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a b s t r a c t

A well-quasi-order is an order which contains no infinite decreasing sequence and no
infinite collection of incomparable elements. In this paper, we consider graph classes
defined by excluding one graph as contraction. More precisely, we give a complete
characterization of graphsH such that the class ofH-contraction-free graphs is well-quasi-
ordered by the contraction relation. This result is the contraction analogue of the previous
dichotomy theorems of Damsaschke (1990) on the induced subgraph relation, Ding (1992)
on the subgraph relation, and Błasiok et al. (2015) on the induced minor relation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A well-quasi-order is a quasi-order where every decreasing sequence and every collection of incomparable elements
(called an antichain) are finite. Well-quasi-orders enjoy nice combinatorial properties that can be used in several contexts,
from algebra to computational complexity and algorithms. Since its introduction more than sixty years ago, the theory of
well-quasi-orders led to major results in Graph Theory and Combinatorics. In particular, Kruskal showed in [8] that trees
are well-quasi-ordered by homeomorphic embedding, and Robertson and Seymour proved that both theminor relation and
the immersion relation are well-quasi-orders on the class of finite graphs [11,12]. Most of the usual quasi-orders on graphs
are not well-quasi-orders in general, though. Given one of these quasi-orders, a natural line of research is to identify the
subclasses that are well-quasi-ordered. Our work is motivated by the following results.

Theorem 1 ([2]). The class of H-induced subgraph-free graphs is well-quasi-ordered by induced subgraphs iff H is an induced
subgraph of P4.1

Theorem 2 ([3]). The class of H-subgraph-free graphs is well-quasi-ordered by subgraphs iff H is a subgraph of Pn, for some
n ∈ N. See footnote 1.

Theorem 3 ([9]). The class of H-topological minor-free multigraphs is well-quasi-ordered by topological minors iff H is a
topological minor of Rn, for some n ∈ N.2
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UMO-2012/07/D/ST6/02432 (Marcin Kamiński and Jean-Florent Raymond) PRELUDIUM2013/11/N/ST6/02706 (Jean-Florent Raymond), and by theWarsaw
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∗ Corresponding author at: Institute of Computer Science, University of Warsaw, Poland.

E-mail address: jean-florent.raymond@mimuw.edu.pl (J.-F. Raymond).
1 Pn is the path on n vertices, for every n ∈ N.
2 Rn is the multigraph obtained by doubling every edge of a path on n edges, for every n ∈ N.
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Theorem 4 ([1]). The class of H-induced minor-free graphs is well-quasi-ordered by induced minors iff H is an induced minor
of the gem or K̂4.3

These results characterize the closed classes defined by one forbidden substructure that are well-quasi-orders. Like the
four containment relations on graphs mentioned in the above results, the contraction relation is not a well-quasi-order in
general. Let the diamond be the graph obtained from K4 by deleting an edge. Our main contribution in this direction is the
following result.

Theorem 5. The class of connected H-contraction-free graphs is well-quasi-ordered by contractions iff H is a contraction of the
diamond.

The requirement of connectivity in Theorem5 is necessary in the sense that for every graphH , the class of (not necessarily
connected) H-contraction-free graphs contains the infinite antichain {K i, i ∈ N≥h+1} (where h = |V (H)|) and therefore is
not a well-quasi-order. Theorem 5 can be seen as contraction counterpart of the results mentioned above.

Another line of research when dealing with quasi-orders that are not well-quasi-orders in general is to look at canonical
antichains. An antichain is canonical if for every closed subset F of the quasi-order, F is a wqo iff F has a finite intersection
with this antichain. Intuitively, a canonical antichain represents all infinite antichains of a quasi-order. As shown by the
results below, the question of the presence or absence of a canonical antichain has been studied for several containment
relations and graph classes.

Theorem 6 ([4]). Under the subgraph relation, the class of finite graphs has a canonical antichain.

Theorem 7 ([4]). Under the induced subgraph relation, the class of finite graphs does not have a canonical antichain.

Theorem 8 ([4]). Under the induced subgraph relation, both the class of interval graphs and the class of bipartite permutation
graphs have a canonical antichain.

Theorem 9 ([7]). Under the multigraph contraction relation, the class of finite (loopless) multigraphs has a canonical antichain.

We give an answer to this question for the containment relation with the following result.

Theorem 10. Under the contraction relation, the class of finite graphs does not have a canonical antichain.

The proof of Theorem 10 relies on the tools introduced in [4] that can be used to prove that a quasi-order does not have
a canonical antichain.
Organization of the paper. The proof of Theorem 5 contains three parts. The first one, given in Section 3, is a study of infinite
antichains of the contraction relation fromwhich we can deduce that if the class of H-contraction-free graphs is well-quasi-
ordered by contractions, thenH is a contraction of the diamond. Section 4 contains the second part which is a decomposition
theorem for diamond-contraction-free graphs. The last part uses this decomposition to show the well-quasi-ordering result
and is presented in Section 5. The proof of Theorem 10 is given in Section 6. Definitions of the terms and notations used are
introduced in Section 2.

