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Abstract
Today, it is increasingly frequent and easy to digitize the sur-

face of real 3D objects. However, the obtained meshes are often
inaccurate and noisy. In this paper, we present a method to seg-
ment a digitized 3D surface from a real object by analyzing its
curvature. Experimental results - applied on real digitized 3D
meshes - show the efficiency of our proposed analysis, particu-
larly in a reverse engineering process.

Introduction
The availability of 3D scanners has increased the fast devel-

opment of applications in Computed-Aided Design (CAD), re-
verse engineering, medical research and inspection. Many 3D
processes need to segment an object as a preprocess. In the pro-
duction line of manufactured objects, steps can be distributed to
many partners, and some data can be missing at the end of the
line. In reverse engineering, we try to reconstruct the continuous
geometry of an object from a 3D mesh, which is discrete. This
can lead to quality control or object modification issues for exam-
ple. In fact, the mesh can be a discretization of a CAD object or
a digitized one. To reconstruct the initial geometry, we must take
into account the shape of the objects as they are related. But an
object shape can be very complex, and the measured data is often
noisy. So, we need robust 3D descriptors to accurately define the
objects shape.

In previous works, geometry descriptors like curvatures
[5, 8] allow us to deal with the 3D mesh shape. But curvatures
are locally computed, while it is often necessary to characterize
the shape globally. To do this, we can construct curvature distri-
butions [4, 10] and analyze them.

In this paper, we propose a method based on the analysis of
a digitized 3D mesh curvature histogram. We use the curvature
approximation from Bénière et al. [2] who incorporates two other
methods [5, 8]. Then, a distribution is constructed continuously
by a kernel estimation from all of the curvature values. Finally, an
accurate curvature distribution analysis is realized. In the distri-
bution, we propose to search for peaks and valleys, and automat-
ically compute segmentation thresholds. Indeed, curvature distri-
bution approximately describes the object shape, so these thresh-
olds allow us to extract points belonging to object edges. In the
proposed approach, we use the curvature histogram to segment
digitized 3D meshes.
This paper is organized as follow. We first present previous works
in this topic. Then, we expose in detail our proposed method of
3D mesh segmentation. After, we apply it on digitized 3D sur-
faces of real objects and show that our curvature analysis hugely
improves the obtained results, particularly in reverse engineering.

Finally, we conclude and propose directions for future research.

Previous works
In this section, we first present previous research in 3D mesh

segmentation. Next, we introduce curvature and previous works
on 3D curvatures. Then, we develop previous research in distri-
butions.

Segmentation
A segmentation is the partitioning of a digital image, a 3D

mesh or a 3D point cloud in several regions, as illustrated in Fig. 1.

Figure 1. Example of a segmentation: a) A 3D point cloud, b) Segmentation

of the point cloud [12].

Many different 3D mesh segmentation algorithms have been
proposed in the literature [12, 13, 14], but each segmentation gives
more or less good results depending on the chosen application.
Most of the time, a segmentation brings together points with sim-
ilar criteria. For example, the segmentation can be based on a
waterfall, hierarchical clustering, iterative merging or remeshing.
In our case, the best results are reached using curvatures, because
in reverse engineering, features are extracted from curvature anal-
ysis. Some methods use curvatures to segment by discontinuities
[3, 4] or clustering [7], but are often not robust enough around ob-
ject edges or are designed for CAD meshes [9, 1]. Indeed, curva-
tures are often wrong around object edges because adjacent points
can run over many different features. Moreover, we are searching
for a fully automatic method, so we cannot use parameters like a
cluster number or ask for user help.

Curvatures
Intuitively, curvature quantifies the deviation between a

curve and a straight line, or between a surface and a plane in 3D.
The curvature of a 2D curve at a point P equals the inverse of the
osculating circle radius r at P. The osculating circle is the circular
arc which best approximates the curve around P (Fig. 2.a).



Figure 2. Curvature representation on: a) 2D curves and b) 3D surfaces.

