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Abstract. In the last decade, numerous proposals have been made to
deal with imprecision in estimation problems. Those approaches, many
of which involve dealing with interval-valued outputs, deal with the sub-
tle difference between uncertainty and imprecision. One of the crucial
points − which to our knowledge has never been addressed − is “how to
compare an interval-valued method with a precise valued method?”

The usual way to compare two estimation methods is to use bench-
mark data with ground truths and to compute a distance between the
estimates of each method and the ground truth. However, most of the
mathematical available extensions of distances are either biased in favor
of a precise approach or in favor of an imprecise approach.

This paper proposes a new tool, the weighted variation of the mid-
point distance (WVD), that is more suitable to achieve this kind of
comparison, dealing with imprecision with a particular semantic. After
reviewing existing distances, we introduce the WVD, first from an intu-
itive perspective, then from a more mathematical point of view. Its very
satisfactory properties are highlighted through an experiment.

Keywords: Interval-valued data · Imprecise probabilities · Engineering

1 Introduction

Scientists willing to consider imprecise data and methods in their analysis (such
as [1,2] or [3]) face the problem of comparing methods with interval-valued
output with methods with precisely valued outputs. In this paper, we consider
imprecise valued regression methods producing interval valued estimates of a
precise reference. One of the most usual ways for assessing a preference between
one method and another is to use a set of benchmark data to compute a dis-
tance between the output of each method and the known ground truth, the
current fashion in engineering problems being to rather use the L1 distance
(see [4] for example). However, if comparing two interval-valued methods or two
precise valued methods is straightforward, a comparison between an interval-
valued method and a precise valued method is more intricate since any existing
extension of the L1 distance is either biased towards or against imprecision: the



H. Saulnier et al.

supremum (or Hausdorff1) distance tends to disfavor imprecise valued estimates
while the infimum distance promotes immoderately imprecision.

In order to establish a preference between methods we need to compute the
distance between the reference (precise) and the estimate (precise or imprecise).
This preference must express as wisely as possible the intricate pros and cons of
using an imprecise estimation versus using a precise estimation. Figure 1 illus-
trates the kind of situation we could fall into. A reference (plain line) is estimated
(dotted line) in four different settings.

(1) (2)

(3) (4)

Fig. 1. Precise estimations (1,4) and imprecise estimation (2,3). Plain line is the ref-
erence, dotted lines are estimations.

Probably (2) would be preferred to (1). The estimation of (2) is imprecise but
informative. It describes the possible variations of the reference. On the other
hand the precise estimation of (1) gives an inaccurate description of the data.
Again (3) is better than (2), because it has narrower bounds while still being
informative. But (4) should be preferred among all, because it is both precise
and accurate.

In this paper, we propose a nice candidate to achieve this kind of ordering.
The rest of the paper will be organized in three main sections: after reviewing
existing metrics, we introduce the WVD, first from an intuitive perspective, then

1 The Hausdorff distance is also called the Pompeiu-Hausdorff distance. Here we sim-
ply refer to it as the Hausdorff distance.
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from a more mathematical point of view. Finally some experiments highlight its
very nice properties.

2 A Review of Existing Distances Between Points
and Intervals

2.1 Notations

Let R be the real line and IR be the set of closed intervals of R. X will denote a
closed interval of IR, x ∈ R its lower element, x ∈ R its upper element, x̃ = x+x

2

its center, and r = x+x
2 its radius.

Here we are interested in defining distances between a finite sequence of points
(scalar vector) and a finite sequence of intervals (interval vector). In the following
we will consider distances from a reference vector of scalars s = (s1, . . . , sN )
to an indexed collection (vector) of intervals X = (X1, . . . , XN ) where ∀i ∈
{1, . . . , N},Xi = [xi, xi]. We also denote by x̃ the vector of the center values of
X. The literature includes different alternatives to compute the distance between
pairs of intervals of the real line. Based on each of those proposals, one can
define the distance from a point s ∈ R to an interval X ∈ IR as the distance
between the singleton {s} (which is in turn an element in IR) and X. We can
therefore define the distance from s = (s1, . . . , sN ) to X as the arithmetic mean
of the distances between their components. We next review different proposals
of distances between pairs of real intervals from the literature, and construct
their associated distances from vectors of points to vectors of intervals.