2. Preliminaries

We use the notation N≥k for the set {i ∈ N, i ≥ k}, for every k ∈ N. For every set S, we denote by P (S) the collection of
subsets of S.
Graphs. All graphs in this paper are finite, simple, and undirected. We denote by V (G) the vertex set of a graph G and by E(G)
its edge set. If X ⊆ V (G), the subgraph of G induced by X, which we write G[X], is the graph with vertex set X and edge set
E(G) ∩ X2. Let C be a (not necessarily induced) cycle in a graph G. A pair of vertices {u, v} ⊆ V (C) that are not adjacent in C
is a chord of C in G if {u, v} ∈ E(G). Otherwise {u, v} is a non-chord of C in G.

A vertex v of a graph G is a cutvertex if G \ {v} has more connected components than G. A block is a maximal subgraph
that has no cutvertex. A clique-cactus graph is a graph whose blocks are cycles and cliques (cf. Fig. 1 for an example).

If G is a graph, then G is the graph obtained by replacing all non-edges by edges and vice versa. For every positive
integer r we denote by Dr the graph 2 · K1 ∪ ·Kr . In particular, D2 is the diamond. We set D = {Dr , r ∈ N} (cf. Fig. 2)
and S = {K1,r , r ∈ N}.
Subsets of vertices. If G is a graph, the degree of a subset S ⊆ V (G) is the number of vertices of V (G) \ S that have a neighbor
in S. The subset S is said to be connected if G[S] is connected. We say that S is adjacent to some vertex v (respectively some
subset S ′

⊆ V (G)) if there is an edge from v to a vertex of S (respectively from a vertex of S to a vertex of S ′).
Contractions. In a graph G, a contraction of the edge {u, v} ∈ E(G) is the operation which adds a new vertex adjacent to the
neighbors of u and v and then deletes u and v. We say that a graphH is a contraction of a graphGwheneverH can be obtained
from G by a sequence of edge contractions, what we denote by H ≤ctr G.

3 The gem is the graph obtained by adding a dominating vertex to P4 and K̂4 is the graph obtained by adding a vertex of degree 2 to K4 .
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Fig. 1. A clique-cactus graph.

Fig. 2. Graphs of D .

A contraction model of a graph H in a graph G is function ϕ: V (H) → P (V (G)) such that:

(i) for every v ∈ V (H), ϕ(v) is connected;
(ii) {ϕ(v), v ∈ V (H)} is a partition of V (G);
(iii) for every u, v ∈ V (H), the vertices u and v are adjacent in H iff the subsets ϕ(u) and ϕ(v) are adjacent in G.

This definition has several consequences. In particular, the degree of v ∈ V (H) in H is at most the degree of ϕ(v) in G. Also,
there is no model of a graph with no dominating vertex in a graph with a dominating vertex.

It is easy to check thatH is a contraction ofG iff there is a contractionmodel ofH inG. A graphG is said to exclude a graph H
as contraction, or to be H-contraction-free, if H is not a contraction of G. We denote the class of connected H-contraction-free
graphs by Excl(H).

We say that a graph H is an induced minor of a graph G if it can be obtained from G by deleting vertices and contracting
edges.
Sequences and orders. We write ⟨s1, . . . , sn⟩ the sequence containing the elements s1, . . . , sn in this order. For every set S,
we denote by S⋆ the set of all finite sequences over S, including the empty sequence. For any partial order (A, ≼), we define
the relation ≼

⋆ on A⋆ as follows: for every r =

r1, . . . , rp


and s =


s1, . . . , sq


of A⋆, we have r ≼

⋆ s if there is an increasing
function ϕ: {1, . . . , p} → {1, . . . , q} such that for every i ∈ {1, . . . , p} we have ri ≼ sϕ(i). This generalizes the subsequence
relation.
Well-quasi-orders and antichains. Given an order≼ over S, a sequence over S is said to be an antichain of (S, ≼) if its elements
are pairwise incomparable with respect to ≼. A well-quasi-order (wqo for short) is a quasi-order where every decreasing
sequence and every antichain is finite.

We will use the two classical results stated below.

Proposition 1 (Folklore). Let (A, ≼) be a quasi-order and B, C ⊆ A. If both (B, ≼) and (C, ≼) are wqo, then so is (B ∪ C, ≼).

Proposition 2 (Higman’s Lemma [6]). (A, ≼A) is a wqo, then so is (A⋆, ≼⋆
A).

If (S, ≼) is a quasi-order that is not a wqo, aminimal antichain [10] of (S, ≼) is an antichain ⟨ai⟩i∈N where for every i ∈ N,
ai is a minimal element (with respect to≼) such that there is an infinite antichain of (S, ≼) starting with


aj


j∈{0,...,i}. Observe

that every quasi-order that is not a wqo and that has no infinite decreasing sequence has a minimal antichain. For every
subset A ⊆ S, we define:

Incl(A) = {x ∈ S, ∃y ∈ A, x ≼ y and x ≠ y}.

An antichain A is fundamental if (Incl(A), ≼) is a wqo. A set F ⊆ S is said to be ≼-closed if it satisfies the following property:
∀x ∈ F , ∀y ∈ S, y ≼ x ⇒ y ∈ F .

An antichain A of a quasi-order (S, ≼) is canonical if for every ≼-closed subset F ⊆ S, we have

F ∩ A is finite ⇐⇒ (F , ≼) is a wqo.

Let us end this section by a simple observation.

Observation 1. Every sequence of graphs that is decreasing with respect to contraction is finite. In fact, in such a sequence the
number of edges is also decreasing, as every edge contraction decreases the number of edges of a graph by at least one.



