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Conditional probabilities and

van Lambalgen theorem revisited∗

Bruno Bauwens† Alexander Shen‡ Hayato Takahashi§

Abstract

The definition of conditional probability in case of continuous distributions was
an important step in the development of mathematical theory of probabilities. How
can we define this notion in algorithmic probability theory? In this survey we discuss
the developments in this direction trying to explain what are the difficulties and what
can be done to avoid them. Almost all the results discussed in this paper have been
published (and we provide the references), but we tried to put them into perspective
and to explain the proofs in a more intuitive way. We assume that the reader is familiar
with basic notions of measure theory and algorithmic randomness (see, e.g., [8] or [7]
for a short introduction).

1 Conditional probability

Let P be a computable measure on the product of the two copies of the Cantor space Ω1×Ω2 ,
and let P1 be its marginal distribution (=projection of P onto Ω1 ). Consider some α1 ∈ Ω1 .
We want to define the conditional distribution on Ω2 with the condition “the first coordinate
is equal to α1”. For that we consider a prefix a1 of α1 and the conditional distribution on
Ω2 with the condition “the first coordinate starts with a1”. (For this we need that P1(a1),
the probability of the interval [a1] of all extensions of a1 , to be positive.) In this way we get
a family of measures Pa1 on Ω2 :

Pa1(a2) =
P (a1, a2)

P1(a1)

Here the numerator is the P -measure of the product [a1]× [a2], and the denominator is the
P -measure of [a1]× Ω2 . Then, for given a2 , we consider the limit of probability Pa1(a2) as
the length of prefix a1 (of α1 ) tends to infinity.
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α1

Ω2

Ω1

Theorem 1 ([9]). If α1 is Martin-Löf random with respect to P1 , then this limit is well

defined and determines a measure on Ω2 .

Proof. For a fixed a2 the function m : a1 7→ Pa1(a2) is a computable martingale on Ω1 with
respect to P1 (being a ratio of some measure and P1 ; note that the denominator P1(a1) is
not zero since α1 is random with respect to P1 ), so the limit exists due to effective martingale
convergence theorem. Here is its proof. If m is a computable non-negative martingale, then
for every rational c the set of sequences along which m exceeds c somewhere, is effectively
open, and has measure at most 1/c, if the initial capital is 1. So m is bounded along every
Martin-Löf random sequence. Also, for every pair of positive rationals u < v , the set of
sequences where the martingale is infinitely often less than u and infinitely often greater
than v , is an effectively null set. Indeed, the set of sequences where there are at least N
changes across (u, v), is effectively open, and its measure is small due to “buy low — sell
high” argument. Formally, we consider another martingale that follows m’s bets, starting
when m becomes less than u , until m becomes greater than v , and then waits for the next
time when m becomes less than u , starts following m again, etc. So for Martin-Löf sequences
convergence is guaranteed.1

To see that we indeed get a measure on Ω2 in this way, we have to check the (finite)
additivity which is obvious (limit of the sum is the sum of limits).

This measure can be denoted by P (·|α1). Of course, if we start with a product measure
P = P1 × P2 , the conditional probability is the same for all α1 , and equals P2 .

Remark. The definition of a conditional measure in the classical probability theory is usually
given using Radon–Nikodym theorem; then the Lebesgue differentiation theorem can be used
to show that the conditional measure defined in this way coincides almost everywhere with
the limit we considered.

2 Non-computable conditional probability

Let us note first that the limit in the definition of conditional probably may not exist for
some conditions (though these conditions form a null set, as we have seen). This is shown
by the following

Example 1. Consider the following distribution on Ω1 × Ω2 . We identify this product with
the square [0, 1]× [0, 1]; the binary-rational points have two representations as sequences, but

1Technically the martingale m may be infinite if P1(a1) = 0 for some strings a1 , but this does not matter
for the argument: these intervals are covered by an effectively null set we construct.
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this does not matter much. In our distribution the grey areas have double density compared
with the uniform distribution on the square, while the white areas have zero density.

↑ 1
2

1
4

Then for the leftmost point (shown by an arrow) the limit distribution does not exist. Indeed,
the conditional probabilities of two halves oscillate between 1/3 and 2/3 depending on the
length of a1 , as one may easily check.

Our next example shows that the conditional probability for a computable distribution
on pairs might exist but be non-computable. A first example of this type was constructed
in [1].2

Example 2. Let a1, a2, . . . be an increasing computable sequence of rational numbers whose
limit α is non-computable. Consider the following distribution:

a1
a2

α

Vertical lines are drawn at points 1/2, 1/4,. . . ; in the grey zone the density is the same as
for the uniform distribution; in the black zone the density is twice bigger, and in the white
zone the density is zero. Since the widths of the black and white stripes on every horizontal
line are the same, the total amount of mass does not change; we just move all the mass
horizontally from the white part to the black part.

Note that the distribution on the square is computable even though α is not computable.
Indeed, if we are interested in the mass of some rectangle R (the product of two binary
intervals), the mass transfers in the small rectangles (thinner than R) do not matter, and
we may look only on finitely many ai (they can be computed).

It is easy to see that the limit distribution (at the leftmost point) is the uniform distru-
bition on [α, 1], and it is not computable, since the density 1/(1− α) is not computable.