2.2 Hausdorff Distance

Let (U, d) be a complete metric space. Let K(U) denote the family of non-empty
compact subsets of U . The Hausdorff distance between two non-empty compact
subsets A,B ∈ K(U) is

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

In particular, we can define the Hausdorff distance from s ∈ R to X ∈ IR as the
Hausdorff distance2 between {s} and X, i.e.:

dH(s, I) = max{sup
x∈I

d(s, x), inf
x∈I

d(s, x)} = sup
x∈I

d(s, x), (1)

The Hausdorff distance is one the most widely used distances from points to sets
[5]. If d is the L1 distance, Eq. (1) can be simplified in:

dH(s, I) = |s − x̃| + r, (2)
2 We will use the same notation dH in order to denote the mapping defined on R× IR

derived from dH : K(R) × K(R) → R. Obviously this new mapping does not satisfy
metric properties. It is not even applied to objects of the same kind.
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where x̃ and r respectively denote the mid-point and the radius of the closed
interval X = [x̃−r, x̃+r]. Computation of the distance from s ∈ R

N to X ∈ IR
N

is obtained by averaging Expression (2) on their components:

dH(s,X) =
1
N

N∑

i=1

(|si − x̃i| + ri). (3)

2.3 Mid-Spread Distance

Expression (2) considers the interval X as a pair composed of its centre x̃ and
its radius r like in the mid-spread distance approach [6], where the distance is
computed as a linear combination of the distance between the two centers and
the distance between the two radii (the radius of s being equal to 0). The mid-
spread distance between two intervals X = [x̃ − r, x̃ + r] and Y = [ỹ − r′, ỹ + r′]
is defined as:

dγ
ms(X,Y ) = |x̃ − ỹ| + γ|r − r′|.

According to it, we can define the mid-spread distance from s to X = [x̃+r, x̃+r]
as:

dγ
ms(s,X) = |s − x̃| + γr.

Based on it we can calculate the mid-spread distance from s to X as:

dγ
ms(s,X) =

1
N

N∑

i=1

(|si − x̃i| + γri), (4)

where γ ∈ R
+ is a weight given to the radius w.r.t. the mid. This approach can

be seen as a generalization of the Hausdorff distance since dH = d1ms.

2.4 Mid-Point Distance

The mid-point distance leads to a less technical distance. It is just the L1 distance
between s and x̃. Within this approach the intervals are reduced to points and
the imprecision is simply ignored. This approach is easy both conceptually and
computationally. For this reason it is used a lot in practice [7]. It is defined as:

dm(s,X) =
1
N

N∑

i=1

|si − x̃i|. (5)

It can also be considered either as a special case of the mid-spread distance,
where γ = 0 or as a two step Hausdorff distance. In this last interpretation, the
method consists of choosing, as a representative single point of the interval X,
the precise value that minimizes the Hausdorff distance of the L1 distance, i.e. its
center x̃, and then compute the usual distance between s and this representative.
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2.5 Infimum Distance

The classical way to define the distance from a point s to a set X in topology is
to consider the shortest distance from s to any point in X, i.e.:

dinf (s,X) = inf
x∈X

d(s, x). (6)

When, in particular, d denotes the L1 distance from a point s to a closed
interval X = [x̃ − r, x̃ + r], Expression (7) reduces to:

dinf (s,X) =

{
0 if x ∈ X

|x̃ − s| − r if x /∈ X
(7)

Based on this definition, we can compute the distance from s to X by averaging
expression (7) on the N components:

dinf (s,X) =
1
N

N∑

i=1

dinf (si,Xi). (8)

This definition captures the notion of imprecision, but does not have enough sep-
arating power. As a long as a point is included in the interval, the distance will be
zero. It means that an estimation consisting of intervals of the form (−∞,+∞),
i.e. a completely vacuous estimation, would always have a distance of zero to
any precise estimation, because it contains them all. This distance has exactly
the opposite flaw than the Hausdorff distance: the wider the interval, the lower
the distance. Thus an interval-valued estimation will always be considered as
less distant from a reference value than an equivalent precise-valued estimation:
∀y ∈ X, d(s,y) ≥ dinf (s,X).

3 Weighted Variation of the Mid-Point Distance

3.1 Definition

A perfect candidate would be an extension which would not penalize imprecision
when it conveys information, for example when it reflects coherently the vari-
ability of the quantities under consideration. This is in line with the guaranteed
approach of [8] and the confidence interval interpretation of imprecision [9].