4 M. Kamiński et al. / Discrete Applied Mathematics ( ) –

Fig. 3. Antiholes antichain.

A consequence of the above observation is that infinite antichains are the only obstacles for a class of graphs to be well-
quasi-ordered by the contraction relation. We deal with them in the next section.

3. Infinite antichains

A simple but crucial observation in the study of the well-quasi-orderability of classes that are defined by forbidden
structures (of any kind) is the following. If none of the graphs of an infinite antichain A contains some graph H , then
excluding H does not give a well-quasi-order. Indeed, the class obtained still contains the infinite antichain A. Let us restate
this observation in terms of contractions.

Observation 2. Let A be an infinite antichain of the contraction relation. If (Excl(H), ≤ctr) is a wqo, then all but finitely many
graphs of A contain H as contraction.

For this reason, we deal here with infinite antichains of the contraction relation. The simplest one is certainly the class
of complete bipartite graphs with one part of size two: AK = {K2,r , r ∈ N≥2}.

Lemma 1. For every p, q, p′, q′
∈ N≥2 such that p ≤ p′ and q < q′, there is no model of Kp,q in Kp′,q′ .

Proof. Let us assume for a contradiction that there is a model ϕ of Kp,q in Kp′,q′ . As Kp′,q′ has more vertices than Kp,q, there
is a vertex v of Kp,q such that |ϕ(v)| ≥ 2. Observe that every subset of at least two vertices of Kp,q that induced a connected
subgraph is dominating. Indeed, such a subsetmust contain at least a vertex from each part of the bipartition. It follows from
the definition of a model that Kp′,q′ has a dominating vertex, a contradiction. Therefore, there is nomodel of Kp,q in Kp′,q′ . �

Corollary 1. {K2,p, p ∈ N≥2} is an antichain of ≤ctr.

Recall that S is the class of stars and that D = {Dr , r ∈ N}, where Dr is the graph that can be obtained by contracting an
edge of K2,r+1, for every r ∈ N (cf. Section 2). The following will be useful later.

Observation 3. For every p ∈ N≥1, contracting one edge in Dp gives either Dp−1, or K1,p, depending on which edge is contracted.

Aswewant to identify graphsH such that (Excl(H), ≤ctr) is a wqo, wemust consider every graphH such thatA∩Excl(H)
is finite, for every antichain A. A first step towards this goal is the following observation.

Lemma 2. Let p ∈ N≥2. If H ≤ctr K2,p and H ≠ K2,p, then H ∈ D ∪ S.

Proof. Given thatH ≤ctr K2,p, there is a sequence of contractions transforming K2,p intoH . If this sequence contains only one
contraction, then it is straightforward that H = Dp−1. Therefore in the other cases H is a contraction of Dp−1. We get the
result from Observation 3 and the observation that every contraction of a graph of S (i.e. the class of stars) belongs to S. �

Observation 4. For every positive integers p, q such that p < q, we have Dp ≤ctr K2,q.

Indeed, if F is a collection of q− p edges of K2,q that all incident with the same vertex of degree p, then it is easy to check
that contracting F in K2,q yields Dp. An immediate consequence of Observation 4 is that AK ∩ Excl(Dp) is finite for every
positive integer p.

From the fact that every graph of D ∪ S is a contraction of Dp for some positive integer p, Observation 4 gives.

Observation 5. If (Excl(H), ≤ctr) is a wqo, then H ≤ctr Dp for some p ∈ N≥1.

However, we will need another antichain in order to find more properties that H must satisfy. Let us consider the
antichain of antiholes, which already appeared in [1] in the context of induced minors: AC = {C i, i ∈ N≥6} (cf. Fig. 3). This
connectionwith the inducedminor relation (where edge contractions and vertex deletions are allowed) is not surprising: as
every contraction is an induced minor, every antichain of the induced minor relation is also an antichain of the contraction
relation.

For completeness, we include the following proof.
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Lemma 3 (See Also [1, Lemma 1]). AC is an antichain of the contraction relation.

Proof. Towards a contradiction, let us assume that there is a contraction model ϕ of Cp in Cq for some integers p, q ∈ N≥3

such that p < q. Recall that the image of ϕ is a partition of Cq. As |Cp| < |Cq|, there is a vertex v of Cp such that |ϕ(v)| ≥ 2.
Observe that for every choice of two vertices of Cp there is atmost one vertexwhich is not adjacent to one of them. Therefore,
there is at most one set in {ϕ(u), u ∈ V (Cp) \ {v}} that is not adjacent to ϕ(v). This contradicts the fact that ϕ is a model of
Cp in Cq as every vertex of Cq is adjacent to all but two vertices. Consequently there is no contraction model of Cp in Cq, for
every integers p, q ∈ N≥3, p < q. �

Again, we look at graphs H such that Excl(H) ∩ AC is finite. As a wqo must contain none of AK and AC , it is enough to
consider graphs such that Excl(H) ∩ AC is finite among those for which Excl(H) ∩ AK is finite.

Lemma 4. If p ≥ 3 then Excl(Dp) ∩ AC is infinite.
Proof. For every p ≥ 3, then graphDp has independence number at least 3. Let q > p. As contracting edges can only decrease
the independence number, there is no sequence of contractions transforming Cq (which has independent number 2) to Dp,
for every integer q > p. Therefore Cq ∈ Excl(Dp), for every integer q > p. �

Corollary 2. If (Excl(H), ≤ctr) is a wqo, then H ≤ctr D2.