On a 3D surface, an infinity of curvatures exists, each com-
puted on a slice containing the normal vector of point P (Fig. 2.b).
So, we need to distinguish particular curvatures. Principal curva-
tures are minimum and maximum curvatures. If principal curva-
tures are different, their matching planes are orthogonal. The in-
tersections between these matching planes and the tangent plane
at P define the principal directions. Mean curvature and Gaussian
curvature equal respectively the mean and the product of principal
curvatures. Dong and Wang [8] compute discrete curvatures with:

kn(t) =
< Pi−P,Ni−N >

||Pi−P||2
, (1)

where Pi is a neighbor of P with a normal Ni, and~t the projection
of ~PiP on the tangent plane of P. A linear regression is also ap-
plied on all discrete curvatures, but with a coefficient fixed to the
maximum computed value.

Bénière et al. [2] compute discrete curvatures with formula 1
for each neighbor of P, and apply the linear regression of [5]. In
our work, we prefer to use this approximation because it is more
accurate. Indeed, equation 1 uses each neighbor independently
and avoids some curve distortion. Moreover, fixing a linear re-
gression coefficient when we do not know if we have computed
the real maximum curvature is dangerous. Curvatures are often
used to caracterize surface shape. So, for example, it is possible
to analyze a shape to detect saliency or apply segmentation.

Distributions
There are many different types of distributions. For exam-

ple, we can find probability, frequency or cumulative distribu-
tions. But overall, we can distinguish discrete and continous dis-
tributions. A discrete distribution is often represented by a his-
togram, as illustrated in Fig. 3.a. A histogram is a set of intervals
with the same width, usually named “bins”, which group homoge-
neous values. Each bin represents an occurence frequency of val-
ues from its interval. On the other hand, continous distributions
are numerous because they correspond to mathematical models.
Common models are Gaussian or Normal distributions (Fig. 3.b),
which are couples of a mean value µ and a standard deviation σ .

In computer science, most of the value sets are discrete.
So, to generalize methods for continuous spaces, it is necessary
to approximate a discrete distribution with a continuous model.
Most of the time, models are optimized from the measured data.
Model optimization is a minimisation of the difference between
the model and the data, updating the model until convergence. A
common optimization algorithm is the Expectation-Maximisation
(EM) [11]. For example, these distributions can be used in image
processing to improve compression [10]. Some methods in 3D

Figure 3. a) Discrete and b) Continuous distribution samples.

mesh processing also begin to use distributions, for example to
apply segmentation [4] or extract object edges [6].

Proposed digitized 3D mesh segmentation
Our proposed method first computes a discrete curvature on

each point of the initial 3D mesh. The method constructs a contin-
uous estimated and normalized histogram for each curvature, then
analyzes it. Next, a histogram analysis leads to an automatic cur-
vature threshold computation, allowing us to extract object edges.
Finally, our proposed method retrieves all disconnected regions
using many processes. An overview of our proposed method is
illustrated in Fig. 4.

Figure 4. Method overview.

In fact, we provide region growing to retrieve disconnected
regions, an artefact merging and bridge removal to handling inac-
curacies leading to wrong regions, and finally a recursivity han-
dling objects which are a composition of mechanical parts.

Probability curvature distribution
In probability and statistics, a probability distribution assigns

a probability to each measurable subset of the possible outcomes
of a random experiment, survey, or procedure of statistical infer-
ence. We can represent a probability distribution by a histogram.
But to define the probability distributions for the simplest cases,
we need to distinguish between discrete and continuous random
variables. In the discrete case, we can easily assign a probability
to each possible value. By contrast, when a random variable like
curvature takes values from a continuum then, typically, probabil-
ities can be nonzero only if they refer to intervals.



To approximate continuous curvatures on a discrete 3D
mesh, we use the method from Bénière et al. [2]. In our case,
meshes can be defined with different scales and can give different
curvature ranges. So, to construct curvature histograms which can
be compared between many objects, we must normalize curvature
values with each mesh. Moreover, curvature values are real, so it
is more suitable to estimate a continuous histogram, with kernel-
estimation for example.