The weighted variation of the mid-point distance is simply defined as the
mean of deviations from the center of the intervals weighted by the inverse of
the radius of the interval:

dw(s,X) =
1
N

N∑

i=1

r

ri
|si − x̃i|, (9)
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with

r =
1
N

N∑

i=1

ri.

It can be seen as a mid-point distance computed on a space where the imprecision
is uniform (usually unitary). It is then back-projected to the original space by
multiplying the result by the mean radius of the intervals. The weights of the
weighted extension are proportional to the inverses of the radii of the intervals.
Thus for a certain index, the wider the radius, the lower will be the impact of an
important deviation from the center of the interval. It is a very straightforward
way of translating the idea that if an interval estimation suitably describes the
variability of the reference, then it should be less penalized. Still, having wide
radii will be penalized by increasing the mean radius r.

Obviously the WVD does not satisfy metric properties. The main problem is
that if the vector X contains both intervals of strictly positive radii and degen-
erated intervals (i.e. singletons) then the WVD we propose is not defined. It
thus does not formally stand as an extension of the L1 distance. However we
shall insist that the aim of this tool is to propose a practical solution to the
unsolved problem of computing distances between points and intervals. When
we restrict its use to cases where X contains only non-degenerated intervals −
which happens most of the time in practical cases − then the WVD fulfills its
role in a way that is both very simple computationally and that makes sense
from a formal point of view.

3.2 Formal Interpretation

Let us consider a regression problem where XX : Ω → R
n denotes the vector

of attributes and Y : Ω → R represents the response variable. Let us consider
a sample of size N ((x1, y1), . . . , (xN , yN )) . Let us consider a regression model
f : RN → R and let ŷi = f(xi) be the punctual estimation of yi based on it. The
average distance d = 1

N |yi − ŷi| can be used to estimate the degree of goodness
of our model, in terms of L1 loss function. Let now Xi,α = [ŷi − cαri, ŷi + cαri]
represent a prediction interval, with (exact) confidence level 1 − α, based on xi

for the value of the response variable of another individual, randomly picked in
the subpopulation of those whose vector of attributes coincides with the vector
of attributes of the ith individual of our initial sample, xi. Due to the variability
of this subpopulation, such a response value does not necessarily coincide with
the observed yi. The length of prediction intervals in linear regression problems,
under the usual normality assumptions, takes this form of cαri. The average
radius of the N prediction intervals calculated from the sample is cαr. Let us
now consider another test sample of size N of pairs of the form (xi, y

′
i). An

unbiased estimation of 1 − α based on this test sample is:

1 − α̂ =
1
N

#{i| |ŷi − y′
i| ≤ cαri} =

1
N

#{i| |ŷi − y′
i|

ri
≤ cα}.
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Let the random variable D denote the average L1 distance between the true
values y′

i and their estimations ŷi based on the xi’s. Let us prove that the WVD
from the vector of responses y′

i to the sequence of confidence intervals Xi,α is an
unbiased estimation of the expectation of D. According to above assumptions,
for every j = 1, . . . , N, the probability that Dj is less than cα ·rj is 1−α. Further-
more, as we have shown, the relative cumulative frequency 1

N #{i| |y′
i−ŷi|
ri

≤ cα}
is an unbiased estimation of 1 − α. In other words, F̂ (cα) = 1

N #{i| |y′
i−ŷi|
ri

≤ cα}
is an unbiased estimation of the cumulative probability FDj

rj

(cα). Therefore the

relative frequency p̂(x) = 1
N

∑N
i=1 1 |y′

i
−ŷi|
ri

(x) is an unbiased estimation of the

probability P
(

Dj

rj
= x

)
= P (Dj = rj · x). Thus, the expectation of Dj is unbi-

asedly estimated by Ê(Dj) = 1
N

∑N
i=1

|y′
i−ŷi|
ri

rj . Therefore, the expectation of

D, E(D) = 1
N

∑N
j=1 E(Dj) can be unbiasedly estimated by:

Ê(D) =
1
N

N∑

i=1

|y′
i − ŷi|
ri

r.

4 Experiment

4.1 Experimental Procedure

This section aims at comparing the behavior of the proposed WVD of the L1 dis-
tance to the four other extensions we have presented in Sect. 2. The experiment
is based on a data set composed of K = 3900 8×8 subsampled patches extracted
from a 2117×3006 high resolution image of the painting La Joconde by Leonardo
Da Vinci. The reduction factor is set to 5. The subsampling procedures aims at
simulating acquisitions of images of this painting using different imagers having
the same numerical resolution but different point spread functions.