The next sections are devoted to graphs not containing D2 as contraction. We will first prove a decomposition theorem
for the graphs in this class, which we will use to show that (Excl(D2), ≤ctr) is a wqo.

4. On graphs with no diamond

In this section we show that graphs in Excl(D2) have a simple structure. More precisely, we prove the following lemma.
Recall that clique-cactus graphs are the graphs whose blocks are cycles or cliques.

Lemma 5. Graphs of Excl(D2) are exactly the connected clique-cactus graphs.

The proof of Lemma 5will be given after a few lemmas. If C is a cycle of a graph G and {u, v}, {u′, v′
} ⊆ V (C), we say that

{u, v} and {u′, v′
} are crossing in C if u, v, u′, v′ are distinct and are appearing in this order on the cycle.

Lemma 6. Let G be a graph and let C be a cycle in G. If C has at least one chord and one non-chord in G, then it has one chord
and one non-chord that are crossing in C.
Proof. Let {x, x′

} be a non-chord of C in G and let P and Q be the connected components of C \ {x, x′
} which obviously are

paths. Let us assume that every chord of C in G has both endpoints either in P or in Q (otherwise we are done) and let {y, y′
}

be a chord of C in G, the endpoints of which belong, say, to P . Let z be a vertex of the subpath of P delimited by y and y′ such
that z ∉ {y, y′

}, and let z ′ be a vertex of Q . If {z, z ′
} is a chord of C in G, then {x, x′

} and {z, z ′
} are satisfying the required

property. Otherwise, {z, z ′
} is a non-chord and now {y, y′

} and {z, z ′
} are crossing. �

Lemma 7. Let G ∈ Excl(D2). Every cycle of G is either an induced cycle, or it induces a clique in G.
Proof. Let G be a graph of Excl(D2) and let C be a cycle of G. Towards a contradiction, let us assume that C has at least
one chord {u, u′

} and one non-chord {v, v′
}. According to Lemma 6 we can assume without loss of generality that they are

crossing in C . Let P and Q be the two connected components of C \{v, v′
}. Contracting P to a single vertex x and Q to y yields

a graph G′ such that:
• v, x, v′, y lie on the cycle in this order;
• {v, v′

} ∉ E(G′); and
• {x, y} ∈ E(G′) (as {u, u′

} connects the subgraphs that are respectively contracted to x and y).
Notice that G′

[{v, x, v′, y}] is isomorphic to D2, however G′ may also contain other vertices. Let us consider G′
\ {v, x, v′, y}.

While G′
\ {v, v′, x, y} contains a connected component adjacent to x or y, we contract it to this vertex (that we keep

calling with the same name). Then, while it has a connected component adjacent to v but not v′ (respectively v′ but not
v), we contract it to v (respectively v′), again keeping the same name for that vertex. Finally, the only remaining connected
components (if any) are adjacent to exactly v and v′: we contract each of them to a single vertex, adjacent to v and v′.
Notice that none of these operations create an edge connecting v to v′, thus the subset {v, v′, x, y} still induces a subgraph
isomorphic toD2. Let us call G′′ the obtained graph. As observed above, G′′ consists of the subgraph isomorphic toD2 induced
by {v, v′, x, y} plus k extra vertices of degree two, z1, . . . , zk, each of which is adjacent to v and v′. In the case where k = 0,
G′′ is isomorphic to D2 and we reached the contradiction we were looking for. Otherwise, we contract {v′, y} (naming
the resulting vertex v′), which produces a complete subgraph on vertices v, v′, x, and then we contract {v, zi} for every
i ∈ {2, . . . , k} (naming the resulting vertex v). The obtained graph is a complete graph on v, v′, x, two vertices of which
(that are v, v′) are adjacent to an extra vertex, v1. This graph is isomorphic to D2, as x is not adjacent to v1, therefore we
reached a contradiction. Therefore C has either no chords or no non-chords inG. It is clear that in the first case C is an induced
cycle of G and that in the second case it induces a clique. �
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Lemma 8. Let G ∈ Excl(D2) be a 2-connected graph. Then G is either a cycle, or a clique.

Proof. We assume that |V (G)| > 1, otherwise the result is trivial. Let C be a longest cycle of G. By Lemma 7 the cycle C is
either an induced cycle, or it induces a clique in G. Let us treat these two cases separately. For contradiction we assume that
V (G) \ V (C) is not empty and we call H1, . . . ,Ht the connected components of G \ C , for some t ∈ N≥1. Let us consider the
graph G′ where Hi, which is connected, has been contracted to a single vertex hi, for every i ∈ {1, . . . , t}. Observe that G′ is
2-connected, given that G is 2-connected. Also, G′

∈ Excl(D2).
First case: C induces a clique in G′. Notice that C is then a maximal clique. Let u = h1. As C is maximal, there is a vertex
v ∈ V (C) such that {u, v} ∉ E(G′). Let x and y be two neighbors of u on C (they exist since G′ is 2-connected). These vertices
define two subpaths of C . Let R be the longest of these paths that contains v. Observe that in this case, R has at least three
vertices. The union of {u, x}, {u, y} and R is a cycle of G′ that we call C ′. According to Lemma 7, this cycle is either induced
or it induces a clique. As {u, v} ∉ E(G′), C ′ cannot induce a clique in G. On the other hand, C is not an induced cycle as every
pair of vertices of R are adjacent (and |V (R)| ≥ 3 as mentioned earlier). We reached the contradiction we were looking for.
Second case: C is an induced cycle and has at least 4 vertices. Let i ∈ {1, . . . , t}. As G′ is 2-connected, hi has at least two
neighbors on C: let x and y be two of them.