2In fact, the example in [1] has an additional property: the set of α1 for which P (·|α1) is not computable
with oracle α1 , has positive P1 -measure. The measure constructed in Example 3 (see below) also has this
property, see [2, Corollary 2]. On the other hand, the example in [1] has a conditional measure P (·|α1) that
is continuous in α1 , unlike Example 3.
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In this example the conditional distribution is non-computable only at one point. How-
ever, the example can be easily changed so that the conditional distribution is the same
non-computable distribution for all α1 except for binary-rational numbers (sequences with
finitely many zeros or ones).

Example 3. Consider again the increasing computable sequence a1, a2, . . . of rational numbers
that converges to a non-computable real α .

a1

a2

...

α

In the grey area above the horizontal line with coordinate α we still keep the density the
same as in the uniform distribution; however, below α all the mass is concentrated on black
vertical segments. For example, the mass a1 is concentrated on the segment {0}×[0, a1], and
is distributed uniformly there (so the mass transfer happens only in the horizontal direction).
The mass a2 − a1 is then split evenly between two vertical segments shown (at horizontal
coordinates 0 and 1/2), etc. One can say that each vertical segment “horizontally grabs” all
the mass of the white rectangle on the right of it (so the latter has zero density except for
its left side).

As before, it is easy to see that the resulting distribution is computable: to find the mass
of a binary rectangle of width 2−n , it is enough to take into account only a1, . . . , an and use
the uniform distribution above an .

It is also easy to see that for every α1 that is not binary rational (in other words, for ver-
tical lines that do not cross black segments), the conditional probability P (·|α1) is uniformly
distributed on [α, 1].

We will reuse this example in Section 5.

3 van Lambalgen theorem

Now we consider the relation between the randomness of the pair and its components. The
basic result in this field goes back to Michiel val Lambalgen (see [6, Theorem 5.10], where this
result is stated in an implicit way). It considers the case of the product P of two computable
measures P1 on Ω1 and P2 on Ω2 , and says that the pair (α1, α2) is Martin-Löf random
with respect to P if and only if two conditions are satisfied:

• α1 is random with respect to the measure P1 ;

• α2 is random with respect to the measure P2 with oracle α1 .
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(See, for example, [8, chapter 5] for the proof.) Note that these conditions are not symmetric;
of course, one can exchange the coordinates and conclude that α1 is also random with respect
to P1 with oracle α2 .

It is natural to look for some version of van Lambalgen theorem generalized to non-product
measures P . Informally speaking, such a version should say that (α1, α2) is P -random if
and only if

• α1 is P1 -random (where P1 is the projection of P );

• α2 is random with respect to the conditional probability measure P (·|α1) with ora-
cle α1 .

But some precautions are needed. The problem is that Martin-Löf randomness is usually
defined for computable measures, while the conditional measure is defined as a limit. As we
have seen, it may not be computable even with oracle α1 for P1 -random α1 . Indeed, in our
example the conditional distribution was [α, 1] for every irrational condition α1 , and among
them there are P1 -random conditions that do not compute α . To prove this, let us note that
uniformly random reals are all P1 -random and some of them do not compute α1 . Indeed, if
the uniform measure of conditions α1 that compute α were positive, then the same would be
true for some fixed oracle machine due to countable additivity of the uniform measure. Then
Lebesgue density theorem says that there is some interval where most of the oracles compute
α , so α can be computed without oracle by majority voting — but α is not computable.
(The last argument is known as de Leeuw – Moore – Shannon – Shapiro theorem [5].)

Still we can make several observations.

4 Image randomness and beyond

If (α1, α2) is (Martin-Löf ) random with respect to P , then α1 is (Martin-Löf ) random

with respect to the marginal distribution P1 . This is obvious; every cover of α1 with small
P1 -measure gives a cover of (α1, α2) with the same P -measure, being multiplied by Ω2 .

This result can be considered also as a special case of the image randomness theorem (see
the section about image randomness in [8]) applied to the projection mapping. Moreover, the
reverse direction of image randomness theorem (“no randomness from nothing”) guarantees
that every P1 -random α1 is a first component of some P -random pair (α1, α2).

So we know that for every P1 -random α1 there exists at least one α2 that makes the
pair (α1, α2) P -random. It is natural to expect that there are much more. Indeed this is the
case, as the following result from [9] shows.

Theorem 2. Let α1 be P1 -random. Then the set of α2 such that (α1, α2) is P -random, has

probability 1 according to the conditional probability distribution P (·|α1).

Proof. Consider a universal Martin-Löf test on the product space. Let Un be the effectively
open set of measure at most 2−2n provided by this test. In the case of product measure
P1 × P2 we would consider the set Vn of all α1 such that the α1 -section of Un has P2 -
measure greater than 2−n , note that Vn is an effectively open set of measure at most 2−n ,
and conclude that random α1 do not belong to Vn for all sufficiently large n. (If a point
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x is covered by infinitely many sets Vn , it is covered by all sets Vn =
⋃

k>n
Vk , so x is

not random. This is often called the Solovay randomness criterion.) So for every random
α1 and for sufficiently large values of n the α1 -section of Un has measure at most 2−n , so
almost every α2 lies outside the α1 -section of Un for all large n, which gives the desired
result. Moreover, every α2 that is P2 -random with oracle α1 works, since the open cover
for α2 provided by the α1 -section of Un is α1 -enumerable. (This is how the van Lambalgen
theorem is proven.)

For the general case of non-product measure P we should be more careful since the
conditional probability is defined only in the limit. Instead of Vn , we consider all n-heavy
intervals I in Ω1 , i.e., all intervals I such that Un occupies more than 2−n -fraction in I×Ω2

measured according to P , in other words, all intervals I such that P (Un ∩ (I × Ω2)) >
2−nP1(I). This is an enumerable family of intervals since P and P1 are computable.

