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Certification of Polynomial Middle Product
Pascal Giorgi

Abstract—Polynomial multiplication and its variants are a key ingredient in effective computer algebra. While certifying a polynomial
product is a well known task, it was not yet clear how to do a similar approach for its middle product variant. In this short note, we present
a new algorithm that provides such a certification with the same complexity and probability that polynomial multiplication certification.
Furthermore, we extend our algorithm to certify any operations that compute only a certain chunk of the product.

Index Terms—Theory of computation, computations on polynomials, arithmetic, polynomial multiplication, middle product, probabilistic
certification

F

1 INTRODUCTION

Polynomial multiplication is a fundamental tool in com-
puter algebra as it often plays a central role in most
efficient algorithms. Improving its complexity remains
a major challenge of the domain. In order to speed-up
some algorithms, one might be interested in computing
only a certain part of the product. For instance, this is the
case with polynomial division or inversion where com-
puting the middle terms of a specific product improves
the complexity by a constant factor. This specific opera-
tion is called the middle product in [1]. Let f, g ∈ K[X]
be two polynomials defined over a field K such that
deg f = s−1,deg g = 2s−2. The middle product of fg de-
noted MPs(f, g) corresponds to the coefficients of degree
s−1 to 2s−2 from the product fg. Let fg =

∑3s−3
i=0 hiX

i

then MPs(f, g) = hs−1+hsX+hs+1X
2+· · ·+h2s−2X

s−1.
Let M(n) denote the complexity function for the multi-
plication of two polynomials of K[X] of degree at most
n. Computing MPs(f, g) through full products requires
2M(s)+O(s) operations in K. As shown in [1], dedicated
algorithms can compute MPs(f, g) twice faster. One
remarkable property of middle product is to be the
transposed problem of polynomial multiplication using
the Tellegen principle [2]. This strong result tells us that
any polynomial multiplication algorithm can be turned
into an algorithm for middle product with the same
asymptotic complexity, i.e. M(s)+O(s). Since the seminal
work of Karatsuba [3], many fast polynomial multiplica-
tion algorithms have been designed in order to reach a
quasi-linear time complexity [4, Chapter 8]. As of today,
the best result over finite fields is O(d log d 8log∗ d log p)
operations1 for the product of degree d polynomials [5].
A common feature of all these algorithms is to be much
more complex than the naive product, meaning their
implementation could be complicated and errors prone.
Furthermore, the derivation of algorithms for middle
product using Tellegen principle might also lead to some
implementation errors.

A classic way to check implementation is to use a pos-
teriori certification. The idea is to provide an algorithm

1. log∗ is the iterated logarithm function

that can check the result with an asymptotically better
complexity than the operation itself. The simplicity of the
algorithm must ensure the robustness of its implemen-
tation. For instance, such certification algorithm can also
serve when one want to check a computation delegated
to an untrusted cloud.

In order to check a polynomial product fg one can
pick a random point α and check that f(α)g(α) =
(fg)(α). If not, it is clear that the product is wrong. If the
results agree, it is well known through Zippel-Schwartz-
Lipton-DeMillo lemma [6], [7], [8] that the product fg
is correct with a probability greater than 1 − d

N where
N corresponds to the number of sampling points for
α and deg fg < d. Assuming N > d, one can decrease
the probability to 1 − dk

Nk by picking k different points.
One advantage of this certification is that polynomial
evaluation has a linear time complexity and can be
implemented easily through Horner’s rules.

To the best of our knowledge, the certification of the
middle product has not been investigated while it is
closely related to polynomial multiplication. In this short
note, we demonstrate that one can achieve similar linear
time certificate for the middle product. One motivation
of this work came from our experiment to compute the
kernel of a large sparse matrix arising in discrete loga-
rithm computation. In particular, one part of the compu-
tation was relying on polynomial middle product with
matrix coefficients [9]. Unfortunately, our code failed to
produce correct results when polynomial degrees were
above 500 000. Since quadratic time certificate was not
an option for such parameters we decided to develop
fast approach to certify the middle product.

We start the next section by giving a matrix interpre-
tation to the certification of polynomial product. Using
this interpretation, we will define in the following sec-
tions our probabilistic certificate for the middle product.
Finally, in the last section we show that our method
extends to any other operation that computes any partial
chunk of polynomial multiplication.
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2 CERTIFYING POLYNOMIAL MULTIPLICATION

Let f, g ∈ K[X] where f = f0 + f1X + · · · + fm−1X
m−1

and g = g0 + g1X + · · · + gn−1X
n−1. Assuming f is

fixed, the product h = fg =
∑m+n−2

i=0 hiX
i can be

described through a linear application from Kn to Km+n.
The matrix for this application corresponds to a Toeplitz
matrix built from the coefficients of f . Let us denote Mf

such a matrix, the product of f by g correspond to the
following matrix-vector product :

f0

f1
. . .