Claim 1. x and y are not adjacent.

Proof. Let us assume that {x, y} ∈ E(G′). Let C ′ be the cycle obtained from C by replacing the edge {x, y} by the path xhiy.
This cycle is not induced as x, y are not adjacent in C ′ whereas {x, y} ∈ E(G). It does not induce a clique either since x is
not adjacent with the other neighbor of y on C (which is not x as we assume that C has at least 4 vertices). This contradicts
Lemma 7 and therefore proves that {x, y} ∉ E(G). �

Every pair of distinct vertices of the cycle C defines two subpaths of C meeting only at these vertices. Let u and v be two
vertices of C such that hi has at least one neighbor in the interior of each of the subpaths of C defined by u and v, that we
will respectively call P and Q . Such vertices exist, as a consequence of Claim 1.

Let us consider the contraction H of G′ obtained by contracting the interior path of P (respectively Q ) to a single vertex
wP (respectively wQ ) and then by contracting the edge connecting hi to wP . This edge exists by definition of u and v. Then
uwPvwQ is a cycle of H where {wP , wQ } is a chord (because we contracted to wP the vertex h1 which was adjacent to both
wP and wQ ) and {u, v} is a non-chord (as they were non-adjacent vertices of the induced cycle C and that nothing has been
contracted to them). According to Lemma 7, the graphH containsD2 as contraction. AsH is a contraction of G, thenD2 ≤ctr G,
a contradiction.

In both cases we reached a contradiction, therefore V (G) \ V (C) is empty: G is a clique or an induced cycle. �

We are now ready to prove Lemma 5.

Proof of Lemma 5. The fact that a graph of Excl(D2) is clique-cactus is a straightforward corollary of Lemma 8. It is easy to
see that a clique-cactus graph does not contain D2 as contraction by noticing that D2 is a contraction of a graph if and only if
it is a contraction of one of its 2-connected components. As D2 is neither a contraction of a cycle, nor of a clique, we get the
desired result. �

5. Well-quasi-ordering clique-cactus graphs

We proved in the previous section that graphs of Excl(D2) are exactly the connected clique-cactus graphs. This section
contains the last part of the proof of Theorem 5, which is the following lemma. We conclude this section with the proof of
Theorem 5.

Lemma 9. Connected clique-cactus graphs are well-quasi-ordered by ≤ctr.

In this section, we deal with rooted graphs. A rooted graph is a graph which has a distinguished vertex, called root. The
contraction relation is extended to the setting of rooted graphs by requiring that a model of a rooted graph H in a rooted
graph G maps the root of H to a connected subgraph of G containing the root of G.

Let us denote byC the class of rooted connected clique-cactus graphs. In this class, two isomorphic graphswith a different
root are seen as different. It is clear that proving that (C, ≤ctr) is a wqo implies Lemma 9. This is what we will do.
Building blocks. Let us define three graph constructors stick:C⋆

→ C, cycle:C⋆
→ C, and clique:C⋆

→ C. Given a sequence
G0, . . . ,Gp−1


∈ C⋆ (for some p ∈ N), if U denotes the union of the graphs G1, . . . ,Gp−1, then we define;

• stick(G0, . . . ,Gp−1) is the graph obtained from U by identifying the vertices root(G0), . . . , root(Gp−1);
• cycle(G0, . . . ,Gp−1) is the graph obtained from U by adding the edges {root(Gi), root(G(i+1) mod p)} for every i ∈

{0, . . . , p − 1}; and
• clique(G0, . . . ,Gp−1) is the graph obtained from U by adding the edges {root(Gi), root(Gj)} for every distinct i, j ∈

{0, . . . , p − 1}.
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The root of stick(G0, . . . ,Gp−1), cycle(G0, . . . ,Gp−1) and clique(G0, . . . ,Gp−1) is the vertex that is the root of G0. These
constructors will allow us to encode graphs of C into sequences.

We will now decompose graphs of C along blocks.
For every block B of a graph G, let decB(G) denote the collection of all the graphs H that can be constructed from some

connected component C of G \ V (B) by adding a new vertex v adjacent to the vertices of C that are adjacent to a vertex of B
in G, and setting root(H) = v.

Observe that as soon as root(G) ∈ V (B), every graph of decB(G) is a proper contraction of G. Let dec(G) denote the union
of the sets decB(G) for every block B of G containing the root of G. The following observation is a consequence of Lemma 5.

Observation 6. For every graph G ∈ C there is a (not necessarily unique) sequence

G0, . . . , Gp−1


∈ dec(G)⋆ (for some p ∈ N)

such that G = cycle(stick(G0), . . . , stick(Gp−1)) or G = clique(stick(G0), . . . , stick(Gp−1)).

From encodings to well-quasi-ordering. The following lemma will allow us to work on sequences in order to show that two
graphs are comparable.