Lemma 1. The P1 -measure of the union of all n-heavy intervals is at most 2−n .

Proof. To prove that the union of n-heavy intervals has measure at most 2−n , it is enough
to prove this for every finite union of n-heavy intervals. Without loss of generality we may
assume that intervals in this union are disjoint (consider only maximal intervals). For every
n-heavy interval I the fraction of Un in the stripe I×Ω exceeds 2−n , so the total P1 -measure
of disjoint n-heavy intervals cannot exceed 2−n , otherwise Un would be too big (its measure
would be greater than 2−2n ).

In other words, the function

I 7→ fraction of Un in I × Ω2

is a (lower semicomputable) martingale with initial value 2−2n . So due to the martingale
inequality the union of intervals where the martingale exceeds 2−n is at most 2−n .

Lemma 2. If α1 is outside any n-heavy interval, then the α1 -section of Un has measure at

most 2−n according to the conditional probability with condition α1 .

Proof. If the conditional measure of the α1 -section of Un exceeds 2−n , then there exists
a finite set of disjoint vertical intervals J1, . . . , Jk that have total conditional measure more
than 2−n and all belong to the α1 -section of Un . Since Un is open, the compactness argument
shows that for sufficiently small intervals I containing α1 we have

I × J1, . . . , I × Jk ⊂ Un.

By assumption, the conditional measure of J1 ∪ . . . ∪ Jn exceeds 2−n , and the conditional
probability is defined as the limit of conditional probabilities with condition I when intervals
I containing α1 decrease. So for all sufficiently small I the conditional measure of J1∪. . .∪Jk

with condition I exceeds 2−n , but this means that I is n-heavy and α1 is covered by I ,
contrary to our assumption.

Now consider (for some fixed random α1 ) all α2 such that (α1, α2) is non-random. Being
non-random, these pairs belongs to all Un , so for such a pair α2 is inside α1 -sections of Un

for all n. Since α1 is random, it is not covered by n-heavy intervals I for all sufficiently
large n and by Lemma 2 all bad α2 are covered by a set of conditional measure 2−n at most
n (for all large n). So the α1 -conditional measure of the set of bad α2 is equal to 0.
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In fact, we have proven the following result from [10, 11] (one direction of van Lambalgen
theorem).

Theorem 3. If α1 is P1 -random and α2 is blind (Hippocratic) random with respect to the

conditional probability P (·|α1), then the pair (α1, α2) is P -random.

By blind (Hippocratic) randomness we mean a version of Martin-Löf definition of random-
ness with respect to noncomputable measure. In this version (studied by Kjos-Hansen [4])
uniformly effectively open tests are considered and the random sequence is required to pass
all of them (if the measure is non-computable, there may be no universal test). It is opposed
to uniform randomness where the test is effectively open with respect to the measure (see [3]
for the details).

Proof of Theorem 3. Indeed, in the construction above we get a cover for bad α2 that is
enumerable with oracle α1 .

5 A counterexample

The following counterexample from [2] shows that the statement of Theorem 3 cannot be
reversed.

Theorem 4. There exists a computable measure P on Ω1×Ω2 , for which conditional measure

P (·|α1) is defined for all α1 , and a P -random pair (α1, α2) such that α2 is not blind random

with oracle α1 with respect to conditional distribution P (·|α1) on Ω2 .

Proof. We use the measure from Example 3. The second component α2 of the pair is now a
lower semicomputable random real α that is the limit of a computable increasing sequence of
binary fractions ai (Chaitin’s Ω-number). We start with the following observation: for this
α2 the pair (α1, α2) is random if and only if this pair is random with respect to the uniform

measure. Indeed, if we have some enumerable set of rectangles that covers (α1, α2), we can
safely discard parts of the rectangles that are below some ai , since this does not change
anything for (α1, α2). In this way we may ensure that the P -measure of these rectangles
equals their uniform measure (for a thin rectangle we need to discard more of it), so a P -test
can be transformed into a uniform test and vice versa if we are interested only in points with
second coordinate α2 = α .

Now we can find a random point (α1, α2) with second coordinate α2 = α (according
to classical van Lambalgen theorem it is enough to take α1 that is random with respect to
uniform measure with oracle α). Since α1 is random and not binary-rational, the conditional
probability P (·|α1) is uniformly distributed on [α, 1]. It remains to show that the lower

semicomputable real α is not blind random with respect to the uniform distribution on [α, 1].
Indeed, for every rational ε > 0 the interval (0, α + ε) is effectively open, since it can be
represented as the union of (0, ai + ε), and its measure with respect to the uniform measure
on [α, 1] is proportional to ε (so it is small for small ε).
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6 The case of computable conditional measure

Still the van Lambalgen result can be generalized to non-product measure with an additional
computability assumption. As before, we consider a computable measure P on Ω1 × Ω2

and its projection P1 on Ω1 (the marginal distribution). The following result was proven by
Hayato Takahashi [9, 10]:

Theorem 5. If a pair (α1, α2) is P -random, and the conditional distribution P (·|α1) is

computable with oracle α1 , then α2 is Martin-Löf random with oracle α1 with respect to this

conditional distribution.

Before proving this theorem, let us make several remarks about its statement:

• Under our assumption Martin-Löf randomness is well defined (the distribution is com-
putable with oracle α1 ).

