Richard B. Tan. A linear kernel for the

k-disjoint cycle problem on planar graphs. In Proceedings of the 19th International

Symposium on Algorithms and Computation (ISAAC 2008), volume 5369 of LNCS,

pages 306–317. Springer, Berlin, 2008.

[17] Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms

for graphs of small treewidth. Inform. and Comput., 167:86–119, 2001.

84

[18] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of

linear-time algorithms from predicate calculus descriptions of problems on recur-

sively constructed graph families. Algorithmica, 7:555–581, 1992.

[19] Jianer Chen, Henning Fernau, Iyad A. Kanj, and Ge Xia. Parametric duality and

kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput.,

37:1077–1106, 2007.

[20] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex Cover: Further observations and

further improvements. Journal of Algorithms, 41(2):280–301, 2001.

[21] Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A

fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM,

55(5):21:1–21:19, November 2008.

[22] B. Courcelle. The monadic second-order logic of graphs. III. Tree-decompositions,

minors and complexity issues. RAIRO Inform. Théor. Appl., 26(3):257–286, 1992.

[23] B. Courcelle. The expression of graph properties and graph transformations in

monadic second-order logic. In Handbook of graph grammars and computing by

graph transformation, Vol. 1, pages 313–400. World Sci. Publ, River Edge, NJ,

1997.

[24] Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of

finite graphs. Inform. and Comput., 85:12–75, 1990.

[25] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor.

In Proceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS

2007), pages 270–279, Los Alamitos, CA, USA, 2007. IEEE.

[26] Babette de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht

University, 1997.

[27] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer,

Berlin, 1998.

[28] P. Duchet and H. Meyniel. On Hadwiger’s number and the stability number. In

Graph theory (Cambridge, 1981), volume 62 of North-Holland Math. Stud., pages

71–73. North-Holland, Amsterdam, 1982.

[29] Zdenek Dvorak. Constant-factor approximation of the domination number in sparse

graphs. Eur. J. Comb., 34(5):833–840, 2013.

[30] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorith-

mica, 27:275–291, 2000.

85

[31] Michael R. Fellows and Michael A. Langston. An analogue of the Myhill-Nerode

theorem and its use in computing finite-basis characterizations (extended abstract).

In Proceedings of the 30th Annual Symposium on Foundations of Computer Science

(FOCS 1989), pages 520–525. IEEE, 1989.

[32] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-

retical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[33] F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality

and kernels. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2010), pages 503–510, Austin, Texas, 2010. ACM-SIAM.

[34] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and

Saket Saurabh. Hitting forbidden minors: Approximation and kernelization. In

Proceedings of the 8th International Symposium on Theoretical Aspects of Computer

Science (STACS 2011), volume 9 of LIPIcs, pages 189–200, Dortmund, 2011. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik.

[35] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-

deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings

of the 53rd Annual Symposium on Foundations of Computer Science (FOCS 2012),

pages 470–479. IEEE, 2012.

[36] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidi-

mensionality and EPTAS. In Proceedings of the 22nd Annual ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA 2011), pages 748–759, San Francisco, Califor-

nia, 2011. SIAM, SIAM.

[37] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and

geometric graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA 2012), pages 1563–1575, Kyoto, Japan, 2012. SIAM.

[38] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos.

Linear kernels for (connected) dominating set on H-minor-free graphs. In Proceed-

ings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

2012), pages 82–93, Kyoto, Japan, 2012. SIAM.

[39] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos.

Linear kernels for (connected) dominating set on graphs with excluded topologi-

cal subgraphs. In 30th International Symposium on Theoretical Aspects of Com-

puter Science (STACS 2013), volume 20 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 92–103, Dagstuhl, Germany, 2013. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik.

86

[40] Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos. Strengthening Erdős-

Pósa property for minor-closed graph classes. J. Graph Theory, 66(3):235–240,

2011.

[41] Fedor V. Fomin and Dimitrios M. Thilikos. Fast parameterized algorithms for

graphs on surfaces: Linear kernel and exponential speed-up. In Proceedings of the

31st International Colloquium on Automata, Languages and Programming (ICALP

2004), volume 3142 of LNCS, pages 581–592, Berlin, 2004. Springer.

[42] Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-

decomposable structures. J. ACM, 48(6):1184–1206, 2001.

[43] Martin Grohe. Logic, graphs, and algorithms. In J.Flum, E.Grädel, T.Wilke (Eds),

Logic and Automata-History and Perspectives, pages 357 – 422. Amsterdam Uni-

versity Press, Amsterdam, 2007.

[44] Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding

topological subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM

Symposium on Theory of Computing, (STOC 2011), pages 479–488, San Jose, Cal-

ifornia, 2011. ACM.