To do so, we used the so-called imprecise filtering sub-sampling method [10].
It consists of replacing the smoothing anti-aliasing kernel used to transform a
high resolution image into a low resolution image by a capacity that represents a
convex set of bell-shaped smoothing kernels. Filtering a patch with this method
leads to an interval-valued subsampled patch that represent the convex set of all
the patches that would have been obtained by subsampling the original patch
with all the kernels belonging to the so-defined convex set (here a set of uni-
modal centered smooth kernels whose support is lower than 8). Practically, each
interval-valued patch is composed of an upper patch P k and a lower patch P k

(for the kth patch).
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4.2 How Consistent Is the Weighted Variation of the Mid-Point
Distance?

This experiment aims at illustrating the fact that the extension we propose
behaves consistently. Ideally an imprecise patch contains the information of sev-
eral precise patches. Therefore a distance between imprecise and precise patches
which wisely uses the information of imprecision would behave the same way as
the L1 distance would when used to compare precise patches drawn randomly
inside the imprecise patches. The comparison is achieved by computing a ratio
of imprecise-to-precise L1 distances on various configuration of patches. If the
distribution of this ratio is centered around 1 for a large number of samples, it
means that the considered extension is consistent, because it reflects the infor-
mation conveyed by the imprecise patches in a way that is consistent with how
the L1 distance would behave on a set of precise patches. Moreover, the lower
the variance, the more consistent is the extension.

Fig. 2. Box-plot results of the first experiment computed on the four extensions.
Weighted extension is WVD.

Table 1. Moments of the ratios.

Hausdorff Infinimum Mid-points Weighted

mean 1.54 0.503 0.95 0.99

median 1.71 0.32 0.99 1.01

standard deviation 0.36 0.27 0.14 0.16
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The experiment is carried as follows. We divide the set of 3900 patches into
two subsets of 1950 patches. The motivation for separating our data into two
subsets is to compare patches having non-null distances (even if some patches
bear some similarities).

We take the first subset (k = 1, . . . , 1950) to define references by con-
sidering the mid patches P̃k = 1

2 (P k + P k). We take the second subset
(j = 1951, . . . , 3900) to define the imprecise estimations defined by their upper
(P j) and lower (P j) patches. For each imprecise patch of the second subset, we
draw 300 precise patches Pn

j (n = 1, . . . , 300) included in the imprecise patch
[P j , P j ] (300 offers a good tradeoff between a statistically meaningful sampling
of the interval and a reasonable computation time). We then compute, for each
(k, j, n) ∈ [1, 1950] × [1951, 3900] × [1, 300], a ratio-distance which is defined as:

re =
de(P̃k, [P j , P j ])

d(P
n
j , P̃k)

, (10)

where d is the (precise) L1 distance between two patches and de is one of the
extensions of the L1 distance (e ∈ {Hausdorff, infinimum, mid, weighted }. The
distribution of the ratios for the different extensions are presented as a box-plot
in Fig. 2. Table 1 shows the mean, median and standard deviation of the ratios
distributions for each extension.

As might have been expected, the Hausdorff distance always leads to an
over-evaluated distance, while, on contrary, the infimum distance leads to an
under-evaluated distance. WVD and mid-point distance seem to provide dis-
tances that are consistent in that the means of their ratios are close to 1. For
these extensions, comparing the imprecise patch with a precise one is statisti-
cally equivalent to comparing this precise patch with any patch contained in
the imprecise patch. Although the ratios computed for the WVD have a slightly
higher standard-deviation (which can be explained by the divergent behavior
it has when some intervals tend to points) a Wilcoxon test applied on all the
extensions showed the distribution of ratios of the WVD to be the closest to 1.

5 Conclusion

In this article we have introduced a new mathematical tool, the weighted vari-
ation of the mid-point distance, that allows to compare the performances of an
interval-valued method with those of a conventional precise-valued method. We
have presented its behavior through an experiment, where we compared it with
other possible alternatives, namely the Hausdorff, mid-point and infimum dis-
tances. The WVD has some problems, such as its divergent behavior when some
of the intervals radii tend to zero. However when considering a case of imprecise
estimations where the imprecision has to be informative, meaning that the radius
of the intervals should reflect the quality of the information provided, the new
tool we proposed proved itself to have the best tradeoff between informativeness
and consistency with the L1 distance.
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