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Some (basic and necessary) de nitions
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Main concepts
°

Minors

Minors and models in graphs

H is a minor of G: H occurs from a subgraph of5 by edge contractions

o
o <)
[ o [
o o [ (<] [
> >
o o
A [ )
o [ H
G

| H-model: any graph that contains- as a minor.
I M (H): the class of all minor models ofi .

| H-minor free graphs: graphs that do not contaird as a minor.
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Main concepts
€00

Treewidth

Treewidth
I A vertex inG is simplicialif its neighborhood induces a clique.

I A graphG is ak-tree if one of the following holds

G = Kk+1 or

the removal ofG of a simplicial vertex creates le-tree.

| The treewidth of a graphG is de ned as follows

tw(G) =min fk j G is a subgraph of somk-treeg
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A 3-tree




Main concepts
ooe

Treewidth

A subgraph of a3-tree; a graph with treewidth at mosB8
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Main concepts
°

Minor excluding planar graphs

Minor exclusion of a planar graph:

Theorem (Robertson and Seymour { GM V)
For every planar graphil there is a constanty such that if a

graph G is H -minor free, thentw (G) cy.
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Erd)s-Posa Theorem

Erd)s-Posa Theorem
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Erd)s-Posa Theorem
.
Erd)s & Posa Theorem

Theorem (Erd)s & Rosa 1965)

There exists a functionf such that For everyk, every graphG has eitherk

vertex disjoint cycles oif (k) vertices that meet all of its cycles.

Facts:

| Gap:f (k)= O(k logk)
| In the same paper they show that the gap (k) = O(klogk) is tight
According to Diestel's monograph on graph theory:

| The same holds if we replace \vertices" by \edges".

[Graph Theory, 3rd Edition, Corollary 12.4.10 and Ex. 39 of Chapter 12]
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Erd)s-Posa Theorem
©00

The planar case

Cycles have the E&P property on plangraphs with_lineargap

Proof.

Let G be a graph without any cycle packing of sizek
I Reduce We can assume that has no vertices of degree 2.
| Find: A planar graph has always a face (cycle) of lengttb.
We build acycle coveringdf G by settingC = ; and repetitively
1. Reduce G so that (G) 3.
2. Find a cycle of length 5 and add its vertices taC.
The above nish after k rounds and creates a cycle coverof the

input graph of at most5k vertices.
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Erd)s-Posa Theorem
oY 1o}

The planar case

Jones' Conjecture:

\ Cycles have the E&P property oplanar graphs with gap 2k. \

| Wide Open(and famous)!

Why Jones'?
On October 29th, 2007 Anonymous says:

Does anyone know why this is called Jones' Conjecture?

reply
Reply: Why Jones'?

On November 16th, 2007 Anonymous says:

I am Jones. My Taiwanese name is Chuan-Min Lee. This conjecture came up when I was
working on it with Ton Kloks and Jiping Liu. I used the name "Jones" instead of my
Taiwanese name for ease of communication.
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Erd)s-Posa Theorem
ooe

The planar case

Fact: Linear gap extends to1 -minor free graphs
We will derive theFact by the following more general statement of

Erd)s-Posa Theorem:

For each graph, cycles have the E&P property fdr -minor free graph

with gap O(k logh), whereh = jV (H)j.

E&P follows as a graphs with nk-cycle packings ar& s, -minor free.
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Erd)s-Posa Theorem
®0

The proof

We give a proof using the following results:

Theorem (Thomassen 1983)

Given an integer, every graphG with girth(G) 8r+3 and (G) 3

has a minorJ with (J) 2.
| girth (G): minimum size of a cycle inG
I (G): minimum degree ofG

I J is a minor of G: J occurs from a subgraph ofs by edge contractions.

Theorem (Kostochka 1982 & Thomason 1984)
9 8h (G) h i logh) G containsK}, as a minor
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Erd)s-Posa Theorem
oe

The proof

Proof.

Let G be aK,-free graph with nok-cycle packing

| Reduce (G) 3

As G is H -minor free, from 2nd theorem every minoF of G has
) hP

Let r be such that h P logh< 2

logh

From 1st theorem contains a cycle of lengtk 8r = O(log h).