• We already know that α1 is P -random, so we get a randomness criterion for pairs
(assuming the conditional distribution is computable given the condition).

• We assume the computability of conditional distribution only for condition α1 ; for
other random elements of Ω1 (used as conditions) the conditional distribution may not
be computable.

Proof of Theorem 5. Let us first recall the proof for the case of a product measure P1 × P2 .
Assume that α2 is not random. Then there is a set Z ⊂ Ω2 of arbitrarily small P2 -measure
that covers α2 and is effectively open with oracle α1 . The latter statement means that Z
is a section of some effectively open set of pairs U ⊂ Ω1 × Ω2 obtained by fixing the first
coordinate equal to α1 . This set U covers (α1, α2) by construction. The problem is that
only the α1 -section of U is guaranteed to be small while other sections may be large, and
we need a bound for the total measure of U to show the non-randomness of (α1, α2).

The solution is that we “trim” U making all its sections small. Enumerating the rectangles
in U , we look at the P2 -size of all sections. When some section attempts to become too big,
we prevent this and stop increasing that section. In this way we miss nothing in the α1 -section
of U since it was small in the first place.

This argument works for the case of product distributions. How can we do similar things
in the general case of arbitrary computable measures on Ω1 × Ω2? Again we start with a
set Z of small conditional measure containing α2 and represent Z as α1 -section of some
effectively open U ⊂ Ω1 × Ω2 . But trimming U is now not so easy. To understand the
problem better, let us first consider two simple approaches that do not work.

First non-working approach. The problem for the general case is that we have no “etalon”
measure on sections that can be used for trimming. It is natural to use the conditional
measure P (·|α1), and by assumption, there is an algorithm Γ that computes it using α1 as
oracle. Given some rectangle, we can split this rectangle horizontally (i.e., fix more and more
bits of α1 ) and use Γ to compute the conditional measure with more and more precision for
all the parts, letting through only the rectangles where the vertical side is guaranteed to have
small (Γ-computed) measure for the values of α1 that belong to the horizontal side.
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The problem with this approach is that the conditional measure is computable given α1

only on the α1 -section but not elsewhere. So the algorithm Γ may have no relation to the
measure P outside this section. In this case small values produced by Γ do not guarantee
anything about the measure of the rectangles that are let through, and we are in trouble.

Second non-working approach. Instead of computing the conditional probability, we may
use the actual conditional probability when the condition is an interval; unlike the limit
probability, it is computable. Imagine that we have some rectangle A × B . Then we can
compute the conditional probability of B with condition “the first coordinate is in A”, i.e.,
the ratio P (A × B)/P1(A), and let the rectangle through if this ratio is small (we assume
that there are no earlier rectangles in the same vertical stripe). This guarantees that the P -
measure of the rectangle is small; if we have several allowed rectangles with disjoint horizontal
footprints, and for each of them this conditional probability is at most ε , then the P -measure
of their union is also at most ε , since for each of them the P -measure is bounded by ε times
the horizontal size of the rectangle, and the sum of horizontal sizes is at most 1.

What is the problem with this approach? (There should be a problem, since in this
argument we do not use Γ, and this is unavoidable, as the counterexample above shows.)
The problem becomes clear if we consider the case of overlapping rectangles.

A1

A2

B1

B2

For example, imagine that the set we want to trim contains some rectangle A1 ×B1 . We
compute the conditional probability P (B1 |A1) = P (A1 ×B1)/P1(A1). (Note that P1(A1) =
P (A1 × Ω2 ), so this conditional probability is the density of the rectangle in the vertical
A1 -stripe, measured according to P .) We find that this conditional probability is slightly
less than the threshold ε , so we let this rectangle (A1 × B1 ) through. Then we discover
another rectangle A2 ×B2 where A2 is a part of A1 , but B2 is bigger than B1 (as shown in
the picture), and again find that P (B2 |A2) is slightly less than ε . But if we let the second
rectangle through, the average vertical measure of the resulting union may exceed ε . This
could happen, for example, if all the mass in A1 ×B1 is concentrated outside A2 ×B1 ; then
the conditional measure of B1 exceeds ε outside A2 and is zero inside A2 , thus leaving space
for additional measure from B2 .

So the second approach also does not work. How can we deal with this problem?

Main idea: We combine the two approaches and always check (before adding something)
that the actual conditional probability (with the interval as the condition) is close to the
tentative conditional probability computed by Γ. The latter will remain almost the same for
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smaller intervals (a valid computation remains valid when more information about the oracle
is known), so the errors related to the change will be bounded.

Details. First we need to introduce some terminology and notation. We consider basic

(=clopen) sets in Ω1 × Ω2 , i.e., finite unions of products of intervals. Every effectively open
set is a union of a computable increasing sequence of basic sets. A basic set is a rectangle if
it is the product of two clopen sets in Ω (not necessarily intervals). By a vertical stripe we
mean a rectangle S = I×Ω2 , where I is some interval in Ω1 (i.e., I consists of all extensions
of some finite string). A basic set U is stable in the stripe S = I × Ω2 if U ∩ S = I × V
for some V ⊂ Ω2 . This means that all the vertical sections of U inside S are the same; we
denote these sections by U |S .

The horizontal size h(S) of a stripe S = I × Ω is defined as P1(I) (and is equal to the
P -measure of this stripe). If a set U is stable in the stripe S , its vertical size in S is defined
as P (U ∩ S)/P (S), i.e., the conditional probability of U |S with condition I . We denote the
vertical size by v(U |S). Note that the vertical size can increase or decrease if we replace S
by a smaller stripe S ′ in S (and if it increases, say, for the left half of S , then it decreases
for the right half); so “average vertical size” would be a better name for v(U |S).

