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Some (basic and necessary) de�nitions
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Minors

Minors and models in graphs

H is a minor of G: H occurs from a subgraph ofG by edge contractions

G
H

I H -model: any graph that containsH as a minor.

I M (H ): the class of all minor models ofH .

I H -minor free graphs: graphs that do not containH as a minor.
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Treewidth

Treewidth

I A vertex inG is simplicial if its neighborhood induces a clique.

I A graphG is a k-tree if one of the following holds

G = K k+1 or

the removal ofG of a simplicial vertex creates ak-tree.

I The treewidth of a graphG is de�ned as follows

tw (G) = min f k j G is a subgraph of somek-treeg
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Treewidth
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A 3-tree
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Treewidth
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A subgraph of a3-tree: a graph with treewidth at most3
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Minor excluding planar graphs

Minor exclusion of a planar graph:

Theorem (Robertson and Seymour { GM V)

For every planar graphH there is a constantcH such that if a

graphG is H -minor free, thentw (G) � cH .

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd}os{P�osa property Page 7/45



Main concepts Erd}os-P�osa Theorem A more general setting Other variants

Erd}os-P�osa Theorem
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Erd}os & P�osa Theorem

Theorem (Erd}os & P�osa 1965)

There exists a functionf such that For everyk, every graphG has eitherk

vertex disjoint cycles orf (k) vertices that meet all of its cycles.

Facts:

I Gap: f (k) = O(k � log k)

I In the same paper they show that the gapf (k) = O(k log k) is tight

According to Diestel's monograph on graph theory:

I The same holds if we replace \vertices" by \edges".

[Graph Theory, 3rd Edition, Corollary 12.4.10 and Ex. 39 of Chapter 12]
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The planar case

Lemma

Cycles have the E&P property on planargraphs with lineargap

Proof.

Let G be a graph without any cycle packing of size> k

I Reduce: We can assume thatG has no vertices of degree� 2.

I Find: A planar graph has always a face (cycle) of length� 5.

We build acycle coveringof G by settingC = ; and repetitively

1. Reduce G so that � (G) � 3.

2. Find a cycle of length� 5 and add its vertices toC.

The above �nish after� k rounds and creates a cycle coverC of the

input graph of at most5k vertices.
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The planar case

Jones' Conjecture:

Cycles have the E&P property onplanar graphs with gap 2k.

I Wide Open(and famous)!
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The planar case

Fact: Linear gap extends toH -minor free graphs

We will derive theFact by the following more general statement of

Erd}os-P�osa Theorem:

Theorem

For each graphH , cycles have the E&P property forH -minor free graphs

with gap O(k � logh), whereh = jV (H )j.

E&P follows as a graphs with nok-cycle packings areK 3k -minor free.
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The proof

We give a proof using the following results:

Theorem (Thomassen 1983)

Given an integerr , every graphG with girth (G) � 8r + 3 and � (G) � 3

has a minorJ with � (J ) � 2r .

I girth (G): minimum size of a cycle inG

I � (G): minimum degree ofG

I J is a minor of G: J occurs from a subgraph ofG by edge contractions.

Theorem (Kostochka 1982 & Thomason 1984)

9� 8h � (G) � �h
p

logh ) G containsK h as a minor
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The proof

Proof.

Let G be a K h -free graph with nok-cycle packing

I Reduce: � (G) � 3

As G is H -minor free, from 2nd theorem every minorF of G has

� (F ) � �h
p

log h

Let r be such that �h
p

log h < 2r

From 1st theorem contains a cycle of length< 8r = O(log h).

We build a cycle coveringof G by setting C = ; and repetitively

1. Reduce G so that � (G) � 3.

2. Find a cycle of lengthO(log h) and add its vertices toC.

The above �nish after < k rounds and creates a cycle cover of the input graph

of at most O(k log h) vertices.
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Algorithmic Remarks

Algorithmic Remarks:

I Both Reduce and Find, can be implemented in poly-time.

Therefore there is a polynomial algorithm that, for everyk, returns one of

the following

a set ofk disjoint cycles or

a cycle cover ofO(k � logk) vertices.