...
. . . f0

fm−1 f1
. . .

...
fm−1


︸ ︷︷ ︸

Mf

×


g0
g1
...

gn−1


︸ ︷︷ ︸

~g

=



h0

h1

...

hm+n−2


︸ ︷︷ ︸

~h

(1)

where Mf ∈ K(m+n−1)×n, ~g ∈ Kn and ~h ∈ Km+n−1.
A classic way to certify the product h = fg is to

choose a random α from a finite subset S ⊂ K and to
check h(α) = f(α)g(α). Of course, some values of α may
lead to a positive answer while h 6= fg. However, the
number of such α is at most deg h as they correspond to
the roots of the polynomial (h − fg) 6= 0 over the field
K. The probability of success is then greater than 1 −
deg h
|S| , which corresponds exactly to the Zippel-Schwartz-

Lipton-DeMillo lemma [6], [7], [8] on univariate polyno-
mials. This approach reduces the certification to three
polynomial evaluations and one product and thus has a
linear time complexity of O(deg f + deg g + deg h).

Using the matrix version for polynomial product de-
picted in Equation (1), this latter approach corresponds
exactly to multiplying both parts of the equation on
the left by the row vector ~α = [1, α, α2, . . . , αm+n−2].
By definition of ~h, we clearly have ~α · ~h = h(α).
Using the Toeplitz structure of Mf we have ~α Mf =
f(α)[1, α, . . . , αn−1], which then gives (~α Mf ) · ~g =
f(α)g(α). The probability result can be retrieved with
the specific Freivalds certificate for matrix multiplication
given in [10].

3 CERTIFYING MIDDLE PRODUCT

In order to illustrate our strategy we start this section
with an example. Let a, b be two polynomials of K[X] of
degree respectively 3 and 6, with a = a0 +a1X+a2X

2 +
a3X

3 and b = b0+b1X+b2X
2+b3x

3+b4X
4+b5X

5+b6X
6.

We want to compute cM = c3+c4X+c5X
2+c6X

3 where
c = ab =

∑9
i=0 ciX

i. Using Equation (1) one can easily
remark that the middle product operation corresponds
to using only certain rows of the linear application for
the full multiplication by a. Equation (2) illustrates this
remark on our example. The grey area highlights the
rows used by the middle product operation. One may
note that this is an important observation in Tellegen
transposition principle for the middle product.



a0

a1 a0

a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1

a3 a2

a3


︸ ︷︷ ︸

Ma

×


b0
b1
b2
b3
b4
b5
b6


︸ ︷︷ ︸

~b

=



c0
c1
c2
c3
c4
c5
c6
c7
c8
c9


︸ ︷︷ ︸

~c

(2)

In order to certify the coefficients of the middle prod-
uct MP4(a, b) = c3+c4X+c5X

2+c6X
3, one can multiply

the grey part of equation (2) with the vector [1, α, α2, α3]
with α ∈ K. In particular, this corresponds to certifying
that [1, α, α2, α3] · [c3, c4, c5, c6]T = cM (α) is equal to

γ =


1
α
α2

α3


T

×


a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

~b. (3)

More generally, let f, g, h ∈ K[X] such that deg f =
deg h = s − 1, deg g = 2s − 2 and h = MPs(f, g). As
for polynomial multiplication, fixing the polynomial f ,
we can define the middle product as a linear application
from K2s−1 to Ks with the following matrix:

Mf =

 fs−1 fs−2 . . . f0

. . . . . . . . .
fs−1 fs−2 . . . f0

 ∈ Ks×2s−1.

Let ~g and ~h be the vector of the coefficients of g and h. By
definition of the middle product we have ~h =Mf~g. To
certify this middle product it suffices to pick a random α
from a finite subset S ⊂ K and set ~αs = [1, α, . . . , αs−1] ∈
K1×s, then check the following equation:

h(α) = (~αsMf ) · ~g (4)

Lemma 3.1: For a random α ∈ S ⊂ K, the probability
Equation 4 is correct while h 6=MPs(f, g) is strictly less
than s

|S| .
Proof: The correctness of Equation 4 comes from the

following equality h(α) = ~α · ~h = ~α(Mf · ~g). The proof
of Lemma 3.1 is a direct consequence of the Zippel-
Schwartz-Lipton-DeMillo lemma [6], [7], [8] remarking
that both sides of Equation 4 are distinct polynomials in
α with degrees bounded by s.