We want to trim an effectively open set U that is the union of a computable increasing
sequence of basic sets

U1 ⊂ U2 ⊂ U3 ⊂ . . .

Let us explain first which parts of U1 will be let through. We divide Ω1 into two stripes,
then divide each stripe into two halves, and so on. We use the algorithm Γ to get the
approximations for the tentative conditional probabilities for all stripes. Let us agree, for
example, that for stripes S of level n (with footprints of length 2−n ) we always make n steps
of the Γ-computation, using n first bits of the oracle α1 (i.e., the bits that are fixed for a stripe
S ) and produce some lower and upper bounds P S(V ) and P S(V ) for the tentative conditional
probability of all intervals V ⊂ Ω2 . Note that for a given V the interval [P S(V ), P S(V )]
can only decrease as S becomes smaller. We know that these intervals should converge to
P (V |α1) if we decrease the size of intervals V containing α1 ; for other points the convergence
is not guaranteed.

As soon as a stripe becomes small enough to make U1 stable in this stripe, we compute
the lower and upper bounds v(U1 |S) and v(U1 |S) for the vertical size v(U1 |S) such that
the difference between the lower and upper bounds is at most 2−n for stripes of level n.3

Unlike for P and P , the interval [v(U1 |S), v(U1 |S)] does not necessarily decrease as S
becomes smaller. Still they converge to the conditional probability of the α1 -section of U1

if S are decreasing stripes around α1 (since conditional probability is well defined for every
P1 -random point in Ω1 ).

If for some stripe S all the four numbers P S(U1 |S), P
S(U1 |S), v(U1 |S), and v(U1 |S)

are close to each other, more precisely, if all four can be covered by some interval of size δ1
(where δ1 is a small number, see below), and at the same time the upper bound v(U1 |S) is

3Since P is computable, we can compute v(U1 |S) for each U1 and S with arbitrary precision. The only
exception is the case when P (S) = 0; to avoid it, let us agree that we start processing stripe S only after
we discover that P (S) > 0. In this way we lose all stripes with P (S) = 0 but this does not matter since
these stripes do not contain random pairs (α1, α2). (Recall that our goal was to prove that (α1, α2) is not
random contrary to the assumption.)
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less than the threshold ε selected for trimming, we say that S is U1 -good and let U1 through
inside S . Note that smaller stripes may be U1 -good or not, but this does not matter at this
stage, since U1 is already let through inside S .

In this way we get a trimmed version Û1 ⊂ U1 . The set Û1 may not be a basic set, but
it is effectively open. Before going further, let us prove some properties of this construction:

1. Assume that some pair (β1, β2) is covered by U1 , the conditional probability P (·|β1)
is well defined and is computed by Γ with oracle β1 , and the β1 -section of U1 has
conditional measure (with condition β1 ) less than ε . Then (β1, β2) is covered by Û1 .

2. The P -measure of the trimmed set Û1 is at most ε .

Proof of 1: Indeed, look at the smaller and smaller stripes that contain β1 . Starting from
some point, U1 is stable in these stripes, and the vertical size and tentative probabilities
converge to some number smaller than ε . So they finally get into δ1 -interval and are all less
than ε . Therefore all small enough stripes containing β1 are U1 -good, and the β1 -section of
U1 is not trimmed.

Proof of 2: In every U1 -good stripe S the vertical size v(U1 |S) is less than ε , so the
measure of U1 inside this stripe is at most εh(S). We may consider only maximal U1 -good
stripes, and the sum of their horizontal sizes is bounded by 1.

Now we switch to the next set U2 (we should decide which part of it should remain). We
start to consider U2 only inside maximal U1 -good stripes selected at the first stage.4 Let
S be one of them. We start dividing S into smaller stripes; at some point they are small
enough to make both U1 and U2 stable. Then we start checking if they are both U1 -good
(according to our definitions) and U2 -good. The latter means that they satisfy the similar
requirement for U2 with smaller error tolerance δ2 (the four numbers for U2 are in some
δ2 -interval and the upper bound for the vertical size of U2 in the stripe is less than ε). If we
find a stripe S ′ inside S that is both U1 -good and U2 -good, then the set U2 is let through
inside S ′ . So finally we have (inside S ) the set

(S ∩ U1) ∪
⋃

S′

(S ′ ∩ U2)

where the union is taken over stripes S ′ ⊂ S that are both U1 - and U2 -good. Doing this
for all maximal U1 -good stripes S , we get the trimmed version Û2 of U2 . By construction
Û1 ⊂ Û2 ⊂ U2 .

Now the key estimate for the size of Û2 inside a maximal U1 -good stripe S :

Lemma 3. The P -measure of Û2 ∩ S is bounded by (ε+ 2δ1)h(S).

Adding these inequalities for all maximal U1 -good stripes S (they are disjoint), we see
that the total measure of Û2 is bounded by ε+2δ1 . (Note that Û2 , as well as Û1 , is contained
in the union of maximal U1 -good stripes.)