We build acycle coveringof G by setting C = ; and repetitively
1. Reduce G so that (G) 3.
2. Find a cycle of lengthO(log h) and add its vertices toC.
The above nish after < k rounds and creates a cycle cover of the input graph

of at most O(k log h) vertices.
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Erd)s-Posa Theorem
®00

Algorithmic Remarks

Algorithmic Remarks:

| Both Reduce and Find, can be implemented in poly-time.
Therefore there is a polynomial algorithm that, for evetyreturns one of

the following

a set ofk disjoint cycles or

a cycle cover oD(k logk) vertices.
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Erd)s-Posa Theorem
fo] Yo}

Algorithmic Remarks

Algorithmic Remarks:

| We just derived arO(log(OP T))-approximation algorithm for both
the maximum size of a vertex cycle packing and

the minimum size of a vertex cycle covering.

Moreover:
All previous proofs, results, and algorithms extend directly

to the edge variants of the above problems.
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Erd)s-Posa Theorem
ooe

Algorithmic Remarks

Algorithmic Remarks:

| We just derived arO(log(OP T))-approximation algorithm for both
the maximum size of a edge cycle packing and

the minimum size of a edge cycle covering.

Moreover:
All previous proofs, results, and algorithms extend directly

to the edge variants of the above problems.
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A more general setting

Extensions on minor models
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A more general setting
0

Extensions to more general graph classes

Let G and C be graph classes.

Question (About G and H)

Is there a functionf such that, for everyk, every graphG 2 G has eitherk

vertex disjoint subgraphs inC or f (k) vertices that meet all subgraphs in C?

Question (Optimizing the gap’ )

If the above question can be positively answered, what is the minimudnfor

which this holds?

I We say that C has the Erd)s & Posa property onG with gap f .
| Task: detect suchC and G and optimize the corresponding gajp .

| Erd)s & Posa Theorem :

Cycles have the E&P property on all graphs with ga@(k log k).
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A more general setting
oe

Extensions to more general graph classes

[Recall that M (H) is the graph class containing alH -models]

A vast generalziation of Erd}s-Posa Theorem:

Theorem (Robertson & Seymour)
Given a graphH, M (H) has the E&P-property on all graphs i H is planar.

| Original Erd)s-Posa theorem: H = \double edge".

| \double edge" generalizes to any planar graph!!

We usef for the gap of M (H)
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A more general setting
©00000000

The proof of the general theorem

Theorem (Robertson & Seymour)
Given a graphH, M (H) has the E&P-property on all graphs i H is planar.

The proof of the \only if" is a corollary of the planar exclusion theorem:

Theorem (Robertson and Seymour { GM V)

For every planar graph- there is a constantc; such that if a graphG is

H -minor free, thentw (G) ¢4 .

Ideas of proof:

| if a graph G does not contain any packing ok models ofH, then it
excludes their disjoint union as a minor (that is planar).

| Therefore,tw(G) f(k;H)= w.

| Let G be a subgraph of av-tree R
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Main concepts Erd)s-Posa Theorem

A more general setting Other variants
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A more general setting
00®000000

The proof of the general theorem

Theorem (Robertson and Seymour { GM V)

For every planar graphi there is a constanty such that if a

graph G is H-minor free, thentw (G) ¢y .

Ideas of the \if* proof: (we describe the case whekt = K5)
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A more general setting
000®00000

The proof of the general theorem

H=Ks X AP 7 P triangulated toroidal grid ,:

p

packy (G)=1 but covery(G)=( " n)
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A more general setting
000080000

The proof of the general theorem

H=Ks X AP7 P h tiangulated toroidal grid ,:

p

packy (G)=1 but covery(G)=( " n)
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A more general setting
000008000

The proof of the general theorem

H=Ks )( H not planar)(

Therefore, the result of Robertson and Seymour is best possible.
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A more general setting
00000000

The proof of the general theorem

Theorem (Robertson & Seymour)
Given a graphH, M (H) has the E&P-property on all graphs i H is planar.

| What about the \gap" fu in the above theorem?

Lower bound:

If H is not acyclic, thenf (k) =+ (k log(k))
Proof:

Let G be ann-vertex cubic graph where
tw(G) = ( n) and

girth (G) = (log n)

| Such graphs are well-known to exist: Ramanujan Graphs (expanders).

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd)s{Fosa property Page 27/45



A more general setting
000000080

The proof of the general theorem

We use the fact that tw (G) = ( n):

I Assume thatC covers all models ofl in G.

I ThenG = GnC isH-minor free.

| AsH is planar,tw(G ) ¢y

I A removal of a vertex reduces treewidth at most by one

I Astw(G)= ( n)andtw(G ) cy, we have thatjiCj = (n).