Lemma 10. Let G, H ∈ C⋆. If H≤ctr
⋆G, then

(i) cycle(H) ≤ctr cycle(G);
(ii) clique(H) ≤ctr clique(G); and
(iii) stick(H) ≤ctr stick(G).

Proof. LetH =

H1, . . . ,Hp


andG =


G1, . . . ,Gq


(for some positive integers p, q), and letH = cycle(H) andG = cycle(G).

For the sake of readability we will refer to Hi’s (respectively Gi’s) either as elements of H (respectively G) or as subgraphs of
H (respectively G).

If H≤ctr
⋆G, then there is, by definition of ≤ctr

⋆, an increasing function ϕ: {1, . . . , p} → {1, . . . , q} such that ∀i ∈

{1, . . . , p} , Hi ≤ctr Gϕ(i). Therefore there is a sequence of edge contractions transforming Gϕ(i) into Hi for every i ∈

{1, . . . , p}. Let us perform the following operations on G:

1. for every j ∈ {1, . . . , q} \ {ϕ(i), i ∈ {1, . . . , p}} we contract the subgraph Gj to a single vertex vj and we then contract
some edge incident with vj;

2. for every i ∈ {1, . . . , p} we contract the subgraph Gi in order to obtain the subgraph Hϕ(i).

Observe that after step 1, we obtain the graph cycle(G−), where G− can be obtained from G be deleting elements of
indices in {1, . . . , q} \ {ϕ(i), i ∈ {1, . . . , p}}. Intuitively, we contracted the graphs that do not appear in H and removed
their attachment point from the cycle. Then we replace in step 2 every graph of G− by its corresponding contraction of H .
Therefore the graph obtained at the end is cycle(H), that is H , as required.

The cases (ii) and (iii) are very similar: H can be obtained from G by following the same operations as above. �

Proof of Lemma 9. Let us assume by contradiction that (C, ≤ctr) is not a wqo. All decreasing sequences of this quasi-
order are finite (as each contraction decreases the number of edges by at least one), therefore (C, ≤ctr) contains an infinite
antichain. Let us consider a minimal antichain {Ai}i∈N of (C, ≤ctr). Let B =


i∈N dec(Ai), and let us show that (B, ≤ctr) is a

wqo. For contradiction, let us assume that it is not a wqo and let {Bi}i∈N be a minimal antichain of this quasi-order.
By definition of B, for every H ∈ B there is an integer i ∈ N such that H ≤ctr Ai (for instance, an integer i such that

H ∈ dec(Ai)). Therefore for every i ∈ N there is an integer π(i) such that Bi ≤ctr Aπ(i). Let k ∈ N be the integer such that π(k)
is minimum. Then the following sequence

A = A0, . . . , Aπ(k)−1, Bk, Bk+1, . . .

is an infinite antichain of (C, ≤ctr). Indeed, as both {Ai}i∈N and {Bi}i∈N are antichains, every pair of comparable graphs of A
involves one graph of {Ai}i∈{1,...,π(k)−1} and one graph of {Bi}i∈N≥k . Let us assume that for some i ∈ {0, . . . , π(k) − 1} and
j ∈ N≥k we have Ai ≤ Bj. Then Ai ≤ Bj ≤ Aπ(i), a contradiction with the fact that {Ai}i∈N is an antichain. The case Bj ≤ Ai
is not possible by the choice of k. This proves that (B, ≤ctr) is a wqo. According to Proposition 2, (B⋆, ≤ctr

⋆) is also a wqo.
Let B ′

= {stick(H), H ∈ B⋆
}. Item (iii) of Lemma 10 implies that any antichain in (B ′, ≤ctr) can be translated into an

antichain of the same length in (B⋆, ≤ctr
⋆), hence (B ′, ≤ctr) is a wqo. By the same argument (now using items (i) and (ii) of

Lemma 10), we deduce that the quasi-orders

({cycle(H), H ∈ B ′⋆
}, ≤ctr) and ({clique(H), H ∈ B ′⋆

}, ≤ctr)

are well-quasi-orders. Therefore U = {cycle(H), H ∈ B ′⋆
} ∪ {clique(H), H ∈ B ′⋆

} is well-quasi-ordered by ≤ctr, as a
consequence of Proposition 1. According to Observation 6, we have {Ai}i∈N ⊆ U. This contradicts the fact that {Ai}i∈N is an
infinite antichain. Therefore (C, ≤ctr) is a wqo and we are done. �

We would like to point out that with a proof similar to Lemma 9, it is in fact possible to prove that if a class G of 2-
connected graphs is wqo by ≤ctr, then so is the class of graphs whose blocks belong to G. The interested reader may have a
look at [7, Lemma 5] for a result of this flavor, see also [5, Theorem 5] and [1].

The proof of Theorem 5 is now immediate.
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Fig. 4. The situation described in Lemma 11. Arrows are directed towards larger elements.

Fig. 5. The graph W4,3 . Poles are drawn in white and semipoles in gray.

Proof of Theorem 5. Let H be a graph such that Excl(H) is a wqo. Then H ≤ctr D2, by Corollary 2. On the other hand, if
H ≤ctr D2 then Excl(H) ⊆ Excl(D2). Observe that every antichain (respectively decreasing sequence) of (Excl(H), ≤ctr) is an
antichain (respectively a decreasing sequence) of (Excl(D2), ≤ctr). As a consequence of Lemma 9 we get that (Excl(H), ≤ctr)
is a wqo and we are done. �

6. On canonical antichains

In this section, we will use the following result of Ding in order to prove Theorem 10. Fig. 4 illustrates the requirements
of the lemma.