4Note that U1 -good stripe may have empty intersection with U1 , so this does not prevent us from adding
some stripes that intersect U2 but not U1 .
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Proof of Lemma 3. The measure in question can be rewritten as

P (S ∩ U1) +
∑

S′

P (S ′ ∩ (U2 \ U1))

(we separate points added on the first and second stages). This sum can be rewritten as

h(S)v(U1 |S) +
∑

S′

h(S ′)[v((U2 \ U1)|S
′)]

or
h(S)v(U1 |S) +

∑

S′

h(S ′)v(U2 |S
′)−

∑

S′

h(S ′)v(U1 |S
′)

Imagine for the moment that in the last term the condition is S , not S ′ . Then we could
combine the first and last term and get

(

h(S)−
∑

S′

h(S ′)

)

v(U1 |S) +
∑

S′

h(S ′)v(U2 |S
′) (∗)

The factors v(U1 |S) and v(U2 |S
′) are bounded by ε (for all S ′ where U2 is let through), and

the sum of horizontal sizes is just h(S), so the lemma is proven without 2δ1 -term. This term
comes because of the replacement we made: the difference between v(U1 |S) and v(U1 |S

′)
is bounded by 2δ1 , and the sum of all h(S ′) is at most h(S). Indeed, the interval between
lower and upper approximations P , P only decreases, and both sizes v(·|S) and v(·|S ′) are
in δ1 -neighborhood of every point in the smaller interval (that corresponds to S ′ ).

To simplify the accounting in the future, we can rewrite the bound we have proved. The
second term in (∗) is the size of U2 inside U1 -U2 -good stripes S ′ , while the first term plus
the error term bounded by 2δ1h(S) is the bound for the size of U1 inside U1 -stripe S minus
U1 -U2 -good stripes.

We can add these bounds for all maximal U1 -good stripes. Let G1 be their union, and let
G2 be the union of maximal U1 -U2 -good stripes (so G2 ⊂ G1 ). Then Û2 is empty outside
G1 , coincides with U1 inside G1 \G2 , and coincides with U2 inside G2 . The bounds for Û2

in the last two cases are εP (G1 \G2) + 2δ1h(G2) and εP (G2) respectively.

Another thing we need to check is the following. Assume that (1) (β1, β2) is covered by
U2 ; (2) conditional probability P (·|β1) with condition β1 is well defined and β1 -conditional
size of the β1 -section of U2 is computed by Γ with oracle β1 ; (3) this size is less than ε .
Then (β1, β2) is covered by the trimmed set. Indeed, consider smaller and smaller stripes
containing β1 . Starting from some point, both sets U1 and U2 are stable in those stripes,
all the approximations converge (both for U1 and U2 ), and the limits are less than ε . So at
some stage the stripes become both U1 - and U2 -good, and at this moment (β1, β2) is covered
(unless this happened earlier).

Now we consider the next set U3 . The same construction is used: consider maximal
U1 -U2 -good stripes selected at the second stage. For each of them we look for stripes inside
that are both U2 -good and U3 -good (the latter means that the set U3 is stable, all four
parameters are δ3 -close, and the upper bound for the vertical size is less than ε). Then we
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do the same thing as before, but not for U1 -U2 -good stripes inside some U1 -good one, but
for U2 -U3 -good stripes inside some U2 -good one. The same approach is used for U4 , U5 ,
etc.

In this way we get the set G3 that is the union of maximal U2 -U3 good stripes. In this
set U3 is let through to be included into Û3 . Then we get G4 where U4 is let through to be
included into Û4 , etc. The same reasoning as in the proof of Lemma 3 gives us the following
bounds:

Lemma 4.

• P (Ui−1 ∩ (Gi−1 \Gi)) ≤ εP (Gi−1 \Gi) + 2δi−1P (Gi);

• P (Ui ∩Gi) ≤ εP (Gi).

What have we achieved? We explained how to trim the set Uk for each k and get Ûk ⊂ Uk .
The union Û =

⋃

k
Ûk is the trimmed version of the effectively open set U we started with.

In other words, Û coincides with Ui−1 inside Gi−1 \Gi and coincides with U in ∩iGi . What
are the properties of this Û ?

• The trimming procedure is effective: the set Û is effectively open uniformly in U . This
is guaranteed by the construction.

• The P -measure of Û is small. Indeed, for each k the measure of Ûk is bounded by
ε + 2

∑

i
δi (sum of the first bounds from Lemma 4 for i = 2, . . . , k and the second

bound for i = k ). Then we note that computable δi can be chosen in such a way that
∑

δi < ε , and we achieve P (Û) ≤ 3ε , since P (Gi) ≤ 1 for all i.

• Assume that conditional probability is well defined for some condition β1 and is com-
puted by Γ with oracle β1 . Assume also that the β1 -section of U has conditional
measure less than ε and contains some β2 . Then (β1, β2) ∈ Û . Indeed, (β1, β2) be-
longs to some Ui and (under the conditions mentioned) belongs to Ûi as explained
above.

Then the proof ends in the same way as in the standard van Lambalgen theorem: since
(α1, α2) is P -random, the first coordinate α1 is P1 -random, the conditional probability
P (·|α1) is well defined, and our assumption says that it is computed by Γ with oracle α1 .
If α2 is not (Martin-Löf) random with respect to the conditional probability, we consider a
Martin-Löf test with oracle α1 for measure P (·|α1) rejecting α2 , represent its elements as
α1 -sections of a sequence of uniformly effectively open sets Ui ⊂ Ω1 × Ω2 , and trim these
sets. This gives us a Martin-Löf test with respect to measure P that rejects (α1, α2), which
contradicts the assumption.

