N
N

N

HAL

open science

Reconfigurable Service-Based Architecture Based on
Variability Description
Seza Adjoyan, Abdelhak-Djamel Seriai

» To cite this version:

Seza Adjoyan, Abdelhak-Djamel Seriai. Reconfigurable Service-Based Architecture Based on Variabil-
ity Description. SAC: Symposium on Applied Computing, Apr 2017, Marrakech, Morocco. pp.1154-

1161, 10.1145/3019612.3019767 . lirmm-01527185

HAL Id: lirmm-01527185
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01527185

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01527185
https://hal.archives-ouvertes.fr

Reconfigurable Service-Based Architecture Based on
Variability Description

Seza Adjoyan
LIRMM, CNRS, University of Montpellier
Montpellier, France
adjoyan@lirmm.fr

ABSTRACT

Self-adaptive systems evolve during system’s execution against

changes in operating environment. Such evolution and re-
configuration can be specified at architecture level using
a syntactical expressive language such as Architecture De-
scription Languages (ADLs). Variability modeling is an ex-
cellent instrument to model variations of software artifacts
and their behavior within a self-adaptive system. How-
ever, existing ADLs that support dynamic reconfiguration
do not explicitly model variation points on which the recon-
figuration is based. This constitutes a barrier for a flexi-
ble management of reconfiguration at architecture level as
well as traceability issues between a dynamic description
given at architectural level and its counterpart at other ab-
straction levels. In this paper, we propose a variant-rich
service-oriented ADL that enables system to reconfigure it-
self at runtime in response to a context change. To this
end, our modular ADL, called Dynamic Service-Oriented
Product Lines Architecture Description Language (DSOPL-
ADL), specifies dynamic reconfigurations at architecture level
besides specifying structural, variability and context infor-
mation. Among several specified variable configurations at
architecture level, one concrete configuration is generated at
runtime triggered by a context value. Furthermore, an im-
plementation code can be automatically generated from the
architectural description.

CCS Concepts

eSoftware and its engineering — Software architec-
tures; Software development process management;

Keywords

Architecture Description Language (ADL); variability; dy-
namic reconfiguration; architecture-centric reconfiguration;
self-adaptive service-based systems; context-aware

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SAC 2017, April 03-07, 2017, Marrakech, Morocco

© 2017 ACM. ISBN 978-1-4503-4486-9/17/04. .. $15.00

DOL: http://dx.doi.org/10.1145/3019612.3019767

Abdelhak-Djamel Seriai
LIRMM, CNRS, University of Montpellier
Montpellier, France
seriai@lirmm.fr

It may happen that software architecture needs to evolve
after its deployment [8]. Such an architecture is considered
dynamic, since it can modify itself and adopt modifications
during system’s execution [5]. This is a required property
in systems where stopping the execution to make modifica-
tions on it might cause dramatic effects. Relying on dynamic
architecture can be useful in self-configurable systems. Self-
configurable (or self-adaptive) systems aim to adapt their
various artifacts autonomously as well as change their con-
figuration dynamically in response to changes in the operat-
ing environment (i.e. context changes) without human in-
teraction [7], [12], [10]. Dynamic adaptive systems are used
in different domains of application such as natural catastro-
phe prevention (e.g. flood warning), traffic control system,
e-commerce applications.

Reconfiguration can be specified at architecture level using
an Architecture Description Language (ADL). ADL is a for-
malism that allows the specification of system’s conceptual
architecture [19]. It describes a high-level structure of the
system rather than implementation details. Conventional
ADLSs support only static architecture description [18], [9].
Some ADLs, however, support dynamic architecture descrip-
tion, such as [17], [4], [18], [14], [13], [21].

Dynamic reconfiguration of software artifacts is often dis-
cussed only at implementation level. Such a late reconfigu-
ration hinders the traceability of configuration and consis-
tency between different levels of the software development
life cycle. However, there are some approaches that discuss
reconfiguration issues at early stages of development pro-
cess, for example at architecture or design levels, such as [4],
[14], [18]. In these approaches, reconfiguration is expressed
in an ad-hoc manner; reconfiguration is described without
any explicit identification and separation of concerns. This
makes the configuration description hard to understand and
the reconfiguration hard to implement. It also hinders a
full management of dynamic reconfiguration at architecture
level. Moreover, it constitutes a challenge to trace dynamic
reconfiguration description/ management at different levels
of abstraction.