Lemma 11 ([4, Theorem 1.1]). Let (S, ≼) be a quasi-order, let ⟨ai⟩i∈N be a sequence of elements of S and let {Wi}i∈N be a sequence
of sequences of elements of S. If we have

(i) ⟨ai⟩i∈N is a fundamental infinite antichain; and
(ii) for every i ∈ N, Wi is a fundamental infinite antichain; and
(iii) for every i ∈ N and every H ∈ Wi, ai ≼ H and there are no other comparable pairs of elements in


i∈N Wi ∪ {ai}i∈N

then (S, ≼) does not have a canonical antichain.

Note that [4, Theorem 1.1] mentions other obstructions to the existence of a canonical antichain, however we will only
use that described in Lemma 11. We will now define some sequences of graphs and show that they satisfy the properties of
Lemma 11.

For every p, q ∈ N, letWp,q be the graph obtained by adding two non-adjacent dominating vertices to the disjoint union
of K p and K2,q (see Fig. 5). These two vertices are called poles, and the two vertices corresponding to the part of K2,q of size
2 are called semipoles. Observe that the other vertices either have degree two (in which case they are adjacent to the two
poles, only), or have degree four (and they are adjacent to both poles and both semipoles).

Lemma 12. For every p, p′, q, q′
∈ N≥3, there is a model of Wp,q in Wp′,q′ iff (p, q) = (p′, q′).

Proof. Let us assume that there is a model ϕ of Wp,q in Wp′,q′ . Let v be a vertex of Wp,q of degree two. By definition of a
model, ϕ(v) must be a connected subset of degree 2 of V (Wp′,q′). Let us consider the possible choices for this subset.
First case: ϕ(v) is of the form V (Wp′,q′) \ {x, y}, for some u, v ∈ V (Wp′,q′). Therefore, V (Wp′,q′) \ ϕ(v) has two vertices. As
Wp,q has more than 3 vertices (recall that p, q ≥ 3) which are mapped by ϕ to disjoint subsets of V (Wp′,q′), this case is not
possible.
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Second case: ϕ(v) is the subset of vertices inducing the subgraph K2,q′ used in the construction of Wp′,q′ . Observe that the
poles and semipoles ofWp,q (4 vertices in total, as they are distinct from v) all have degree at least 3. Moreover,Wp′,q′ \ϕ(v)
is isomorphic to K2,p′ . As every connected subset of degree at least 3 of K2,p′ must contain a pole of this graph, there are at
most two such subsets that are disjoint. This contradicts the fact that the images by ϕ of the four poles and semipoles of
Wp,q are disjoint connected subsets of degree at least 3 ofWp′,q′ \ ϕ(v). Therefore, this case is not possible neither.
Third case: ϕ(v) = {x} for some vertex x ∈ V (Wp′,q′) of degree 2. As we reach this case for every choice of a vertex of degree
2 ofWp,q, we deduce p ≤ p′. The same argument applied to vertices of degree 4 yields q ≤ q′. Let us now consider poles and
semipoles.

Let u be a pole. Observe that according to the above remarks, ϕ(u) must be adjacent to vertices of degree two, so it
should contain a pole of Wp,q. If ϕ(u) contains in addition a vertex of degree 2 or 4 of Wp,q, then ϕ(u) is dominating. This is
not possible since u is not dominating, therefore ϕ(u) = {v} for some pole v ofWp′,q′ . Let us now assume that u is a semipole
of Wp,q. As previously, the above remarks imply that ϕ(u) is adjacent to vertices of degree 4 of Wp′,q′ . Hence ϕ(u) contains
a semipole of Wp′,q′ (it cannot contain a pole as both belong to the image of poles of Wp,q). Therefore each semipole of Wp,q
is sent to a subset of V (Wp′,q′) containing a semipole. Observe that ϕ(u) cannot contain a vertex of degree two otherwise it
would not be connected. Besides, it cannot contain a vertex of degree 4 otherwise it would be adjacent to the image by ϕ of
the other semipole of Wp,q. Consequently ϕ(u) contains a semipole of Wp′,q′ and no other vertex. We proved that for every
u ∈ V (Wp,q), the set ϕ(u) is a singleton. Therefore |V (Wp,q)| = |V (Wp′,q′)|. Given that p ≤ p′ and q ≤ q′ (as proved above),
this is possible only if p = p′ and q = q′. This concludes the proof. �

Corollary 3. {Wp,q}p,q≥3 is an antichain for ≤ctr.

For every i ∈ N≥3, let Wi = {Wi,q}q∈N≥3 .

Lemma 13. For every p, q, r ∈ N≥3, we have K2,r ≤ctr Wp,q iff r = p + 1.

Proof. Let us consider a contraction model ϕ of K2,r in Wp,q. We call X the vertices of Wp,q inducing the K2,q used in the
construction of this graph. Let us consider a vertex u of degree 2 of K2,r . Exactly as in the proof of Lemma 12, there are
three possible choices for ϕ(u). For the same reason as in this proof, the case where ϕ(u) = V (Wp,q) \ {x, y} (for some
x, y ∈ V (Wp,q)) is not possible. Therefore, either ϕ(u) = X , or ϕ(u) = {x} for some x ∈ V (Wp,q) of degree 2. Since this holds
for every vertex of degree 2 of K2,r , and asWp,q has exactly p vertices of degree 2, we deduce that r ≤ p + 1.

