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Main concepts Erdős-Pósa Theorem A more general setting Other variants

Some (basic and necessary) definitions
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Minors

Minors and models in graphs

H is a minor of G: H occurs from a subgraph of G by edge contractions

G H

I H-model: any graph that contains H as a minor.

IM(H): the class of all minor models of H.

I H-minor free graphs: graphs that do not contain H as a minor.
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Treewidth

Treewidth

I A vertex in G is simplicial if its neighborhood induces a clique.

I A graph G is a k-tree if one of the following holds

G = Kk+1 or

the removal of G of a simplicial vertex creates a k-tree.

I The treewidth of a graph G is defined as follows

tw(G) = min{k | G is a subgraph of some k-tree}
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Treewidth
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A 3-tree
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Treewidth
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A subgraph of a 3-tree: a graph with treewidth at most 3
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Minor excluding planar graphs

Minor exclusion of a planar graph:

Theorem (Robertson and Seymour – GM V)

For every planar graph H there is a constant cH such that if a

graph G is H-minor free, then tw(G) ≤ cH .
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Erdős-Pósa Theorem
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Erdős & Pósa Theorem

Theorem (Erdős & Pósa 1965)

There exists a function f such that For every k, every graph G has either k

vertex disjoint cycles or f(k) vertices that meet all of its cycles.

Facts:

I Gap: f(k) = O(k · log k)

I In the same paper they show that the gap f(k) = O(k log k) is tight

According to Diestel’s monograph on graph theory:

I The same holds if we replace “vertices” by “edges”.

[Graph Theory, 3rd Edition, Corollary 12.4.10 and Ex. 39 of Chapter 12]
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The planar case

Lemma

Cycles have the E&P property on planar graphs with linear gap

Proof.

Let G be a graph without any cycle packing of size > k

I Reduce: We can assume that G has no vertices of degree ≤ 2.

I Find: A planar graph has always a face (cycle) of length ≤ 5.

We build a cycle covering of G by setting C = ∅ and repetitively

1. Reduce G so that δ(G) ≥ 3.

2. Find a cycle of length ≤ 5 and add its vertices to C.

The above finish after ≤ k rounds and creates a cycle cover C of the

input graph of at most 5k vertices.
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The planar case

Jones’ Conjecture:

Cycles have the E&P property on planar graphs with gap 2k.

I Wide Open (and famous)!
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The planar case

Fact: Linear gap extends to H-minor free graphs

We will derive the Fact by the following more general statement of

Erdős-Pósa Theorem:

Theorem

For each graph H, cycles have the E&P property for H-minor free graphs

with gap O(k · log h), where h = |V (H)|.

E&P follows as a graphs with no k-cycle packings are K3k-minor free.
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The proof

We give a proof using the following results:

Theorem (Thomassen 1983)

Given an integer r, every graph G with girth(G) ≥ 8r + 3 and δ(G) ≥ 3

has a minor J with δ(J) ≥ 2r.

I girth(G): minimum size of a cycle in G

I δ(G): minimum degree of G

I J is a minor of G: J occurs from a subgraph of G by edge contractions.

Theorem (Kostochka 1982 & Thomason 1984)

∃α ∀h δ(G) ≥ αh
√

log h⇒ G contains Kh as a minor
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The proof

Proof.

Let G be a Kh-free graph with no k-cycle packing

I Reduce: δ(G) ≥ 3

As G is H-minor free, from 2nd theorem every minor F of G has

δ(F ) ≤ αh
√

log h

Let r be such that αh
√

log h < 2r

From 1st theorem contains a cycle of length < 8r = O(log h).

We build a cycle covering of G by setting C = ∅ and repetitively

1. Reduce G so that δ(G) ≥ 3.

2. Find a cycle of length O(log h) and add its vertices to C.

The above finish after < k rounds and creates a cycle cover of the input graph

of at most O(k log h) vertices.
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Algorithmic Remarks

Algorithmic Remarks:

I Both Reduce and Find, can be implemented in poly-time.

