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Introduction
In this report, we give the complete proof of the theorem 1 of the paper [1]. This

theorem states that the method described in the paper meets 4 requirements.
The proof is given for each of these requirements.

Requirement 1 (Optimally using the segment length)

Let us define the nodes vy and v}y such that v; = ¢~*(1) and vy = o~ (|V]).
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We therefore obtain the required values for the first and last node positions.
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Requirement 2 (No overlapping)

We first develop the definition of f(v) as follows, given that (u,v) € V2 and
o(u) < o(v):
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We isolate from 327 (51 (i)) the nodes ordered until u through the o ordering
function:

1) = /() + () — /) — 22
o(u) o(v) (9)
FY s Y sl @)
=1 i=o(u)+1

By adding # — # to the right term of the equation, we identify the definition

of f(u) and rewrite f(v) w.r.t. f(u):
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We extract from Zj:(?(u)ﬂ s(0=1(4)) the size of v, thus obtaining an expression
of f(v) as a sum of positive terms, provided that p’(v) — p'(u) is known to be
positive.
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For two nodes (u,v) € V2 such that o(u) < o(v), p’(v) — p'(u) > 0. Moreover,
the sum of node sizes 327" s(o1(i)) is positive. As a result:
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and by extension:
V(u,v) € V2, [ f(v) = f(u)] 2 s(u)/2 + 5(v) /2. (15)
O

Requirement 3 (Preserving initial ordering)
From the proof of Requirement 2, we know that for two nodes (u,v) € V2 such

that o(u) < o(v), f(v)— f(u) > s(u)/2+s(v)/2. Since s(u)/2+ s(v)/2 is strictly
positive, so is f(v) — f(u). Hence, V(u,v) € V2, o(u) < o(v) = f(u) < f(v). O

Requirement 4 (Preserving relative distances)

Lemma 1. The distance between two consecutive nodes u and v in the final
layout is equal to the difference p'(v) — p'(u). More formally, given two nodes
(u,v) € V2,

o(u) +1=0v) = f(v) - == = (f(u) + =) =p'(v) = p'(u)

Proof. Let us denote D as f(v) — @ —(f(u)+ 5(2”)). We further develop D by
applying the definition of f(v):
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Then by applying the definition of f(u) = p/(u) — 2% + 37 s(o=1(4):

o(v) o)
D =p'(v) —s(v) + Z s(o™ (i) = p'(u) = Y s(o7" (1)) (18)



As o(v) = o(u) + 1, 7% s(672(i)) — 327 s(0=1(i)) = s(v), the previous
equation can be simplified to proove Lemma 1:

By applying Lemma 1, we need to prove that:
p(v) = p(u) = p(v') — p(u') = p'(v) = p'(u) = p'(v') = p'(u')
We first develop p’(v) — p’(u) by applying the definition of p:

p’(’u) 7p/(u) _ p(v) — Pmin « O — p(u) — Pmin % C (21)
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where C' = (I = .y s(x)), and C > 0. Then:
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Since ¢/ = —Y_ is positive, we obtain that:

Pmaz —Pmin

p(v) = p(u) > p(v') = p(u') = C" (p(v) — p(u)) > C’ (p(v') — p(u))
p(v) = p(u) > p(v') = p(u') = p'(v) = p'(u) > p'(v') = p'(u)
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