Let v, w denote the poles of K2,r . Because of the observation above and of the definition of a contraction model, each of
ϕ(v) and ϕ(w) must be adjacent to some vertex of degree 2 ofWp,q and these sets should not be adjacent. The only possible
choice for them is to let ϕ(v) be the singleton containing one pole of Wp,q and ϕ(w) be the singleton containing the other
pole. Observe that, in the case where p+ 1 > r , either one vertex of degree 2 ofWp,q or a vertex of X does not belong to the
image of ϕ. This contradicts the definition of a model, hence this case is not possible.

The only remaining case is thus r = p + 1. Observe that X induces a connected subgraph. It is not hard to see that
contracting X to a single vertex yields K2,p+1. �

Observation 7. Let p, q ∈ N≥3. There is no induced path on four vertices in Wp,q, neither in K2,p.

Then we successively deduce the following consequences.

Corollary 4. For every p, q ∈ N≥3, none of the graphs Wp,q and K2,p contains the gem as induced minor.

Corollary 5. No graph of Incl(Wi) and of Incl({K2,p}p∈N≥3) contains the gem as induced minor, for every i ∈ N≥3.

The following observation will allow us to use Lemma 14, which deals with induced minors.

Observation 8. Let H and G be two graphs. If both of them have a dominating vertex, then H is a contraction of G iff H is an
induced minor of G.

Lemma 14 ([1]). Graphs not containing the gem as induced minor are wqo by the induced minor relation.

The following corollaries are direct consequences of Lemma 14, Observation 8 and Corollary 5.

Corollary 6. Incl({K2,p}p∈N≥3) is wqo by ≤ctr.

Corollary 7. The graphs of Incl(Wi) with a dominating vertex are wqo by ≤ctr, for every i ∈ N≥3.

Lemma 15. Wi is a fundamental antichain, for every i ∈ N≥3.
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Proof. Let i ∈ N≥3. We need to show that (Incl(Wi), ≤ctr) is a wqo. Let us call inner edge every edge of Wp,q that is not
incident with a pole, for every p, q ∈ N≥3. Observe that if a graphH ∈ Incl(Wi) has been obtained by contracting at least one
edge incident with a pole, then H has a dominating vertex. According to Corollary 7, these graphs are wqo by ≤ctr, therefore
we will here consider graphs of Incl(Wi) that have been obtained by only contracting inner edges. We call I this class.

We first show that I is the union of the two following classes:

• the class I0 of graphs that can be obtained by adding two non-adjacent dominating vertices to K i +Dq for some q ∈ N≥0;
and

• the class I1 of graphs that can be obtained by adding two non-adjacent dominating vertices to K i + Sq for some q ∈ N≥0.

Againwe use the notion of poles to denote the two dominating vertices added to construct graphs of I0 and I1. A semipole
is either a dominating vertex of Dq (when dealing with graphs of I0), or the dominating vertex of Sq (when dealing with
graphs of I1).

Contracting an inner edge in Wi,q clearly yields a graph of I0. Now, observe that any further contraction of an edge
connecting a vertex of degree 4 to a semipole gives a graph of I0 again. If, on the other hand, we contract the edge connecting
the two semipoles, then we get a graph of I1. On a graph of I1, contracting an edge of the star (used in the construction of
this graph) still gives a graph of I1. Therefore I = I0 ∪ I1.

Let us assume that I is not wqo by ≤ctr. Therefore it has an infinite antichain. As I = I0 ∪ I1, one of I0 and I1 (at least)
has an infinite antichain. Let A be such an infinite antichain.

We now look at vertices of graphs of A that are neither poles, nor semipoles, nor have degree 2. These vertices are the
vertices of degree 2 of the copy of Dq or the vertices of degree one of the copy of Sq used in the construction of the graphs of
A (depending whether A ⊆ I0 or A ⊆ I1). We call them inner vertices.

Let A and A′ be two graphs of A such that A has less inner vertices than A′. These graphs exist since the elements of A are
distinct. Let q be the number of inner vertices of A and q′ the one of A′.

In both cases A ⊆ I0 and A ⊆ I1 we can obtain A from A′ by contracting q′
− q inner vertices of A′ to a semipole. This

contradicts the fact that A is an antichain. Therefore (I, ≤ctr) is a wqo. This implies that Wi is fundamental, as required. �

We are now ready to prove Theorem 10.

Proof of Theorem 10. Let Ai = K2,i+1 for every i ∈ N≥3.
By the virtue of Corollary 6, {Ai}i∈N≥3 is a fundamental antichain, as well as Wi, for every i ∈ N≥3, according to Lemma 15.

Also, for every i ∈ N≥3, we have Ai ≤ctr H for every H ∈ Wi (Lemma 13) and there are no other comparable pairs of elements
in


i∈N≥3

Wi ∪ {Ai}i∈N≥3 (Lemmas 12 and 13).
Hence these sequences of graphs satisfy the requirements of Lemma11,which implies that there is no canonical antichain

for the contraction relation. �
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