In this paper, we propose to specify a dynamic recon-
figuration at architecture level based on variability descrip-
tion. Variability modeling allows an explicit specification of
configurable artifacts. More precisely, we extend our previ-
ous proposition of a modular ADL called Dynamic Service-
Oriented Product Lines Architecture Description Language
(DSOPL-ADL) [2] by enriching the static description with
dynamic reconfiguration specifications. This enables a dy-
namic self-reconfiguration of system at runtime in response

to a context change. Moreover, we propose a process that
generates, among several variable configurations described
in reference architecture, a concrete configuration that sat-
isfies context values. Furthermore, we automatically gener-
ate an executable implementation code from our concrete
architectural description.

The rest of this paper is organized as follows: in section
2, we briefly present the modular Dynamic Service-Oriented
Product Lines Architecture Description Language (DSOPL-
ADL) through an illustrative example. In section 3, we
present our approach of self-reconfigurable architecture de-
scription based on variability information. In section 4, we
show how we can generate a concrete architecture and how
to transform it to an executable language. Before conclud-
ing, in section 5, we present related work that propose ADLs
that comprise dynamic description of reconfiguration.

2. BACKGROUND
2.1 Illustrative Example

We will use an illustrative example to demonstrate con-
cepts related to our proposed approach. This example is
about a simplified on-line sales scenario between four ser-
vices; customer, retailer, warehouse and shipping, as illus-
trated in figure 1. The customer can access retailer’s web-
site, browse the catalog, select some items and command
an order. The retailer fulfills customer’s order request and
inquires the warehouse to prepare all items of the order.
Once the order is prepared, the shipping service handles the
delivery of items to the customer in question.

<<composite_service>>
supply_chain_management_service

<<atomic_service>> . <<atomic_service>>
atomic_service i_goods -<atomic_service

retailer_ CC warehouse_
service service

iorder%/ ![))VIPorder

<<service>> <<abstract_service>>
customer_ shipping_
service service

i_shipment

Figure 1: Illustrative example: On-line sales sce-
nario architecture

2.2 Variability-Based Static DSOPL-ADL

DSOPL-ADL is a service-based and variant rich descrip-
tion language that specifies four main types of architectural
information: (i) structural description, which specifies the
architecture in terms of its structural artifacts, (ii) variabil-
ity description defines variation points and alternatives on
which system’s configuration is based, (iii) context informa-
tion, to which service configurations adapt and (iv) config-
uration description describes possible static configurations
based on context and variability information.

As structural description, we represent architecture’s main
artifacts in terms of services, interfaces and their provided
operations. A service is an encapsulated unit that inter-
acts with other services through interfaces. Each service

has a number of provided interfaces and may consume a
number of required interfaces. Interfaces define a number
of operations that are provided by the service. The system
is hierarchically decomposed into finer-grained services. A
composite service does not execute or implement any func-
tionality by itself, but it delegates its task to one of its child
services called atomic services. Listing 1 shows a part of
the structural description related to our illustrative example.
We can notice that "retailer” and "warehouse” services are
atomic services of the composite service “supply chain man-
agement”. "Retailer” service has two interfaces; one provider
interface named i_order, which provides two operations and
one consumer interface named i_goods_request.

Listing 1: Structural Description of Sales Scenario

<structural_description>
<service name="supply_chain_management_service" is_atomic="N
R
<interfaces>...</interfaces>
<sub-architecture>
<service name='"retailer_service"
<interfaces>
<interface name="i_order" role="provides'">
<operations>
<operation name="submit_order_request" ...> </
operation>
<operation name='"get_catalog" ...> </operation>
</operations>
</interface>
<interface name="i_goods_request" role="consumes">
. </interface>
</interfaces>
</service>
<service name="warehouse_service"
service>
</sub-architecture>
</service>

. is_atomic="Y">

is_atomic="Y">...</

</structural_description>

In addition to structural description, in DSOPL-ADL, we
handle variability information as first-class elements. In
variability description, we distinguish three types of vari-
ability: (i) service variability, where a variation point spec-
ifies different available alternative services (ii) connection
variability, since two services can be differently connected
to each other according to constraint’s satisfaction and (iii)
composition variability, where a set of interconnected ser-
vices may vary, thus the importance to specify such a vari-
ability type.

As an example of variability description, we demonstrate
in listing 2 a service variability. Here, the abstract “ship-
ping” service is a variation point and has two alternative
services; either a "relay point” shipping or "home delivery”
shipping. During system execution, one of these alterna-
tives and upon condition satisfaction, replaces the abstract
”shipping” service.

Listing 2: Service variability description example

<variability_description>
<variation_point name="shipping variation_point"

variation_type="service" ...>
<alternatives>
<alternative name="home delivery" ...>
<constraints> ... </constraints>
</alternative>
<alternative name='"relay point" ...>
<constraints> ... </constraints>

</alternative>
</alternatives>
</variation_point>
</variability_description>

Context elements need to be described in a self-adaptive
architecture. Therefore, we include context description as
first-class architectural elements to allow context-aware con-
figurations (i.e. autonomous adaptation according to con-
text changes). A context could either be primitive or com-
posite (several primitive context information contribute to
provide a complex context information).

