. Qiu, Adding unknown bounded time delays in such models, as sketched in Section 3.4, remains to be done Possible research directions include extended models of the hybrid control system as, e.g., Markov jump systems Another promising way is the translation of the weakly-hard scheduling constraints (gathering aperiodic sampling and time delays) into stability conditions as done in (Blind and Allgöwer (2015)) to model the data loss process in a control loop. Finally the real-time scheduler itself may induce other sporadic events that could disturb the control application, Such problems may also lead to research studies integrating stochastic models of the real-time environment, 2015.

P. Andrianiaina, A. Seuret, and D. Simon, Robust control under weakened real-time constraints, IEEE Conference on Decision and Control and European Control Conference, 2011.
DOI : 10.1109/CDC.2011.6161104

URL : https://hal.archives-ouvertes.fr/hal-00640403

P. J. Andrianiaina, D. Simon, A. Seuret, J. Crayssac, and J. Laperche, Weakening Real-time Constraints for Embedded Control Systems (Research report No. RR-7831). INRIA. Retrieved from http, 2011.

K. J. Åström and B. Wittenmark, Computer-controlled systems Upper Saddle River, 1997.

J. Baillieul and P. Antsaklis, Control and Communication Challenges in Networked Real-Time Systems, Proceedings of the IEEE, vol.95, issue.1, pp.9-28, 2007.
DOI : 10.1109/JPROC.2006.887290

D. Bainov and P. Simeonov, Systems with impulse effects: Stability, theory and applications, 2001.

G. Bernat, A. Burns, and A. Llamosí, Weakly hard real-time systems, IEEE Transactions on Computers, vol.50, issue.4, pp.308-321, 2001.
DOI : 10.1109/12.919277

R. Blind and F. Allgöwer, Towards Networked Control Systems with guaranteed stability: Using weakly hard real-time constraints to model the loss process, 2015 54th IEEE Conference on Decision and Control (CDC), pp.7510-7515, 2015.
DOI : 10.1109/CDC.2015.7403405

C. Briat and A. Seuret, Convex Dwell-Time Characterizations for Uncertain Linear Impulsive Systems, IEEE Transactions on Automatic Control, vol.57, issue.12, pp.3241-3246, 2012.
DOI : 10.1109/TAC.2012.2200379

URL : https://hal.archives-ouvertes.fr/hal-00724546

G. Buttazzo and A. Cervin, Comparative assessment and evaluation of jitter control methods, Proc. 15th international conference on real-time and network systems, 2007.

G. C. Buttazzo, Hard real-time computing systems: Predictable scheduling algorithms and applications, 2011.
DOI : 10.1007/0-387-27578-9

X. Cao, P. Cheng, J. Chen, and Y. Sun, An Online Optimization Approach for Control and Communication Codesign in Networked Cyber-Physical Systems, IEEE Transactions on Industrial Informatics, vol.9, issue.1, pp.439-450, 2013.
DOI : 10.1109/TII.2012.2216537

A. Cervin, ANALYSIS OF OVERRUN STRATEGIES IN PERIODIC CONTROL TASKS, Proc. 16th ifac world congress, 2005.
DOI : 10.3182/20050703-6-CZ-1902.01076

A. Cervin, B. Lincoln, J. Eker, K. Årzén, and G. Buttazzo, The jitter margin and its application in the design of real-time control systems, 10th int. conf. on real-time and embedded computing systems and applications, 2004.

T. Chen and B. Francis, Optimal sampled-data control systems, 1995.
DOI : 10.1007/978-1-4471-3037-6

M. Cloosterman, L. Hetel, N. Van-de-wouw, W. Heemels, J. Daafouz et al., Controller synthesis for networked control systems, Automatica, vol.46, issue.10, pp.46-1584, 2010.
DOI : 10.1016/j.automatica.2010.06.017

URL : https://hal.archives-ouvertes.fr/hal-00518360

A. Cuenca, G. Gil, P. J. Arzén, K. Albertos, and P. , A predictor-observer for a networked control system with time-varying delays and non-uniform sampling, Proceedings of the european control conference, 2009.

J. Eker, P. Hagander, and K. Arzen, A feedback scheduler for real-time controller tasks, Control Engineering Practice, vol.8, issue.12, pp.1369-1378, 2000.
DOI : 10.1016/S0967-0661(00)00086-1

F. Felicioni, N. Jia, F. Simonot-lion, and . Song, Overload Management Through Selective Data Dropping, Co-design approaches for dependable networked control systems, 2010.
DOI : 10.1002/9781118557679.ch5

URL : https://hal.archives-ouvertes.fr/inria-00433112

C. Fiter, L. Hetel, W. Perruquetti, and J. Richard, A robust stability framework for LTI systems with time-varying sampling, Automatica, vol.54, pp.56-64, 2015.
DOI : 10.1016/j.automatica.2015.01.035

URL : https://hal.archives-ouvertes.fr/hal-01194561

J. Hansen, S. Hissam, and G. A. Moreno, Statistical-based WCET estimation and validation, 9th international workshop on worst-case execution time (WCET) analysis ecrts'09. Dagstuhl, 2009.