Therefore there is a polynomial algorithm that, for every k, returns one of

the following

a set of k disjoint cycles or

a cycle cover of O(k · log k) vertices.
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Algorithmic Remarks

Algorithmic Remarks:

I We just derived an O(log(OPT ))-approximation algorithm for both

the maximum size of a vertex cycle packing and

the minimum size of a vertex cycle covering.

Moreover:

All previous proofs, results, and algorithms extend directly

to the edge variants of the above problems.
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Algorithmic Remarks

Algorithmic Remarks:

I We just derived an O(log(OPT ))-approximation algorithm for both

the maximum size of a edge cycle packing and

the minimum size of a edge cycle covering.

Moreover:

All previous proofs, results, and algorithms extend directly

to the edge variants of the above problems.

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erdős–Pósa property Page 17/45
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Extensions on minor models

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erdős–Pósa property Page 18/45
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Extensions to more general graph classes

Let G and C be graph classes.

Question (About G and H)

Is there a function f such that, for every k, every graph G ∈ G has either k

vertex disjoint subgraphs in C or f(k) vertices that meet all subgraphs in C?

Question (Optimizing the gap f )

If the above question can be positively answered, what is the minimum f for

which this holds?

I We say that C has the Erdős & Pósa property on G with gap f .

I Task: detect such C and G and optimize the corresponding gap f .

I Erdős & Pósa Theorem:

Cycles have the E&P property on all graphs with gap O(k log k).
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Extensions to more general graph classes

[Recall that M(H) is the graph class containing all H-models]

A vast generalziation of Erdős-Pósa Theorem:

Theorem (Robertson & Seymour)

Given a graph H, M(H) has the E&P-property on all graphs iff H is planar.

I Original Erdős-Pósa theorem: H = “double edge”.

I “double edge” generalizes to any planar graph!!

We use fH for the gap of M(H)
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The proof of the general theorem

Theorem (Robertson & Seymour)

Given a graph H, M(H) has the E&P-property on all graphs iff H is planar.

The proof of the “only if” is a corollary of the planar exclusion theorem:

Theorem (Robertson and Seymour – GM V)

For every planar graph H there is a constant cH such that if a graph G is

H-minor free, then tw(G) ≤ cH .

Ideas of proof:

I if a graph G does not contain any packing of k models of H, then it

excludes their disjoint union as a minor (that is planar).

I Therefore, tw(G) ≤ f(k,H) = w.

I Let G be a subgraph of a w-tree R
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The proof of the general theorem

The graph is “tree-like”:

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erdős–Pósa property Page 22/45
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The proof of the general theorem

Theorem (Robertson and Seymour – GM V)

For every planar graph H there is a constant cH such that if a

graph G is H-minor free, then tw(G) ≤ cH .

Ideas of the “if” proof: (we describe the case where H = K5)
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The proof of the general theorem

H = K5
A
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The proof of the general theorem
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The proof of the general theorem

H = K5 H not planar
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Therefore, the result of Robertson and Seymour is best possible.
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The proof of the general theorem

Theorem (Robertson & Seymour)

Given a graph H, M(H) has the E&P-property on all graphs iff H is planar.

I What about the “gap” fH in the above theorem?

Lower bound:

If H is not acyclic, then fH(k) = ΩH(k log(k))

Proof:

Let G be an n-vertex cubic graph where

tw(G) = Ω(n) and

girth(G) = Ω(log n)

I Such graphs are well-known to exist: Ramanujan Graphs (expanders).
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The proof of the general theorem

We use the fact that tw(G) = Ω(n):

I Assume that C covers all models of H in G.

I Then G− = G \ C is H-minor free.

I As H is planar, tw(G−) ≤ cH

I A removal of a vertex reduces treewidth at most by one

I As tw(G) = Ω(n) and tw(G−) ≤ cH , we have that |C| = Ωh(n).
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The proof of the general theorem

We use the fact that girth(G) = Ω(logn) :

I Let P be a packing of models of H in G

I As H contains a cycle and girth(G) = Ω(log n),

each graph in P contains at least Ωh(log n) vertices.