3. DYNAMIC ARCHITECTURE DESCRIP-

TION BASED ON VARIABILITY DESCRIP-

TION

In systems where its environment remains unchanged dur-
ing system execution, a static ADL that describes system’s
structural and behavioral specifications could be sufficient.
In static ADL, architecture’s configuration description al-
lows specifying all available configuration rules. However,
one valid configuration can be selected at design time and
it can not be reconfigured during execution. Reconfigura-
tion specification in DSPOL-ADL is here discussed where
a dynamic architecture is specified based on variability de-
scription.

3.1 Behavioral Activities

To capture the reconfiguration aspect of a dynamic ar-
chitecture, we first represent the different inter-service com-
munications (i.e. message flows) which are realized through
message passing. Architectural behavior is based on three
activities:

1. receive: In this type of uni-directional communica-
tion, a consumer service (i.e. client) sends a mes-
sage to the service provider without expecting any
instant response. Consequently it only specifies an
input message and requires no output message. The
receive element specifies the consumer service using
consumer_instance attribute and its interface using
consumer_interface attribute. It also specifies the
service provider through provider_instance attribute
and its interface provider_interface. The consumer
service triggers the execution of a specific operation at
the provider’s side which is specified in the operation
attribute. Finally, the arguments passed to the opera-
tion are carried on input_message attribute.

2. respond communication is used to reply to a message
that was previously received through a receive com-
munication. In that case, values of consumer_instance,

consumer_interface, provider_instance and provider

_interface attributes match the same attributes’ val-
ues of the corresponding receive communication. The
response message is passed on the output_message at-
tribute.

3. invoke: In this type of communication, the service
provider receives a message from the service consumer
and should in his turn respond by a message. The re-
ceiving message is carried on the input message, whereas
the response is returned on the output message. In
order to invoke a provider service, the bi-directional

configuration_description

[

1
1

common_configuration_description variable_configuration_description

¥ has
1

0.*

1
deployable_service_instance < has partial_

behavior binding 1.0 1.0

2 1

1 | vhas
1.* 1.
activity

decision_point 1. condition

«enumeration»)) 0.*
activity_type Visassociatedto |

1
1

+receive
+invoke
+respond

variation_point

context_element

Figure 2: Configuration description meta-model of
DSOPL-ADL

invoke element is used. Here, the consumer service
is identified by the consumer_instance and its con-
sumer_interface, whereas the provider service is iden-
tified by the provider_instance and its provider _in-
terface. The concrete operation which is called at the
provider’s side is specified by the operation attribute.

In order to specify architecture’s common configuration
and its variable (re-)configurations, we distinguish two sec-
tions in DSOPL-ADL configuration description: (i) a com-
mon configuration description part, where common services
of the architecture are instantiated and bound with a certain
behavior and a (ii) variable configuration description part,
where partial configurations describe the behavior of varia-
tion points. Next, each of these parts are detailed. Figure
2, presents the meta-model of configuration description.

3.2 Common Configuration Description

Common configuration description section contains two
subsections: initialization and behavior. The initialization
sub-section describes the entire structural information about
the common services of the architecture. Here, all com-
mon services (i.e. those that are not subject to variabil-
ity) are instantiated and bound. Deployable service in-
stance is used to create an instance from a particular ser-
vice. The binding part has two references to two differ-
ent service interfaces, the one that calls an operation con-
sumer_interface and the one that provides the operation
provider_interface.

In the behavior sub-section, we describe the workflow of
the entire architecture and mask the parts of the architecture
that are subject to variability. The workflow is described in
form of a sequence of communication activities (receive, re-
spond and invoke) between services. In each communication
activity, we identify the direction of flow by identifying con-
sumer and provider instances as well as specifying the inter-
faces that will communicate from each side of consumer and
provider instances in order to execute a particular operation.

3.3 Variable Configuration Description

The second part of the configuration description is the
variable configuration description which contains several par-
tial configurations. Each partial configuration refers to an
alternative point that is defined in the variability descrip-
tion module of DSOPL. A variable partial configuration is
triggered by conditions. Any partial_configuration has
two parts, as also demonstrated in listing 3:

1. condition part: where we specify the condition that is
driven by context elements. Once the condition satis-
fied, a given behavior is selected to integrate the exist-
ing architecture. In case several conditions of different
alternatives of the same variation point are satisfied,
the alternative with the higher priority is privileged.