[45] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernel-

ization. SIGACT News, 38(1):31–45, 2007.

[46] Jiong Guo and Rolf Niedermeier. Linear problem kernels for NP-hard problems on

planar graphs. In Proceedings of the 34th International Colloquium on Automata,

Languages and Programming (ICALP 2007), volume 4596 of LNCS, pages 375–386,

Berlin, 2007. Springer.

[47] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Fixed-parameter tractability

results for full-degree spanning tree and its dual. Networks, 56(2):116–130, 2010.

[48] Gregory Gutin, Ton Kloks, Chuan Min Lee, and Anders Yeo. Kernels in planar

digraphs. J. Comput. System Sci., 71(2):174–184, 2005.

[49] Gregory Gutin, Igor Razgon, and Eun Jung Kim. Minimum leaf out-branching and

related problems. Theor. Comput. Sci., 410(45):4571–4579, 2009.

[50] Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé.

Hitting and harvesting pumpkins. In Proceedings of the 19th Annual European

Symposium on Algorithms (ESA 2011), volume 6942 of Lect. Notes Comp. Sc.,

pages 394–407, Berlin, 2011. Springer.

[51] M. Juvan, A. Malnič, and B. Mohar. Systems of curves on surfaces. J. Combin.

Theory Ser. B, 68(1):7–22, 1996.

87

[52] Marcin Kaminski and Dimitrios M. Thilikos. Contraction checking in graphs on sur-

faces. In Proceedings of the 29th International Symposium on Theoretical Aspects

of Computer Science (STACS 2012), volume 14 of Leibniz International Proceed-

ings in Informatics (LIPIcs), pages 182–193, Dagstuhl, Germany, 2012. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[53] Iyad A. Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. On the induced

matching problem. J. Comput. Syst. Sci., 77(6):1058–1070, 2011.

[54] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith,

Ignasi Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms

via protrusion decompositions. In Proceedings of the 40th Automata, Languages, and

Programming International Colloquium (ICALP), volume 7965 of Lecture Notes in

Computer Science, pages 613–624. Springer, 2013.

[55] Eun Jung Kim, Christophe Paul, and Geevarghese Philip. A single-exponential FPT

algorithm for K4-minor cover problem. In Proceedings of the 13th Scandinavian

Symposium and Workshops on Algorithm Theory (SWAT 2012), volume 7357 of

Lecture Notes in Comput. Sci., pages 119–130, Berlin, 2012. Springer.

[56] Ton Kloks, C. M. Lee, and Jiping Liu. New algorithms for k-face cover, k-feedback

vertex set, and k-disjoint cycles on plane and planar graphs. In 28th International

Workshop on Graph Theoretic Concepts in Computer Science (WG 2002), volume

2573 of LNCS, pages 282–295. Springer, Berlin, 2002.

[57] Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized

polynomial kernel for odd cycle transversal. In Proceedings of the 23rd Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2012), pages 94–103. SIAM, 2012.

[58] Stephan Kreutzer. Algorithmic meta-theorems. In Finite and algorithmic model

theory, volume 379 of London Math. Soc. Lecture Note Ser., pages 177–270. Cam-

bridge Univ. Press, Cambridge, 2011.

[59] Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh. A linear kernel for a

planar connected dominating set. Theor. Comput. Sci., 412(23):2536–2543, 2011.

[60] Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface.

SIAM J. Discrete Math., 12(1):6–26, 1999.

[61] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. The Johns Hopkins

University Press, Baltimore, 2001.

[62] Hannes Moser and Somnath Sikdar. The parameterized complexity of the induced

matching problem. Discrete Applied Mathematics, 157(4):715–727, 2009.

88

[63] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded

expansion II. Algorithmic aspects. Eur. J. Comb., 29(3):777–791, 2008.

[64] Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for

dominating set in graphs of bounded degeneracy and beyond. ACM Transactions

on Algorithms, 9(1):11, 2012.

[65] W. V. Quine. The problem of simplifying truth functions. Amer. Math. Monthly,

59:521–531, 1952.

[66] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals.

Oper. Res. Lett., 32(4):299–301, 2004.

[67] Neil Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.

J. Combin. Theory Ser. B, 63(1):65–110, 1995.

[68] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar

graph. J. Combin. Theory Ser. B, 62:323–348, 1994.

[69] Paul D. Seymour and Robin Thomas. Graph searching and a minimax theorem for

tree-width. J. Combin. Theory Ser. B, 58:239–257, 1993.

[70] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on

Algorithms, 6(2):32:1–32.8, 2010.

[71] Johan M.M. van Rooij. Exact Exponential-Time Algorithms for Domination Prob-

lems in Graphs. PhD thesis, UU Universiteit Utrecht, 2011.