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd}os{P�osa property Page 15/45



Main concepts Erd}os-P�osa Theorem A more general setting Other variants

Algorithmic Remarks

Algorithmic Remarks:

I We just derived anO(log(OPT)) -approximation algorithm for both

the maximum size of a vertex cycle packing and

the minimum size of a vertex cycle covering.

Moreover:

All previous proofs, results, and algorithms extend directly

to the edge variants of the above problems.
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Algorithmic Remarks

Algorithmic Remarks:

I We just derived anO(log(OPT)) -approximation algorithm for both

the maximum size of a edge cycle packing and

the minimum size of a edge cycle covering.

Moreover:

All previous proofs, results, and algorithms extend directly

to the edge variants of the above problems.
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Extensions on minor models
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Extensions to more general graph classes

Let G and C be graph classes.

Question (About G and H )

Is there a functionf such that, for everyk, every graphG 2 G has eitherk

vertex disjoint subgraphs inC or f (k) vertices that meet all subgraphs in C?

Question (Optimizing the gapf )

If the above question can be positively answered, what is the minimumf for

which this holds?

I We say that C has the Erd}os & P�osa property onG with gap f .

I Task: detect suchC and G and optimize the corresponding gapf .

I Erd}os & P�osa Theorem :

Cycles have the E&P property on all graphs with gapO(k log k).
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Extensions to more general graph classes

[Recall that M (H ) is the graph class containing allH -models]

A vast generalziation of Erd}os-P�osa Theorem:

Theorem (Robertson & Seymour)

Given a graphH , M (H ) has the E&P-property on all graphs i� H is planar.

I Original Erd}os-P�osa theorem: H = \double edge".

I \double edge" generalizes to any planar graph!!

We usef H for the gap of M (H )
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The proof of the general theorem

Theorem (Robertson & Seymour)

Given a graphH , M (H ) has the E&P-property on all graphs i� H is planar.

The proof of the \only if" is a corollary of the planar exclusion theorem:

Theorem (Robertson and Seymour { GM V)

For every planar graphH there is a constantcH such that if a graphG is

H -minor free, thentw (G) � cH .

Ideas of proof:

I if a graph G does not contain any packing ofk models ofH , then it

excludes their disjoint union as a minor (that is planar).

I Therefore, tw (G) � f (k; H ) = w.

I Let G be a subgraph of aw-tree R
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The proof of the general theorem

The graph is \tree-like":
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The proof of the general theorem

Theorem (Robertson and Seymour { GM V)

For every planar graphH there is a constantcH such that if a

graphG is H -minor free, thentw (G) � cH .

Ideas of the \if" proof: (we describe the case whereH = K 5)
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The proof of the general theorem

H = K 5
A

p
n �
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The proof of the general theorem

H = K 5
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The proof of the general theorem

H = K 5 H not planar
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Therefore, the result of Robertson and Seymour is best possible.
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The proof of the general theorem

Theorem (Robertson & Seymour)

Given a graphH , M (H ) has the E&P-property on all graphs i� H is planar.

I What about the \gap" f H in the above theorem?

Lower bound:

If H is not acyclic, thenf H (k) = 
 H (k log(k))

Proof:

Let G be ann-vertex cubic graph where

tw (G) = 
( n) and

girth (G) = 
(log n)

I Such graphs are well-known to exist: Ramanujan Graphs (expanders).
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The proof of the general theorem

We use the fact that tw (G) = 
( n):

I Assume thatC covers all models ofH in G.

I Then G� = G n C is H -minor free.

I As H is planar,tw (G� ) � cH

I A removal of a vertex reduces treewidth at most by one

I As tw (G) = 
( n) and tw (G� ) � cH , we have thatjCj = 
 h (n).
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The proof of the general theorem

We use the fact that girth (G) = 
(log n) :

I Let P be a packing of models ofH in G

I As H contains a cycle andgirth (G) = 
(log n),

each graph inP contains at least
 h (log n) vertices.

