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Node Overlap Removal for 1D Graph Layout: Proof of Theorem 1

Introduction

In this report, we give the complete proof of the theorem 1 of the paper [START_REF] Fadloun | Node Overlap Removal for 1D Graph Layout[END_REF]. This theorem states that the method described in the paper meets 4 requirements. The proof is given for each of these requirements.

Requirement 1 (Optimally using the segment length)

Let us define the nodes v 1 and v |V | such that v 1 = σ -1 (1) and

v |V | = σ -1 (|V |). f (v 1 ) = p (v 1 ) - s(v 1 ) 2 + σ(v1) i=1 s(σ -1 (i)) (1) = 0 - s(v 1 ) 2 + s(v 1 ) (2) = s(v 1 ) 2 (3) f (v |V | ) = p (v |V | ) - s(v |V | ) 2 + σ(v |V | ) i=1 s(σ -1 (i)) (4) = l - v∈V s(v) - s(v |V | ) 2 + v∈V s(v) (5) = l - s(v |V | ) 2 (6)
We therefore obtain the required values for the first and last node positions.

Requirement 2 (No overlapping)

We first develop the definition of f (v) as follows, given that (u, v) ∈ V 2 and σ(u) < σ(v):

f (v) = p (v) - s(v) 2 + σ(v) i=1 s(σ -1 (i)) (7) = p (u) + p (v) -p (u) - s(v) 2 + σ(v) i=1 s(σ -1 (i)) (8) 
We isolate from

σ(v)
i=1 s(σ -1 (i)) the nodes ordered until u through the σ ordering function:

f (v) = p (u) + p (v) -p (u) - s(v) 2 + σ(u) i=1 s(σ -1 (i)) + σ(v) i=σ(u)+1 s(σ -1 (i)) (9) 
By adding s(u) 2 -s(u) 2 to the right term of the equation, we identify the definition of f (u) and rewrite f (v) w.r.t. f (u):

f (v) =   p (u) - s(u) 2 + σ(u) i=1 s(σ -1 (i))   + p (v) -p (u) - s(v) 2 + σ(v) i=σ(u)+1 s(σ -1 (i)) + s(u) 2 (10) = f (u) + p (v) -p (u) - s(v) 2 + σ(v) i=σ(u)+1 s(σ -1 (i)) + s(u) 2 (11)
We extract from

σ(v)
i=σ(u)+1 s(σ -1 (i)) the size of v, thus obtaining an expression of f (v) as a sum of positive terms, provided that p (v) -p (u) is known to be positive.

f (v) = f (u) + p (v) -p (u) + s(v) 2 + σ(v)-1 i=σ(u)+1 s(σ -1 (i)) + s(u) 2 (12)
which is equivalent to:

f (v) -f (u) = p (v) -p (u) + s(v) 2 + σ(v)-1 i=σ(u)+1 s(σ -1 (i)) + s(u) 2 (13) 
For two nodes (u, v) ∈ V 2 such that σ(u) < σ(v), p (v) -p (u) ≥ 0. Moreover, the sum of node sizes σ(v) i=1 s(σ -1 (i)) is positive. As a result:

f (v) -f (u) ≥ s(u) 2 + s(v) 2 (14)
and by extension:

∀(u, v) ∈ V 2 , |f (v) -f (u)| ≥ s(u)/2 + s(v)/2. ( 15 
)
Requirement 3 (Preserving initial ordering)

From the proof of Requirement 2, we know that for two nodes (u, v)

∈ V 2 such that σ(u) < σ(v), f (v) -f (u) ≥ s(u)/2 + s(v)/2. Since s(u)/2 + s(v)/2 is strictly positive, so is f (v) -f (u). Hence, ∀(u, v) ∈ V 2 , σ(u) < σ(v) ⇒ f (u) < f (v).
Requirement 4 (Preserving relative distances)

Lemma 1. The distance between two consecutive nodes u and v in the final layout is equal to the difference p (v) -p (u). More formally, given two nodes

(u, v) ∈ V 2 , σ(u) + 1 = σ(v) ⇒ f (v) - s(v) 2 -(f (u) + s(u) 2 ) = p (v) -p (u) Proof. Let us denote D as f (v) -s(v) 2 -(f (u) + s(u)
2 ). We further develop D by applying the definition of f (v):

D = p (v) - s(v) 2 + σ(v) i=1 s(σ -1 (i)) - s(v) 2 -(f (u) + s(u) 2 ) (16) = p (v) -s(v) + σ(v) i=1 s(σ -1 (i)) -(f (u) + s(u) 2 ) ( 17 
)
Then by applying the definition of

f (u) = p (u) -s(u) 2 + σ(u) i=1 s(σ -1 (i): D = p (v) -s(v) + σ(v) i=1 s(σ -1 (i)) -p (u) - σ(u) i=1 s(σ -1 (i)) (18) As σ(v) = σ(u) + 1, σ(v) i=1 s(σ -1 (i)) - σ(u)
i=1 s(σ -1 (i)) = s(v), the previous equation can be simplified to proove Lemma 1:

f (v) - s(v) 2 -(f (u) + s(u) 2 ) = p (v) -s(v) -p (u) + s(v) (19) = p (v) -p (u) (20) 
By applying Lemma 1, we need to prove that:

p(v) -p(u) ≥ p(v ) -p(u ) ⇒ p (v) -p (u) ≥ p (v ) -p (u )
We first develop p (v) -p (u) by applying the definition of p: 

p (v) -p (u) = p(v) -p min p max -p min × C - p ( 

  u) -p min p max -p min × C(21)where C = (l -x∈V s(x)), and C ≥ 0. Then:p (v) -p (u) = C p(v) -p(u) p max -p min (22) = C p max -p min × (p(v) -p(u)) is positive, we obtain that:p(v) -p(u) ≥ p(v ) -p(u ) ⇒ C (p(v) -p(u)) ≥ C (p(v ) -p(u )) p(v) -p(u) ≥ p(v ) -p(u ) ⇒ p (v) -p (u) ≥ p (v ) -p (u )