2. behavior part: where we specify all dynamic activities
that will be executed in order to let the concerning
alternative integrate the existing architecture.

The specification of DSOPL-ADL reconfiguration descrip-
tion is given in listing 3. We choose to specify it in REgular
LAnguage for XML, New Generation (RELAX NG) [6], an
OASIS standard schema language for XML. Relax NG comes
in two versions; an XML syntax version and a compact non-
XML syntax version. We choose to specify the DSOPL-ADL
configuration description using RELAX NG compact version
due to its simplicity and expressiveness; unlike other schema
languages (e.g. XML Schema) it has a clean formal model.

Listing 3: Configuration description Specification

respond =

element respond {
attribute consumer_instance,
attribute consumer_interface,
attribute name,
attribute operation,
attribute output_message,
attribute provider_instance,
attribute provider_interface

}

invoke =

element invoke {
attribute consumer_instance,
attribute consumer_interface,
attribute input_message,
attribute name,
attribute operation,
attribute output_message,
attribute provider_instance,
attribute provider_interface

start =
element configuration_description {
element common_configuration_description {
element initialization { services, bindings },
element behavior {(invoke | receive | respond | element
decision_point { attribute variability_reference})+ }
},
element variable_configuration_description {
element partial_configuration {
element condition {
element context { element name, element value }
},
element behavior { services, bindings, (invoke | receive
| respond)+ }
3+
}
}
services =
element services {
element deployable_service_instance {
attribute service,
attribute service_instance
3+
}
bindings =
element bindings {
element binding {
attribute consumer_instance,
attribute consumer_interface,
attribute provider_instance,
attribute provider_interface
3+
}
receive =
element receive {
attribute consumer_instance,
attribute consumer_interface,
attribute input_message,
attribute name,
attribute operation,
attribute provider_instance,
attribute provider_interface

Back to our example, both "customer” and composite ”"sup-
ply chain management” services make part of the common
architecture, since they are not subject to any variation.
This implies that their instantiations and bindings can be
specified at design time, as depicted in the common _config-
uration_description part of listing 4. Whereas shipping
services "relay point” and "home delivery”, which are alterna-
tives of abstract "shipping” service, are dynamically instan-
tiated at runtime to replace the abstract “shipping” service.
This is why their instantiation and behavior are specified in
the variable_configuration_description part.

Listing 4: Configuration description of sales scenario

<configuration_description>
<common_configuration_description>
<initialization>
<services>
<deployable_service_instance service="customer_service"
service_instance="customer_service_instance"/>
<deployable_service_instance service="
supply_chain_management_service" .../>
</services>
<bindings>
<binding consumer_instance='"customer_service_instance"
consumer_interface="i_customer_order" provider_instance
="supply_chain_management_service_instance"
provider_interface="i_order_delegation" />
</bindings>
</initialization>
<behavior>
<receive name='"receive_customer_request" consumer_instance="
customer_service_instance" consumer_interface="
i_customer_order" provider_instance="
supply_chain_management_service_instance"
provider_interface="i_order_delegation" operation="
prepare_order" input_message='"receive_order_items">
</receive>

<decision_point variability_reference="
shipping_variation_point"/>

<respond name="send_order_details" consumer_instance="
customer_service_instance" consumer_interface="
i_customer_order" provider_instance="
supply_chain_management_service_instance"
provider_interface="i_order_delegation" operation="
prepare_order" output_message='"out_order_details">
</respond>
</behavior>
</common_configuration_description>

<variable_configuration_description>
<partial_configuration>
<condition>

<context>
<name> shipping </name>
<value> home </value>
</context>
</condition>
<behavior>
<services>
<deployable_service_instance service="
home_delivery_shipping_service" service_instance="
home_delivery_shipping_service_instance" />
</services>
<bindings>
<binding consumer_instance="
supply_chain_management_service_instance
consumer_interface="i_shipment_ready_delegation"
provider_instance="
home_delivery_shipping_service_instance"
provider_interface="i_home_delivery" />
</bindings>
<invoke name="invoke_home_delivery_service"
consumer_instance="
supply_chain_management_service_instance
consumer_interface="i_shipment_ready_delegation"
provider_instance="
home_delivery_shipping_service_instance"
provider_interface="i_home_delivery" operation="
order_delivery_to_home" input_message="in_ship-
order" output_message="out_ship_order">
</invoke>
</behavior>
</partial_configuration>
<partial_configuration>
<condition>
<context>
<name> shipping </name>
<value> relay_point </value>
</context>
</condition>
<behavior>

<deployable_service_instance service="
relay_point_delivery_shipping_service" ... />
<bindings .../>
<invoke .../>
</behavior>
</partial_configuration>
</variable_configuration_description>
</configuration_description>

In the <initialization> part of <common_configuration
_description>, “customer” and ”supply chain management”
services are bound together through their interfaces in the
<binding> part, as depicted in listing 4. In the <behav-
ior> part, the workflow starts by a trigger activity from the
?customer” service, which makes a sales order. The ”sup-
ply chain management” service receives the ordered items
through the input_message = "receive_order_items" of
<receive> activity and executes the operation operation =
"prepare_order".