7 Quantitative version for uniformly computable

conditional probabilities

In the previous section we started with a computable probability distribution P on Ω1 ×
Ω2 , and then defined the conditional distributions on Ω2 . However, in many cases the
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natural order could be different: we first generate a sequence ω randomly according to some
distribution P1 on Ω1 , and then generate ω′ randomly according to some distribution P ω

on Ω2 that depends on ω . If the dependence of P ω on ω is computable, then we get
some computable distribution P on Ω1 × Ω2 . It is easy to check that for P the conditional
probabilities indeed coincide with P ω , so we can apply Takahashi’s results from the preceding
section. But in this special case the argument could be easier, and a stronger quantitative
version could be obtained (as shown by Vovk and Vyugin in [12, Theorem 1, page 261],
though in somehow obscure notation).

To state this quantitative version, we need to use the notion of randomness deficiency.
More precisely, we use expectation-bounded randomness deficiency (see [3] for the details).
In other words, we consider the maximal (up to O(1)-factor) lower semicomputable function
t on Ω1 with non-negative real values (including +∞) such that

∫

Ω1

t(ω) dP1(ω) ≤ 1.

One can prove (see [3]) that such a function exists. We denote this maximal function by
tP1

(ω); the value tP1
(ω) is finite for P1 -random ω and infinite for non-random ones. Then

we switch to the logarithmic scale and define deficiency as dP1
(ω) = log tP1

(ω).
In a similar way one can define randomness deficiency for pairs with respect to P : it is

the logarithm of the maximal lower semicomputable function t(ω, ω′) on Ω1 × Ω2 such that

∫∫

Ω1×Ω2

t(ω, ω′) dP (ω, ω′) =

∫

ω

∫

ω′

t(ω, ω′) dP ω(ω′) dP1(ω) ≤ 1.

We denote this maximal function by tP (ω, ω
′) and its logarithm by dP (ω, ω

′).
We need one more variant of randomness deficiency, and it is a bit more complicated. We

want to measure the randomness deficiency of ω′ with respect to the measure P ω given some
additional information as oracle. This additional information is ω itself and some integer
(its role will be explained later). We can use the general definition of uniform deficiency (as
a function of a sequence and a measure, see [3]), but let us give an equivalent definition for
this special case. A lower semicomputable function t(ω′, ω, k) of three arguments (ω′ and ω
are sequences, k is an integer) is called a test, if

∫

ω′

t(ω′, ω, k) dP ω(ω′) ≤ 1

for every ω and k . There exists a maximal test, as usual: we may trim all the lower
semicomputable functions making them tests, and then take their sum with coefficients 1/2n

(or other converging series). Trimming is easy since ω is an argument and P ω is computable
given ω (uniformly for all ω , according to our assumption). We denote the maximal test by
tPω(ω′ |ω, k) and its logarithm by dPω(ω′ |ω, k). (We use this notation since ω is a parameter
and k is an additional condition.)

Now we can state the Vovk–Vyugin result:

Theorem 6.

dP (ω, ω
′) = dP1

(ω) + dPω(ω′ |ω,dP1
(ω)) +O(1).
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In this statement we assume that the value of dP1
(ω) in the condition is rounded to an

integer; the exact nature of rounding does not matter since it changes the deficiency only by
O(1).

Again, before proving this theorem, let us make some remarks:

• This result has high precision (up to O(1) additive term); if we were satisfied with
logarithmic precision, we could omit dP1

(ω) in the condition. Indeed, the standard
argument shows that adding condition d could increase the deficiency at most by
O(log d) and decrease it at most by O(1).

• It is easy to see that dPω(ω′ |ω, d) is finite if and only if ω′ is random with respect
to measure P ω with oracle ω (as we have mentioned, adding the condition d changes
the deficiency at most by O(log d), so [in]finite values remain [in]finite). So we get
a qualitative version: (ω, ω′) is P -random if and only if ω is P1 -random and ω′ is
P ω -random with oracle ω . (This statement generalizes the van Lambalgen theorem
and is a special case of Takahashi’s result considered in the previous section.)

• A special case of this statement, when P ω does not depend on ω and is always equal
to some computable measure P2 , gives a quantitative version of the van Lambalgen
theorem for product measure P1 × P2 .

• One can consider a finite version of this theorem. If x is a constructive object, e.g.,
a string or a pair of strings, and A is a finite set containing x, we may define the
randomness deficiency of x as an element of A in the following way:

d(x|A) = log |A| − K (x|A),

where K (x|A) is the conditional prefix complexity of x given A. It is easy to check
that d(x|A) is positive (up to O(1)-error) and that it can also be defined as a logarithm
of maximal lower semicomputable function t(x,A) of two arguments (x is an object,
A is a finite set) such that

∑

x∈A

t(x,A) ≤ 1

for each finite set A. We can also define randomness deficiency with an additional
condition as

d(x|A; y) = log |A| − K (x|A, y).

Then we can state the following equality for the deficiency of a pair (with O(1)-
precision):

d((x, y)|A× B) = d(x|A;B) + d(y |B; x,A, d(x|A;B)).

It is just the Levin–Gacs formula for the complexity of pairs in disguise. Indeed, this
statement can be rewritten (with O(1)-precision) as

log |A×B| − K (x, y |A,B) =

= log |A| −K (x|A,B) + log |B| − K (y |B, x, A, log |A| − K (x|A,B)).
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The logarithms cancel each other and we have

K (x, y |A,B) = K (x|A,B) +K (y |B, x, A, log |A| − K (x|A,B)).

which is just the Levin–Gacs theorem about prefix complexity of a pair (note that
log |A| in the condition does not matter since A is there anyway).