Normalized curvature
Histograms must have the same range to make a comparison.

To homogenize histogram range, curvature values have to be nor-
malized. For example, our method normalizes curvature values
by multiplying them by the mean edge length of the mesh.

If the object is correctly meshed, we can deduce minimum
and maximum possible curvature values, as illustrated Fig. 5. So
we propose to limit the histogram range according to extreme pos-
sible values, since we normalize curvature by edge length.

Figure 5. Minimum and maximum possible for absolute curvature values.

Kernel estimation
Curvature values are real, so it is more suitable to compute

a histogram with a continuous estimation. Our method computes
histograms with a kernel-type estimation. We chose a gaussian
kernel because digitized meshes with only one feature often give
gaussian-type curvature distributions. We compute the histogram
with:

f̂h(x) =
1
n

n

∑
i=1

Kh(x− xi), (2)

where x is the central value of a bin, f̂h(x) is the quantity inside
the bin, n is the number of points, xi is the ith point and h is the
kernel standard deviation. The gaussian kernel is defined by:

Kh(x− xi) =
1

h
√

2π
e−

1
2 (

x−xi
h )2

. (3)

Each bin of the histogram is computed by centering the ker-
nel on it. Then, kernel density estimation (KDE) is applied on
each curvature value and added to the bin. So each bin is com-
puted with a neighborhood defined by the kernel standard devi-
ation. Fig. 6 shows an example of normalized mean curvature
distribution with a kernel deviation h = 0.01.

This continuous estimation makes histograms less sensible
to noise and bin number. Indeed, high frequency fluctuations are
naturally smoothed by the kernel.

Figure 6. Normalized mean curvature kernel-estimated histogram sample.

Distribution analysis
Many caracteristics of a histogram can be useful to many

applications. We can for example search for modal number and
positions (named “peaks” here), pattern, sparsity and statistics.
In our method, we essentialy provide robust peaks and valleys
detection, and use those to compute segmentation thresholds.

To detect homogeneous curvature intervals, we need to de-
tect peaks and valleys in the histogram, as illustrated in Fig. 7.
Here, a peak defines a dominant curvature value and a couple of
two consecutive valleys defines an homogeneous interval of cur-
vature.

We begin by detecting robust peaks (Fig. 7.b). A peak is a
bin with a higher probability than the two adjacent bins. A robust
peak is a bin with the higher probability in a window. Thus, we
can detect valleys between peaks (Fig. 7.c). For each adjacent
peaks couple, we compute the line passing through the two peaks.
Then, a valley is a bin with a higher distance to the line than the
two adjacent bins. A robust valley is a bin with the higher distance
in a window. Our method uses sliding windows of 10 bins for both
peaks and valleys detection.

Figure 7. Histogram peaks and valleys.

For valleys in the extremities, we proceed differently. Be-
cause we have only one adjacent peak, we must define another
extremity for the line. So we can compute mean Mu and stan-
dard deviation Sigma of the first and last interval values (Fig. 8.a),
and set the second extremity of the line as the matching bin with
Mu− 3× Sigma on the left and Mu + 3× Sigma on the right
(Fig. 8.b).

Figure 8. Valley computing in the histogram extremities.

Segmentation
In reverse engineering, a segmentation is often needed. In

our case, we work on digitized meshes, with point coordinate in-
accuracies and noise. To correctly segment those, we aim to ex-
tract object edges matching with intersections between geometric
features. We can retrieve disconnected and homogeneous regions
matching with these features. Finally, we also apply some post-
processing and recursivity to improve results. Our proposed seg-



mentation, based on curvature histogram analysis, is completely
automatic.

Edge extraction
Edges of an object are mesh areas caracterized by a high

curvature. We propose to extract those edges with curvature his-
togram analysis. Indeed, high curvatures are on the extremities
of curvature histograms. To detect and extract edges, we apply a
thresholding on curvature values. Our method defines two thresh-
olds, matching with the extreme left and right valleys of the his-
togram (Fig. 9). Points with curvature between the two thresholds
are labelled “uniform”, and others are labelled “edge”.