Next, a <decision_point> indicates the existence of a
variation point with a reference to the "shipping_variation
_point" which is explicitly defined in the variability descrip-
tion part of DSOPL-ADL. The <decision_point> part of
the behavior will not be executed at design time but at run-
time. The different partial configurations related to each
variation point are described in the <variable _configura-
tion_description> part of the configuration description of
DSOPL-ADL. All related instructions of instantiating and
binding either "home delivery shipping” service or "relay
point shipping” service to the “supply chain management”
service will be performed only at run-time according to the
context value of "shipping” in the <condition> part of each
<partial_configuration>. Once the corresponding ship-
ping service is bound, “supply chain management” service
will invoke one of these shipping services and execute either

“order_delivery_to_home” or "order_delivery_to_relay _point”
operations. Obviously, information about ordered items are
passed from the ”supply chain management” service to se-
lected shipping service through the message input_message
= "in_ship_order". Likewise, shipping information (such
as shipping delays and costs) are returned through the mes-
sage output_message = "out_ship_order".

Finally, as a respond to customer’s initial order request,
the ”supply chain management” service executes the "pre-
pare_order” operation and sends the order details to the ”cus-
tomer” service through an output_message = "out_order
_details" within a <respond> activity. Here, both service
instances (consumer_instance and provider_instance) as
well as their interfaces (consumer_interface and provider
_interface) are the same of the <receive> activity, since
it is a respond to that request.

4. ARCHITECTURE CENTRIC RECONFIG-
URATION OF SERVICE-BASED SYSTEM

4.1 Concrete Architecture Generation

A concrete configuration of architecture is generated from

a given reference architecture’s configuration description through

the following consecutive steps:

1. The <common_configuration_description> part of the
configuration description is copied to the concrete con-
figuration description of architecture without any mod-
ifications, except copying <decision_point> part which
is treated differently in step 2.

2. Each variation point called <decision_point> in the
<common_configuration_description> part of DSOPL-
ADL is replaced by an appropriate <partial _con-
figuration> according to context value satisfaction of
that partial configuration.

3. Consequently, all service instances related to that par-
tial configuration in addition to their bindings both de-
scribed in <services> and <binding> sub-sections of
<partial_configuration> are integrated to the con-
crete architecture to <services> and <binding> sec-
tions, respectively.

Figure 3 demonstrates how a concrete architecture is gen-
erated in on-line sales example after integrating a partial
configuration (here, relay point delivery shipping service) to
the common configuration part.

4.2 Executable Code Generation

In this section, we demonstrate how an executable busi-
ness process can be obtained based on the generated DSOPL
concrete architecture. Among existing business process spec-
ification languages, we choose to generate DSOPL’s concrete
architectural description in Business Process Execution Lan-
guage (BPEL), since it is the most dominant language [11]
and has become a de-facto standard for specifying work-
flow in a service-oriented environment and hence executing
business processes for web services composition [3]. BPEL
defines in principle two main types of activities: basic ac-
tivities to interact with external services (invoke, receive,
reply) and structural activities to control the internal busi-
ness workflow by conditional choices, parallel activities and
looping.

Common configuration architecture Variability configuration description

‘ ‘ I-‘l ‘ Home delivery
. ’<— . ’ ! ’ shipping service
Customer CITCI Shipping Shipping R~ Relay point delivery
~ management variation L - N
service ° " variation shipping service
service point s

context:
shipping = relay point

Concrete configuration

" O R~
—u

management
service

Customer
service

Relay point delivery
shipping service

Figure 3: Concrete architecture generation

<<service>> <<composite_service>> <<service>>
customer_ supply_chain_ relay_point_
service management_ delivery_
service shipping_service
1 "
& receive
invoke
3
U respond