The proof below can be also adapted to the finite case.5

Proof of Theorem 6. We need to prove two inequalities. In each case, we construct some test
and compare it with the maximal one.

We start with the ≥-direction, proving that d(ω, ω′) is large enough. The function

T (ω, ω′) = tP1
(ω) · tPω(ω′ |ω,dP1

(ω))

(where dP1
(ω) in the argument is rounded) has integral at most 1 with respect to measure P .

Indeed,

∫

ω

∫

ω′

tP1
(ω) · tPω(ω′ |ω,dP1

(ω)) dP ω(ω′) dP1(ω) =

=

∫

ω

tP1
(ω)

∫

ω′

tPω(ω′ |ω,dP1
(ω)) dP ω(ω′) dP1(ω) ≤

∫

ω

tP1
(ω) dP1(ω) ≤ 1

(first we use that tPω is a test, and then we use that tP1
is a test). One would like to say

that this test T is bounded by the maximal test tP , but the problem is that the function T
is not guaranteed to be a test: it may not be lower semicomputable, since it uses dP1

(ω) as
a condition. To avoid this problem, we consider a bigger function

T ′(ω, ω′) =
∑

k<dP1
(ω)

2k tPω(ω′ |ω, k).

It is indeed bigger (up to O(1)-factor) since the last term in the sum coincides with T up
to O(1)-factor. This function is lower semicomputable since the property k < dP1

(ω) is
effectively open in the natural sense, and tPω is lower semicomputable. And the integral is
bounded not only for T but also for T ′ :

∫∫
[

∑

k<dP1
(ω)

2k tPω(ω′ |ω, k)

]

dP ω(ω′) dP1(ω) =

=

∫

ω

[

∑

k<dP1
(ω)

2k
∫

ω′

tPω(ω′ |ω, k) dP ω(ω′)

]

dP1(ω) ≤

∫

ω

[

∑

k<dP1
(ω)

2k
]

dP1(ω) ≤

≤ O(1) ·

∫

ω

2dP1
(ω) dP1(ω) = O(1) ·

∫

ω

tP1
(ω) dP1(ω) = O(1).

5It would be interesting to derive the statement of the infinite theorem using the formula for expectation-
bounded deficiency in terms of prefix complexity and the formula for the complexity of pairs, but it is not
clear how (and if) this can be done.
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Here we use that the sum of different powers of 2 coincides with its biggest term up to
O(1)-factor. So we have found a function T ′ that is lower semicomputable and is a test, so
T ′ and therefore T are bounded by the maximal P -test, which gives the required inequality.

Now we have to prove the reversed (≤) inequality. For that we consider the maximal
P -test tP (ω, ω

′) and the maximal P1 -test tP1
(ω). The function

ω 7→

∫

ω′

tP (ω, ω
′) dP ω(ω′)

is lower semicomputable and its integral with respect to measure P1 is at most 1, therefore
this function is bounded by O(1) · tP1

(ω). So the ratio

t(ω′, ω) = tP (ω, ω
′)/ tP1

(ω)

has bounded integral over ω′ (with respect to P ω ) for each ω (and the bound does not
depend on ω ). If t were a test, we could compare t with the maximal test tPω(ω′ |ω) and
get the desired inequality. But again the function t may not be lower semicomputable, since
it has lower semicomputable function in the denominator.

This is why we need an additional argument d for the test function. Namely, we consider

t(ω′ |ω, d) = [tP (ω, ω
′)/2d+c],

where the square brackets denote trimming that make this function a test (the integral over
ω′ for each ω and d should be bounded by 1, and the trimming should not change t(ω′ |ω, d)
if for this ω the integral was already bounded by 1). The constant c should be chosen in
such a way that for d = dP1

(ω) trimming is not needed; this is possible due to the argument
above.

It remains to compare this test with the maximal one and note that for this test the
required inequality is true by construction.

There is another generalization of the van Lambalgen theorem. In the previous results
we considered only computable measures. However, one can define uniform randomness test

as a lower semicomputable function t(ω, P ) of two arguments (where ω is a sequence, and
P is a probability distribution on the Cantor space) such that

∫

Ω

t(ω, P ) dP (ω) ≤ 1

for every P . Note that we should first define the notion of semicomputability for functions
whose arguments are measures; this can be done in a natural way (even for arguments in
an arbitrary constructive metric space, see [3] for the details). Also we can generalize this
definition by allowing points in constructive metric spaces as additional conditions. After
that one could prove that

d((ω1, ω2)|P1 × P2) = d(ω1 |P1;P2) + d(ω2 |P2;P1, ω1,d(ω1 |P1;P2)).

if all these quantities are defined in a natural way. It would be interesting to combine this
generalization with Vovk–Vyugin result (where P2 is not fixed, but depends on ω1 ). One
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possibility is to assume that P1 is a computable function of some parameter p (a point in
a constructive metric space). For example, we may let P1 = p, so P1 itself may be used
as such a parameter. Then we assume that P ω

2 (·) is a computable function of p and ω , so
the distribution on pairs also becomes a computable function of p. In this case we get the
equality

d((ω1, ω2)|P1; p) = d(ω1 |P1; p) + d(ω2 |P
ω1

2 ; p, ω1,d(ω1 |P1; p)) +O(1),

where O(1)-constant does not depend on p.
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