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd)s{Fosa property Page 28/45



A more general setting
00000000@

The proof of the general theorem

We use the fact that girth (G) = (log n) :

| Let P be a packing of models dfl in G
I AsH contains a cycle angirth (G) = (log n),
each graph inP contains at least 1 (logn) vertices.

| ThereforejPj = O (n=logn)

Conclusion: for every packing® of models ofH in G and every
coveringC of models ofH in G it holds that jCj = 1 (jPj logjPj)
Therefore: fy (k)= 4 (k log(k))
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A more general setting
©00

Tight bounds

When can we do better than Oy (klogk)?
| If H is acyclic, then the gap is linear.e., f (k) = Oy (k)
[Fiorini, Joret, & Wood, 2013]

| Let R be a non trivial minor-closed graph class.

Then for every planar graphl, M (H) has the E&P-property orR with
linear gapOg (k).

[Fomin, Saurabh, Thilikos 2011]
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A more general setting
00

Tight bounds

What about matching (or approaching) the lower bound?

| If H is not acyclic, thenf (k) = Oy (k polylog(k))
[Chekuri & Chuzhoy, 2013]

| Most general existing tight bound:

IfH= y= @ thenfy (k) = O (k logk) on all graphs.

[Fiorini, Joret, & Sau, 2013] and
[Chatzidimitriou, Florent, Sau, & Thilikos, 2015]
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A more general setting
ocoe

Tight bounds

Open problem:

Prove or disprove:

| Given a planar graphi, M (H) has the vertex-Erdjs{Posa

property on all graphs with (optimal) gapy (k) = Oy (klogk)
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Other variants

Other variants of Erdjs{Posa properties
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Other variants
®0

Edge variants

Edge variants:

| For everyr, M ( ;) has the edge-Erd)s-RPosa property
with (optimal) gap O(k logk).

hAn O(log OP T)-approximation also exists

[Chatzidimitriou, Florent, Sau, & Thilikos, 2015]
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Other variants
oe

Edge variants

Open problem:

Prove or disprove:
| Given a planar grapti, M (H) has the edge{Erdys{Fosa

property on all graphs

and, if this is correct, prove that the gap is optimdl; (k) = Oy (k logk)
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Other variants
®00

General models

Minor models of cliques:

M (K1) have the edge Erd)s-Posa property of k h)-connected
graphs
[Diestel, Kawarabayashi, Wollan JCTSB 2012]
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Other variants
fo] To)

General models

Immersions:

I (H): Immersion models

8H; | (H) have the edge Erdys-Posa property oftedge
connected graphs

[Chun-Hung Liu, May 2015]

AGTAC 2015
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Other variants
ooe

General models

Topological Minors:

T (H): Topological Minor models

There is a clas€ (completely characterized) such that
T (H) has the vertex Erdys-Posa property iH 2 C.
[Chun-Hung Liu, 2015]
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Other variants
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Odd cycles

Odd cycles:

Odd cycles have vertex Erd)s-Rosa property on 576-connected graphs with

linear gap

[Rautenbach & Reed, 1999]

Odd cycles have vertex/edge Erd)s-Posa property on graphs embeddable in
orientable surfaces

[Kawarabayashi, Nakamoto, 2007]

Odd cycles have edge Erdjs-Posa property of-edge connected graphs
[Kawarabayashi, Kobayashi, STACS 2012]

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd)s{Fosa property Page 39/45



Other variants
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Odd cycles

Long cycles:

M (C;) has the vertex Erdys-Rosa property with gap
f(k;l)=0O( k logk).
[Fiorini & Herinckx, JGT 2013]
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Other variants
00®0000
Odd cycles

Cycles through a set of vertices:

We consider a graple with terminalsT  V(G)

T-cycle: a cycle intersecting .

Cycles intersecting have the vertex/edge Erdys-Rosa property
with (optimal) gapf (k) = O(k logk).
[Pontecorvia & Wollan, JCTSB 2012]
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Other variants
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Odd cycles

Directed cycles in directed graphs:

Directed cycles have the vertex Erdys-Rosa property.

[Reed, Robertson, Seymour, & Thomas, Combinatorica 1996]
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Other variants
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Odd cycles

[Geelen, Gerards, Whittle, JCTSB 2003]
[Geelen, Kabell JCTSB 2009]
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Other variants
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Odd cycles

Najlesa hwala

Thank you!
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Other variants
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Odd cycles

Diego Vebzquez - El Triunfo de Baco o Los Borrachos

(Museo del Prado, 1628-29)
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