Figure 4: Sales order activities’ sequence

The most challenging part of BPEL’s code generation is
the transformation of DSOPL-ADL’s behavior into BPEL’s
activities due to the difference of workflow realization be-
tween both paradigms. Conceptually, there are two differ-
ent perspectives of realizing a workflow: choreography and
orchestration. In choreography, the configuration is realized
between autonomous peer-to-peer collaborations, whereas in
orchestration a single central workflow engine coordinates
the execution flow between all involved Web services. In
DSOPL-ADL, configuration is specified following the chore-
ography perspective; i.e. configuration is realized through
message passing from one service to another one without
intermediaries. Figure 4 demonstrates the sequence of ac-
tivities for the sales order concrete architecture example.
BPEL, in contrast, supports both choreography and orches-
tration perspectives. However, in order to obtain an exe-
cutable process, orchestration perspective should be followed
[15]. That is why we propose a mapping between DSOPL-
ADL concepts at architecture level and BPEL concepts at
implementation level. The purpose of this mapping is to
generate a BPEL skeleton from DSOPL-ADL description.
Table 1 displays the concepts of our DSOPL-ADL and their
mapping to BPEL paradigm. We can notice the existence
of one-to-one mapping between both paradigms (such as the
structural element ”deployable_service_instance” in DSOPL-
ADL is mapped to “partnerLink” in BPEL), one-to-many
mapping (such as the activity “receive” in DSOPL-ADL is
mapped to four consecutive activities in BPEL) and unfor-
tunately there are concepts that do not have any direct cor-
respondence in one of the two paradigms (such as the "bind-

ing” which does not have any correspondence in BPEL or
?variables” in BPEL which do not have any correspondence
in DSOPL-ADL).

According to the mapping rules presented in table 1, the
sequence of activities in the concrete architecture of on-line
sales order example (represented graphically in figure 4) is
transformed to BPEL activities as demonstrated in figure
5. We can notice that a new actor is added in BPEL called
”Sales Order Process” which is a central process that co-
ordinates the message passing and order of flow between
services called "Partner Links”. This central process must
be either a consumer or provider part in all BPEL activi-
ties, this explains why each DSOPL-ADL activity is mapped
to one or more activities in BPEL. The "receive” activity
in DSOPL-ADL (designated by number 1), which receives
customer’s order and prepares it, is represented by four ac-
tivities in BPEL: receive, assign_customerRequest, invoke_
prepareOrder and assign orderInformation (all designated
by number 1 in figure 5). The bi-directional activity ”in-
voke” in DSOPL-ADL (designated by number 2 in figure 4)
is transformed to two activities in BPEL: invoke_ OrderDe-
liveryToRelayPoint and assign_CustomerOutput. This lat-
ter copies the content of returned message from relay_point
_delivery_shipping _service and assigns it to a local tempo-
rary variable. Finally, the "respond” activity (designated
by number 3 in figure 4), which is in charge to return or-
der’s confirmation and information about shipping to the
customer, is transformed to the "reply” activity in BPEL
(designated by 3 in figure 5).

Due to space limitation, we do not demonstrate the en-
tire BPEL code, but only one behavior transformation. In
the sequence section, the transformation result of <receive>
activity is demonstrated in listing 5. It is composed of four
sequential activities: <receive>, <assign>, <invoke> and
<assign>.

Listing 5: Transformation result of receive activity

<sequence>

<receive name="start" partnerLink="customer_service" ...
operation="asyncOperation" variable="inputVar"
createlnstance="yes">

</receive>

<assign name="assignl">

<copy>

<from variable="inputVar" ... />
<to variable="Process_orderIn" ...></to>

DSOPL-ADL
behavioral concepts BPEL concepts
structural elements
deployable_service_instance | partnerLink
operation role’s name & invoke’s
name
behavior sequence
interactive activities
receive 4 consecutive activities: re-
ceive, assign, invoke and
assign
invoke 2 consecutive activities: in-
voke and assign
respond reply
examples of missing correspondence
binding [-
- | variables

Table 1: DSOPL-ADL to BPEL mapping

s N

Sales Order Process

<<service>> partner link
SRR
customer.
= rt
service pol

partner link ite_service>>

supply_chain_
i) management_

service

assign_

Orderlnformation

P partner link P
_ —> b
OrderDelivery port type De——— relay__polm_
ToRelayPoint | ¢—— delivery_

shipping_service

Figure 5: Transformation to BPEL - sales order ex-
ample

</copy>
</assign>
<invoke name='"prepare_order" partnerLink="
supply_chain_management_service" operation="
prepare_order" ... inputVariable="Process_orderIn"
outputVariable="Process_orderQut"/>
<assign name="assign2">
<copy>
<from variable="Process_orderQut" ... />
<to variable="Order_delivery_to_relay_pointIn" ... />
</copy>
</assign>
</sequence>

S. RELATED WORK

While common ADLs have more or less agreed on what el-
ements to represent regarding structural specifications, there
is not yet a common agreement of what the ADLs shall spec-
ify from behavioral point of view. In global, the evolution
of architecture at runtime may happen under several forms:

e creating (instantiating) / removing composing elements

e binding / unbinding composing elements to the archi-
tecture

e reconfiguring architecture (modifying connections)

e upgrading existing composing elements (substitution
of composing elements)