Figure 9. Edge extraction.

We can also realize multiple thresholding by taking each val-
ley couple as thresholds (Fig. 10). This method directly isolates
homogeneous intervals, but we need to be aware of potential cur-
vature inaccuracy.

Figure 10. Homogeneous areas extraction.

To improve edge detection, we may have to remove some
valleys, which are due to low sampling on some curvature inter-
vals.

Region growing
After curvature thresholding, we can retrieve connected

points by region growing. Our method retrieves triangles instead
of points, but it is based on the same principle. A triangle type is
defined by its dominant point type. Region growing is a common
algorithm that groups similar adjacent elements: take a “seed” tri-
angle and assign a unique ID (Fig. 11.a) and propagate seed ID on
its neighbors (Fig. 11.b) until it reaches the borders (Fig. 11.c).

Figure 11. Region growing algorithm.

Post-processing
Because of digitization inaccuracy, some regions obtained by

region growing can be wrong. To improve segmentation quality,
we need to take those into account. Indeed, we often have many

regions with an insufficient area, so we chose to merge them with
adjacent regions. A small region in our method is defined by an
area smaller than:

T hresholdarea = 20× 1
n

n

∑
i=1

Area(Ti), (4)

where n is the number of triangles and Ti the ith triangle.
If a small region has only one adjacent region, it can be

merged (Fig. 12). Otherwise, we prefer to remove it to avoid re-
gion connectivity modifications.

Figure 12. Small regions (grey) are merged if they only have one adjacent

region.

Sometimes, because of digitization inaccuracies, region con-
nectivity can be corrupted by small bridges (Fig. 13.a). We
chose to remove these bridges to disconnect the regions into many
subregions. To do this, we use an erosion-dilatation algorithm.
First, the connected region is eroded many times and discon-
nected subregions are retrieved by region growing (Fig. 13.b and
Fig. 13.c). Then, subregions are dilated as many times as the ero-
sion (Fig. 13.d). Finally, we can merge bridges with only one
adjacent region, and remove the others (Fig. 13.e).

Figure 13. Small bridges corrupting connectivy are removed.

Recursivity
A mechanical object can be composed of many parts with

different scales. In this case, it is not possible to compute a unique
threshold to obtain optimal results. So in our method, we choose
to apply recursive segmentation. In fact, we segment the input
mesh, then segment again each submesh with the same method,
until we obtain only one submesh after segmentation. Since our
method is based on curvature histogram analysis, each submesh
has a different histogram and we can detect object edges with
many scales.

Experimental results
This section presents three meshes from different scanners.

We apply segmentation on these meshes and show the results.
To have an accuracy with an order of magnitude of −3 and

center values around zero in the same bin, our method uses his-
tograms with 1001 bins. Choosing a good kernel standard devia-
tion is a difficult problem, so we prefer to choose it empiricaly. In
fact, our method uses a kernel with a standard deviation h = 0.01.
Moreover, we limit our histograms in the interval [−2;2] since we
normalize curvature by edge length. The whole parameter set of
our method has been validated experimentally.



Presentation of the used meshes
For experimental results, we used three digitized meshes

from two different structured light scanners. The first two come
from a first scanner and are illustrated in Fig. 14 and Fig. 15 re-
spectively. The third comes from a second scanner and is illus-
trated in Fig. 16.

Figure 14. Initial mesh from Scanner 1: Aerospace.

Figure 15. Initial mesh from Scanner 1: Moldy.

Figure 16. Initial mesh from Scanner 2: Outlet.

Segmentation result
This section presents results of our segmentation using cur-

vature histograms analysis. Each figure shows edge extraction
and final set of submeshes. For a reverse engineering application,
our results are very good, since most of the features are correctly
disconnected. Indeed, edge extraction is accurate since curvature
thresholds are computed from distribution and so are adaptative.

The sharp edges of Aerospace are properly detected
(Fig. 17.a) and the features are correctly disconnected, except for
a few tangent ones. We obtain 70 submeshes whose 94.3% match
with only one feature (Fig. 17.b).