I ThereforejPj = Oh (n= logn)

Conclusion: for every packingP of models ofH in G and every

coveringC of models ofH in G it holds that jCj = 
 h (jPj log jPj )

Therefore: f H (k) = 
 H (k log(k))
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Tight bounds

When can we do better than Oh (k logk)?

I If H is acyclic, then the gap is linear, i.e., f H (k) = OH (k)

[Fiorini, Joret, & Wood, 2013]

I Let R be a non trivial minor-closed graph class.

Then for every planar graphH , M (H ) has the E&P-property onR with

linear gapOR (k).

[Fomin, Saurabh, Thilikos 2011]
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Tight bounds

What about matching (or approaching ) the lower bound?

I If H is not acyclic, thenf H (k) = OH (k polylog(k))

[Chekuri & Chuzhoy, 2013]

I Most general existing tight bound:

If H = � h = then f H (k) = Oh (k logk) on all graphs.

[Fiorini, Joret, & Sau, 2013] and

[Chatzidimitriou, Florent, Sau, & Thilikos, 2015]
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Tight bounds

Open problem:

Prove or disprove:

I Given a planar graphH , M (H ) has the vertex-Erd}os{P�osa

property on all graphs with (optimal) gapf H (k) = OH (k logk)
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Other variants of Erd}os{P�osa properties
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Edge variants

Edge variants:

I For everyr , M (� r ) has the edge-Erd}os-P�osa property

with (optimal) gap O(k logk).

hAn O(log OPT)-approximation also existsi

[Chatzidimitriou, Florent, Sau, & Thilikos, 2015]
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Edge variants

Open problem:

Prove or disprove:

I Given a planar graphH , M (H ) has the edge{Erd}os{P�osa

property on all graphs

and, if this is correct, prove that the gap is optimalf H (k) = OH (k logk)
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General models

Minor models of cliques:

M (K h) have the edge Erd}os-P�osa property on
( k � h)-connected

graphs

[Diestel, Kawarabayashi, Wollan JCTSB 2012]
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General models

Immersions:

I (H ): Immersion models

8H; I (H ) have the edge Erd}os-P�osa property on4-edge

connected graphs

[Chun-Hung Liu, May 2015]

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd}os{P�osa property Page 37/45



Main concepts Erd}os-P�osa Theorem A more general setting Other variants

General models

Topological Minors:

T (H ): Topological Minor models

There is a classC (completely characterized) such that

T (H ) has the vertex Erd}os-P�osa property i�H 2 C.

[Chun-Hung Liu, 2015]
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Odd cycles

Odd cycles:

Odd cycles have vertex Erd}os-P�osa property on 576-connected graphs with

linear gap

[Rautenbach & Reed, 1999]

Odd cycles have vertex/edge Erd}os-P�osa property on graphs embeddable in

orientable surfaces

[Kawarabayashi, Nakamoto, 2007]

Odd cycles have edge Erd}os-P�osa property on4-edge connected graphs

[Kawarabayashi, Kobayashi, STACS 2012]
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Odd cycles

Long cycles:

M (Cr ) has the vertex Erd}os-P�osa property with gap

f (k; l ) = O(l � k � logk).

[Fiorini & Herinckx, JGT 2013]
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Odd cycles

Cycles through a set of vertices:

We consider a graphG with terminalsT � V (G)

T-cycle: a cycle intersectingT.

Cycles intersectingT have the vertex/edge Erd}os-P�osa property

with (optimal) gap f (k) = O(k � logk).

[Pontecorvia & Wollan, JCTSB 2012]

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erd}os{P�osa property Page 41/45



Main concepts Erd}os-P�osa Theorem A more general setting Other variants

Odd cycles

Directed cycles in directed graphs:

Directed cycles have the vertex Erd}os-P�osa property.

[Reed, Robertson, Seymour, & Thomas, Combinatorica 1996]
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Matroids:

[Geelen, Gerards, Whittle, JCTSB 2003]

[Geelen, Kabell JCTSB 2009]
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Najlep�sa hv�ala

Thank you!
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Diego Vel�azquez - El Triunfo de Baco o Los Borrachos

(Museo del Prado, 1628-29)
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