It is evident that dynamicity is differently considered and
perceived in different research communities, hence the im-

portance to classify dynamic architecture descriptions (whether

described in ADLs or other formalisms) into two types: (i)
centralized dynamicity management, where all instructions
of modifying system’s behavior at architecture level are de-
fined in a central configuror. Hence the behavioral descrip-
tion is independent from architectural elements’ functional-
ity definition. Various approaches have emerged to explic-
itly describe interaction between architecture’s structural el-
ements in form of a sequence of activities such as in [21], [13]
and [1]. (ii) event-driven dynamicity, where constraints in
form of triggers or events are defined inside each architec-
tural element. Here, an internal observer listens to envi-
ronment’s changes and modifies elements’ behavior (e.g. its

connection with other elements) only if a pre-defined con-
straint or condition is satisfied. Darwin [17], Plastik [14] and
Dynamic Wright [4] are examples that use this technique.

Among existing ADLs in the literature, only few of them
support dynamic reconfiguration such as C2 SAD(E)L[18],
Darwin [17], m-ADL [20], Rapide [16], ACME/Plastik [14]
and Dynamic Wright [4].

Among service-based ADL that handle dynamic architec-
ture, m-ADL for WS-Composition [21] is a service-oriented
ADL for Web Service (WS) composition that has the same
roots as m-ADL [20] and highly relies on BPMN’s visual
notation. It formally describes service-oriented dynamic ar-
chitectures from both structural and behavioral viewpoints.
m-ADL for WS-Composition is considered a dynamic ADL
since third-party services can be discovered and bound at
runtime. The definition of the architecture is divided in two
parts: (i) structure definition, where each component is de-
fined and (ii) behavior, where the instances of components,
and connectors are defined abstractly and also the connec-
tion between each component and connector.

Another example of service-oriented ADL supporting dy-
namicity is Service-Oriented Architecture Description Lan-
guage (SOADL) [13]. In this approach, behavioral specifi-
cation is represented by a sequence of actions that describe
the temporal constraints between operations in one or more
ports. It specifies the architecture in terms of services, in-
terfaces, behavior, semantics and quality properties. It also
supports architecture-based service composition. By observ-
ing the pseudo-schema syntax of SOADL, we can distinguish
four main parts: (1) Port is the interaction point of service.
It plays a provider or requester role. (2) Behavior consists
of a sequence of actions, either a basic action or a compos-
ite one. (3) SubArchitecture part describes the structure of
the (sub)system of a composite service. More precisely this
part includes three parts: (i) Dependency part declares local
or external service types that the (sub)system may use, (ii)
Configuror part specifies all possible configurations for the
given system. Each configuration is triggered by an event.
(iii) Constraint part defines a set of constraints that de-
termine how an architectural design is permitted to evolve
over time. (4) Finally, Properties part describes properties
of security, transaction, load balance, version, or information
related to implementation. SOADL discusses the dynamic
reconfiguration of services by treating only the substitution
of service instances in case of unavailability of a main service.
Substituting services are statically defined at design-time in
the configuror part.

We classify in table 2 existing dynamic ADLs accord-
ing to their support of the aforementioned dynamic actions.
Existing software architecture configuration description lan-
guages either do not allow any dynamic reconfiguration at
run-time and thus are considered as static ADLs, or they
provide certain dynamicity according to planned and prede-
fined changes in a given architecture. However, the reconfig-
uration decisions within these approaches are expressed in
an ad-hoc manner and not in an explicit specification (e.g.
using a variability description) as in our proposed approach
DSOPL-ADL.

6. CONCLUSION AND PERSPECTIVES

We have presented an architecture description language
that allows the reconfiguration at runtime of a software ar-
chitecture based on variability description. To manage the

dynamic ADL/

dynamic action

create architectural element
remove architectural ele-
ment

bind architectural element
to architecture

unbind architectural ele-
ment to architecture
reconfigure architecture
(modify connections)
substitute architectural ele-
ment (upgrade)

<l =l + | ~<|<| Dynamic Wright [4]
z| 2| 2z | z|Z w-ADL for WS-Composition [21]

z| 2z Z | 2Z|<| Darwin [17]
< < =< < =z[Z SOADL [13]

z| =z =z ~| =z|<| 7-ADL [20]
Ko< | < <|<| C2SAD(E)L [18]

o< | < <~<| Plastik [14]

Table 2: Supported dynamic actions in existing dy-
namic ADLs

runtime reconfiguration at architecture level, we have ex-
tended a previous work called DSOPL-ADL which described
static structural, variability and context elements and ex-
tended it with dynamic reconfiguration aspect. For that pur-
pose, we presented a reconfiguration description meta-model
as well as the language schema. During system’s execution,
architecture can adapt its behavior to environment changes
that are specified as context elements and consequently gen-
erate a concrete architecture. Furthermore, we transformed
generated concrete architecture to another level of abstrac-
tion, such as to business process level (i.e. to BPEL).