I Therefore |P| = Oh(n/ log n)

Conclusion: for every packing P of models of H in G and every

covering C of models of H in G it holds that |C| = Ωh(|P| log |P|)

Therefore: fH(k) = ΩH(k log(k))
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Tight bounds

When can we do better than Oh(k log k)?

I If H is acyclic, then the gap is linear, i.e., fH(k) = OH(k)

[Fiorini, Joret, & Wood, 2013]

I Let R be a non trivial minor-closed graph class.

Then for every planar graph H, M(H) has the E&P-property on R with

linear gap OR(k).

[Fomin, Saurabh, Thilikos 2011]
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Tight bounds

What about matching (or approaching) the lower bound?

I If H is not acyclic, then fH(k) = OH(k polylog(k))

[Chekuri & Chuzhoy, 2013]

I Most general existing tight bound:

If H = θh = then fH(k) = Oh(k log k) on all graphs.

[Fiorini, Joret, & Sau, 2013] and

[Chatzidimitriou, Florent, Sau, & Thilikos, 2015]
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Tight bounds

Open problem:

Prove or disprove:

I Given a planar graph H, M(H) has the vertex-Erdős–Pósa

property on all graphs with (optimal) gap fH(k) = OH(k log k)
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Other variants of Erdős–Pósa properties

Dimitrios M. Thilikos AGTAC 2015

Algorithms and Combinatorics on the Erdős–Pósa property Page 33/45
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Edge variants

Edge variants:

I For every r, M(θr) has the edge-Erdős-Pósa property

with (optimal) gap O(k log k).

〈An O(logOPT )-approximation also exists〉

[Chatzidimitriou, Florent, Sau, & Thilikos, 2015]
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Edge variants

Open problem:

Prove or disprove:

I Given a planar graph H, M(H) has the edge–Erdős–Pósa

property on all graphs

and, if this is correct, prove that the gap is optimal fH(k) = OH(k log k)
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General models

Minor models of cliques:

M(Kh) have the edge Erdős-Pósa property on Ω(k · h)-connected

graphs

[Diestel, Kawarabayashi, Wollan JCTSB 2012]
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General models

Immersions:

I(H): Immersion models

∀H, I(H) have the edge Erdős-Pósa property on 4-edge

connected graphs

[Chun-Hung Liu, May 2015]
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General models

Topological Minors:

T (H): Topological Minor models

There is a class C (completely characterized) such that

T (H) has the vertex Erdős-Pósa property iff H ∈ C.

[Chun-Hung Liu, 2015]
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Odd cycles

Odd cycles:

Odd cycles have vertex Erdős-Pósa property on 576-connected graphs with

linear gap

[Rautenbach & Reed, 1999]

Odd cycles have vertex/edge Erdős-Pósa property on graphs embeddable in

orientable surfaces

[Kawarabayashi, Nakamoto, 2007]

Odd cycles have edge Erdős-Pósa property on 4-edge connected graphs

[Kawarabayashi, Kobayashi, STACS 2012]
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Odd cycles

Long cycles:

M(Cr) has the vertex Erdős-Pósa property with gap

f(k, l) = O(l · k · log k).

[Fiorini & Herinckx, JGT 2013]
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Odd cycles

Cycles through a set of vertices:

We consider a graph G with terminals T ⊆ V (G)

T -cycle: a cycle intersecting T .

Cycles intersecting T have the vertex/edge Erdős-Pósa property

with (optimal) gap f(k) = O(k · log k).

[Pontecorvia & Wollan, JCTSB 2012]
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Odd cycles

Directed cycles in directed graphs:

Directed cycles have the vertex Erdős-Pósa property.

[Reed, Robertson, Seymour, & Thomas, Combinatorica 1996]
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Odd cycles

Matroids:

[Geelen, Gerards, Whittle, JCTSB 2003]

[Geelen, Kabell JCTSB 2009]
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Odd cycles

Najlepša hvála

Thank you!
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Odd cycles

Diego Velázquez - El Triunfo de Baco o Los Borrachos

(Museo del Prado, 1628-29)
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