J. Hespanha, P. Naghshtabrizi, and Y. Xu, A Survey of Recent Results in Networked Control Systems, Proceedings of the IEEE, vol.95, issue.1, pp.138-162, 2007.
DOI : 10.1109/JPROC.2006.887288

L. Hetel, J. Daafouz, and C. Iung, Stabilization of Arbitrary Switched Linear Systems With Unknown Time-Varying Delays, IEEE Transactions on Automatic Control, vol.51, issue.10, pp.51-1668, 2006.
DOI : 10.1109/TAC.2006.883030

URL : https://hal.archives-ouvertes.fr/hal-00121714

L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman et al., Recent developments on the stability of systems with aperiodic sampling: An overview, Automatica, vol.76, pp.309-335, 2017.
DOI : 10.1016/j.automatica.2016.10.023

URL : https://hal.archives-ouvertes.fr/hal-01363448

B. Hu and A. N. Michel, Stability analysis of digital feedback control systems with time-varying sampling periods, Automatica, vol.36, issue.6, pp.897-905, 2000.
DOI : 10.1016/S0005-1098(99)00217-4

S. K. Khaitan and J. D. Mccalley, Design Techniques and Applications of Cyberphysical Systems: A Survey, IEEE Systems Journal, vol.9, issue.2, pp.350-365, 2015.
DOI : 10.1109/JSYST.2014.2322503

E. A. Lee, Cyber Physical Systems: Design Challenges, 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), 2008.
DOI : 10.1109/ISORC.2008.25

URL : http://chess.eecs.berkeley.edu/pubs/427/Lee_CyberPhysical_ISORC.pdf

S. Lucia, M. Kögel, P. Zometa, D. E. Quevedo, and R. Findeisen, Predictive control, embedded cyberphysical systems and systems of systems ??? A perspective, Annual Reviews in Control, vol.41, pp.193-207, 2016.
DOI : 10.1016/j.arcontrol.2016.04.002

J. Moyne and D. Tilbury, The Emergence of Industrial Control Networks for Manufacturing Control, Diagnostics, and Safety Data, Proceedings of the IEEE, pp.29-47, 2007.
DOI : 10.1109/JPROC.2006.887325

R. M. Murray, K. J. Åström, S. P. Boyd, R. W. Brockett, and G. Stein, Future directions in control in an information-rich world, IEEE Control Systems Magazine, vol.23, issue.2, 2003.
DOI : 10.1109/mcs.2003.1188769

J. Olm, G. Ramos, and R. Costa-castelló, Stability analysis of digital repetitive control systems under time-varying sampling period, IET Control Theory & Applications, vol.5, issue.1, pp.29-37, 2011.
DOI : 10.1049/iet-cta.2009.0308

J. Qiu, H. Gao, and S. X. Ding, Recent Advances on Fuzzy-Model-Based Nonlinear Networked Control Systems: A Survey, IEEE Transactions on Industrial Electronics, vol.63, issue.2, pp.1207-1217, 2016.
DOI : 10.1109/TIE.2015.2504351

J. Qiu, Y. Wei, and H. Karimi, New approach to delay-dependent <mml:math altimg="si0018.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi mathvariant="script">H</mml:mi></mml:mrow><mml:mrow><mml:mo>???</mml:mo></mml:mrow></mml:msub></mml:math> control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions, Journal of the Franklin Institute, vol.352, issue.1, pp.189-215, 2015.
DOI : 10.1016/j.jfranklin.2014.10.022

R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, Cyber-physical systems, Proceedings of the 47th Design Automation Conference on, DAC '10, 2010.
DOI : 10.1145/1837274.1837461

D. Robert, O. Sename, and D. Simon, SYNTHESIS OF A SAMPLING PERIOD DEPENDENT CONTROLLER USING LPV APPROACH, 5th ifac symposium on robust control design rocond'06, 2006.
DOI : 10.3182/20060705-3-FR-2907.00040

URL : https://hal.archives-ouvertes.fr/inria-00385255

D. Robert, O. Sename, and D. Simon, An <formula formulatype="inline"><tex Notation="TeX">$H_{\infty} $</tex></formula> LPV Design for Sampling Varying Controllers: Experimentation With a T-Inverted Pendulum, IEEE Transactions on Control Systems Technology, vol.18, issue.3, pp.741-749, 2010.
DOI : 10.1109/TCST.2009.2026179

E. Roche, O. Sename, and D. Simon, An LFR approach to varying sampling control of LPV systems: Application to AUVs, 2012 1st International Conference on Systems and Computer Science (ICSCS), 2012.
DOI : 10.1109/IConSCS.2012.6502473

URL : https://hal.archives-ouvertes.fr/hal-00746959

E. Roche, O. Sename, D. Simon, and S. Varrier, A hierarchical Varying Sampling H??? Control of an AUV, Ifac world congress, 2011.
DOI : 10.3182/20110828-6-IT-1002.01580

URL : https://hal.archives-ouvertes.fr/hal-00640404

A. Sala, Computer control under time-varying sampling period: An LMI gridding approach, Automatica, vol.41, issue.12, pp.41-2077, 2005.
DOI : 10.1016/j.automatica.2005.05.017

A. Sala, Á. Cuenca, and J. Salt, A retunable PID multi-rate controller for a networked control system, Information Sciences, vol.179, issue.14, pp.2390-2402, 2009.
DOI : 10.1016/j.ins.2009.02.017

F. A. Shirazi, M. Velni, J. Grigoriadis, and K. M. , An LPV design approach for voltage control of an electrostatic MEMS actuator. Microelectromechanical Systems, Journal, vol.20, issue.1, pp.302-311, 2011.

S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and design, 2005.

J. Yoneyama, Robust control of uncertain fuzzy systems under time-varying sampling. Fuzzy Sets and Systems, pp.859-871, 2010.
DOI : 10.1016/j.fss.2009.06.010