7. REFERENCES

[1] Web services business process execution language
version 2.0, 2007.

[2] S. Adjoyan and A. Seriai. An architecture description
language for dynamic service-oriented product lines.
In 27th International Conference on Software
Engineering and Knowledge Engineering, July 2015.

[3] A. Albreshne, P. Fuhrer, and J. Pasquier. Web
services orchestration and composition, 2009.

[4] R. Allen, R. Douence, and D. Garlan. Specifying and
analyzing dynamic software architectures. In
Fundamental Approaches to Software Engineering,
pages 21-37. Springer, 1998.

[5] J. S. Bradbury, J. R. Cordy, J. Dingel, and
M. Wermelinger. A survey of self-management in
dynamic software architecture specifications. In
Proceedings of the 1st ACM SIGSOFT Workshop on
Self-managed Systems, WOSS ’04, pages 28-33, 2004.

[6] J. Clark and M. Murata. Relax ng specification.
http://relaxng.org/spec-20011203.html, 2001.

[7] A. Classen, A. Hubaux, F. Sanen, E. Truyen,

J. Vallejos, P. Costanza, W. De Meuter, P. Heymans,
and W. Joosen. Modelling variability in self-adaptive
systems: Towards a research agenda. In Proceedings of
international workshop on modularization,

8]

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

composition and generative techniques for product-line
engineering, pages 19-26, 2008.

P. Clements, F. Bachmann, L. Bass, D. Garlan,

J. Ivers, R. Little, P. Merson, R. Nord, and

J. Stafford. Documenting Software Architectures:
Views and Beyond (2nd Edition). Addison-Wesley
Professional, 2 edition, 2010.

C. Deiters and A. Rausch. A constructive approach to
compositional architecture design. In Software
Architecture, volume 6903 of Lecture Notes in
Computer Science, pages 75-82. Springer, 2011.

J. L. Fiadeiro and A. Lopes. A model for dynamic
reconfiguration in service-oriented architectures.
Software €& Systems Modeling, 12(2):349-367, 2013.
N. Griffiths and K.-M. Chao. Agent-Based
Service-Oriented Computing. Springer Publishing
Company, Incorporated, 1st edition, 2010.

C. Jaggernauth, B. Kaminska, and D. Gubbe.
Context-aware model for dynamic adaptability of
software for embedded systems. International Journal
of Computer (IJC), 19(1):91-113, 2015.

X. Jia, S. Ying, H. Cao, and D. Xje. A new
architecture description language for service-oriented
architecture. In 6th International Conference on Grid
and Cooperative Computing GCC, pages 96-103, 2007.
A. Joolia, T. Batista, G. Coulson, and A. Gomes.
Mapping ADL specifications to an efficient and
reconfigurable runtime component platform. In 5th
Working IEEE/IFIP Conference on Software
Architecture, WICSA 2005, pages 131-140.

M. B. Juric. A hands-on introduction to bpel.
http://www.oracle.com/technetwork/articles/
matjaz-bpell-090575.html, 2007.

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using rapide. IEEE Transactions
on Software Engineering, 21:336-355, 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. In
Proceedings of the 5th European Software Engineering
Conference, pages 137-153. Springer-Verlag, 1995.

N. Medvidovic. ADLs and dynamic architecture
changes. In Joint Proceedings of the Second
International Software Architecture Workshop
(ISAW-2) and International Workshop on Multiple
Perspectives in Software Development (Viewpoints
’96) on SIGSOFT ’96 Workshops, pages 24-27. ACM.
N. Medvidovic and R. Taylor. A classification and
comparison framework for software architecture
description languages. Software Engineering, IEEE
Transactions on, 26(1):70-93, Jan 2000.

F. Oquendo. m-ADL: an Architecture Description
Language based on the higher-order typed pi-calculus
for specifying dynamic and mobile software
architectures. SIGSOFT Softw. Eng. Notes, 2004.

F. Oquendo. m-ADL for WS-Composition: A
Service-Oriented Architecture Description Language
for the Formal Development of Dynamic Web Service
Compositions. In Second Brazilian Symposium on

Software Components, Architectures, and Reuse
(SBCARS 2008), pages 1-14, Aug. 2008.