[72] Ge Xia and Yong Zhang. On the small cycle transversal of planar graphs. Theor.

Comput. Sci., 412(29):3501–3509, 2011.

89

A Problem Compendium

In this compendium we present the kernelization status of all problems that have been

mentioned in this paper.

A.1 Minimization problems that have FII and are quasi-coverable –
linear kernels for graphs of bounded genus.

p-Vertex Cover, p-Feedback Vertex Set, p-Almost Outerplanar, p-Diamond

Hitting Set, p-Almost-t-bounded treewidth, p-Almost-t-bounded path-

width, p-H-Deletion, p-Edge Dominating Set, p-Minimum-Vertex Feedback

Edge Set, p-Dominating Set, p-r-Dominating Set, p-q-Threshold Dominat-

ing Set, p-Efficient Dominating Set∗, p-Connected Dominating Set, p-

Connected Vertex Cover, p-Cycle Domination, p-Directed Domination, p-

S-Covering, p-Minimum Partition Into Cliques, p-Edge Clique Cover∗, and

p-s-Cycle Transversal∗.

A.2 Maximization problems that have FII and are quasi-coverable –
linear kernels for graphs of bounded genus.

p-r-Scattered Set∗, p-Independent Set, p-Induced Matching∗, p-Triangle

Edge Packing+, p-Maximum Internal Spanning Tree∗, p-Maximum Full-

Degree Spanning Tree∗, p-Cycle Packing∗, p-H-Packing∗, p-Triangle Vertex

Packing+, p-S-Packing+, and p-Edge Cycle Packing∗,

For all problems with an asterisk “∗”, a direct proof that they have FII is required.

For the rest, FII property follow by expressing them as a p-min/max-CMSO problem

and proving strong monotonicity. For the problems with a cross “+”, the linear kernel

assumes the application of some preprocessing routine.

A.3 Problems that do not have FII and are coverable p-min/max-
CMSO – polynomial kernels for graphs of bounded genus.

p-Independent Dominating Set, p-Acyclic Dominating Set, p-Independent

Directed Domination, p-Maximum Internal Out-branching, p-Odd Set, and

p-Edge-S-Covering.

A.4 A problem that has FII but is not quasi-coverable.

p-Hamiltonian Path Completion.

A.5 A quasi-coverable problem that has no FII.

p-Maximum Cut.

A.6 Problems that do not have FII and they are not quasi-coverable.

p-Longest Path and p-Longest Cycle.

90

	1 Introduction
	2 Definitions and Notations
	2.1 Preliminaries
	2.1.1 Parameterized algorithms and kernels
	2.1.2 Tree-width

	2.2 Boundaried Graphs
	2.3 Finite Integer Index
	2.4 Structures and its properties
	2.5 Counting Monadic Second Order Logic and its properties
	2.6 Boundaried structures

	3 A variant of Courcelle's Theorem
	4 Derivation of our results
	4.1 Meta-algorithmic properties
	4.2 The meta-algorithm
	4.3 Two master theorems
	4.4 Problems having the algorithmic and combinatorial properties
	4.5 Derivation of Theorems 1.1, 1.2, and 1.3

	5 Reduction Rules
	5.1 Model checking on structures
	5.2 Protrusion replacement families for annotated p-min-CMSO[] Problems
	5.3 Protrusion replacement for annotated p-eq-CMSO[] Problems
	5.4 Protrusion replacement for annotated p-max-CMSO[] Problems
	5.5 A protrusion replacement family based for problems that have FII

	6 Combinatorial results
	6.1 Definitions from graph theory
	6.2 Decomposition lemma for coverable problems
	6.3 Decomposition lemma for quasi-coverable problems

	7 Criteria for proving FII
	7.1 Strong monotonicity
	7.2 FII for p-min/max-CMSO[] problems

	8 Implications of our results
	8.1 Preliminary tools
	8.2 Covering minors
	8.3 Packing minors
	8.4 Subgraph Covering and Packing
	8.5 Domination and its variants
	8.6 Scattered sets
	8.7 Problems on Directed Graphs
	8.8 A direct proof of FII for a minimization problem
	8.9 Summary of consequences of our results

	9 Open Problems and Further Directions
	A Problem Compendium
	A.1 Minimization problems that have FII and are quasi-coverable – linear kernels for graphs of bounded genus.
	A.2 Maximization problems that have FII and are quasi-coverable – linear kernels for graphs of bounded genus.
	A.3 Problems that do not have FII and are coverable p-min/max-CMSO – polynomial kernels for graphs of bounded genus.
	A.4 A problem that has FII but is not quasi-coverable.
	A.5 A quasi-coverable problem that has no FII.
	A.6 Problems that do not have FII and they are not quasi-coverable.