Figure 17. a) Edges extraction and b) Segmentation of Aerospace.

The sharp edges of Moldy are properly detected (Fig. 18.a)
and the features are correctly disconnected. We note that
freeforms are not over-segmented. We obtain 48 submeshes
whose 100% match with only one feature (Fig. 18.b).

Figure 18. a) Edges extraction and b) Segmentation of Moldy.

The sharp edges of Outlet are properly detected (Fig. 19.a),
except for the serrated cylinders, and the features are almost cor-
rectly disconnected. We obtain 72 submeshes whose 100% match
with only one feature (Fig. 19.b).

Figure 19. a) Edges extraction and b) Segmentation of Outlet.

We have segmented about 30 meshes, with a processor
Intel R© Core

TM
i7-4710 CPU @ 2.50GHz. Some results are pre-

sented in Table 1.
We can see that our segmentation is fast: less than one

minute, except for very large amounts of triangles. Morover, these
times also include curvatures and mesh topology computation,
which represent a large part of the time.

To validate our approach, we count the number of submeshes
that contain only one feature. We can see in Table 1 that about
96% of submeshes match with only one feature (the remaining
4% can contain similar tangent features).

Since features are correctly disconnected, obtained results
are suitable for reverse engineering applications. Indeed, it is
more accurate and easy to extract only one feature, than many
on the same mesh, since we do not encounter curvature neighbor-
hood problems or feature intersections.

Conclusion
In this paper, we propose a new digitized 3D mesh segmen-

tation based on curvature anaylsis. Our proposed method is fully
automatic, which is an advantage for industrial applications like
reverse engineering. Our proposed segmentation first constructs
a continuous normalized curvature distribution and analyzes it.
Then, thresholds are computed from the distribution to extract
object edges. In this way, it is possible to retrieve disconnected
regions corresponding to object features. We also provide some
post-processing like artefact merging, bridge removal and recur-
sivity to improve results.

The most important part of our proposed method is the edge
extraction based on curvature distribution analysis. Indeed, final
submeshes are more homogeneous, and provide important infor-
mation for reverse engineering, like neighborhood of the feature.

In future research, we propose to analyze more precisely our
curvature distribution construction parameters, like bin number or
kernel standard derivation, to improve threshold computing accu-
racy. We can also improve post-processing in order to take more
parameters into account. A further objective consists of extending
our segmentation to natural objects.



Table 1: Segmentation performances and associated features.

Mesh Triangles Time Regions One feature regions in %
Vase 20 000 <1s 6 6 100
Fandisk 23 964 <1s 21 20 95.2
Lego 24 748 <1s 35 35 100
Lego small 26 371 <1s 10 10 100
Cup 55 552 1s 32 32 100
Yoke 62 276 1s 8 7 87.5
Manique 65 090 1s 40 33 82.5
Nespresso 71 012 1s 5 5 100
MediumBolt 89 000 2s 11 10 90.9
StripedShoe 100 000 1s 16 16 100
Connector 195 424 4s 36 33 91.7
Outlet 195 853 5s 72 72 100
Etui 210 963 5s 3 3 100
Shoe 258 994 3s 4 4 100
Czslowakei 400 026 8s 162 162 100
Part2 414 823 12s 20 20 100
Chair 500 000 7s 85 79 92.9
Gear 500 000 6s 283 279 98.6
Aerospace 799 296 16s 70 66 94.3
MasterCylinder 820 793 29s 53 49 92.5
Moldy 851 194 13s 48 48 100
Watertight 921 216 16s 40 35 87.5
OilPump 1 064 031 22s 175 169 96.6
Carter 1 067 079 34s 108 106 98.1
Pump 1 105 570 21s 518 502 96.9
MachinedBlock 1 125 832 33s 113 111 98.2
Te 1 297 428 40s 39 36 92.3
Splint 2 095 079 1m09s 21 19 90.5
Metrologic 2 159 724 1m27s 14 13 92.9
ProductPart 3 427 245 2m16s 191 182 95.3
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