The computation of (~αsMf ) · ~g does not correspond
to the product of evaluations involving both f and g.
However, using the Toeplitz structure of Mf , we are
able to derive a simple algorithm that only need a linear
number of operations, as explained in the next section.
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4 TOEPLITZ MATRIX-VECTOR PRODUCT WITH
POWERS

Let f ∈ K[X] of degree s− 1, we denote Lf and Uf the
following triangular Toeplitz matrices:


fs−1 fs−2 . . . f0

. . . . . .
...

. . . fs−2

fs−1


︸ ︷︷ ︸

Uf

,


f0

f1
. . .

...
. . . . . .

fs−1 . . . f1 f0


︸ ︷︷ ︸

Lf

where f = f0 +f1X+ · · ·+fs−1X
s−1 and Uf , Lf ∈ Ks×s.

Lemma 4.1: Let ~αs = [1, α, . . . , αs−1] ∈ K1×s. The
matrix-vector products ~αsUf and ~αsLf can be computed
in O(s) operations in K.

Proof: It obvious that the lemma is correct for s = 1.
Let us assume the lemma correct for dimension s−1 and
write f = f0 +Xf̂ , with f0 ∈ K and f̂ ∈ K[X] of degree
s− 2. One can rewrite Uf as follow:

Uf =

Uf̂ f0

...
fs−1

 .

There, multiplying a vector ~αs by Uf is equivalent to
compute the row vector [ ~αs−1Uf̂ , ~αs · [f0, . . . , fs−1] ].

From the Toeplitz structure of Uf it is easy to see that
~αs · [f0, . . . , fs−1] is equal to αy + f0 where y is the last
column of ~αs−1Uf̂ . By induction, it follows immediately
that the complexity is linear in the matrix dimension s.
For the matrix Lf the proof is similar remarking that

Lf =

 f0

...
fs−1 L(f mod Xs−1)


and that ~αs · [f0, . . . , fs−1] = α−1y+αs−1fs−1 where y =
~αs−1L(f mod Xs−1).

One may remark that computing ~αUf performs
exactly the same operations as calculating f(α) using
Horner’s rule. The same remark applied for ~αLf but
with the evaluation of rev(f) = f(1/X)Xs in X = α.

Corollary 4.2: The transposed operations Uf ~α
T and

Lf ~α
T can also be computed in O(s) operations in K.

Indeed, by transposed matrix product we have
(Uf ~α

T )T = ~αLrev(f) and (Lf ~α
T )T = ~αUrev(f).

Corollary 4.3: Let Tf be a full Toeplitz matrix, one can
compute Tf ~α

T or ~αTf in O(s) operations rather than
M(s) operations with the classical fast approach [11].

Indeed, Tf is a sum of an upper and lower triangular
Toeplitz matrix, and Lemma 4.1 can be applied.

5 A LINEAR TIME CERTIFICATION ALGORITHM

Let f, g, h ∈ K[X] such that deg f = deg h = s − 1,
deg g = 2s − 2. The following algorithm provides a
probabilistic verification for h =MPs(f, g) that requires
a linear number of operation.

Algorithm CertifiedMP(f, g, h) :

1) choose a random α from a finite subset S ⊂ K and
set ~αs ← [1, α, . . . , αs−1]

2) y1 ← (~αsUf ) · [g0, . . . , gs−1]

3) y2 ← α(~αs−1L(f mod Xs−1)) · [gs, . . . , g2s−2]

4) return true if h(α) = y1 + y2, false otherwise

Lemma 5.1: Algorithm CertifiedMP(f, g, h) ensures
that h = MPs(f, g) with a probability greater or equal
to 1 − s/|S|. The algorithms uses O(s) operations in K
and dlog2 |S|e random bits.

Proof: The correctness of algorithm CertifiedMP
comes from the definition of MPs(f, g) as a linear ap-
plication when f is fixed. Indeed, this corresponds to a
linear application from K2s−1 −→ Ks where its matrix
representation in the canonical basis of K[X] is:

Mf =


fs−1 fs−2 . . . f0

. . . . . .
...

. . . fs−2

fs−1︸ ︷︷ ︸
Uf

f0

...
. . .

fs−2 . . . f0


︸ ︷︷ ︸

L(f mod Xs−1)

.

Let ~h =Mf [g0, g1, . . . , g2s−2]
T , one can read the coef-

ficients of h = MPs(f, g) from ~h. Splitting Mf and g in
two parts, we get

~h = Uf

 g0

...
gs−1

+

(
0 . . . 0
L(f mod Xs−1)

) gs
...

g2s−2


Therefore, multiplying this equation on the left by ~αs

gives h(α) = y1 + y2 and proves the correctness of our
algorithm. Using Lemma 3.1, the probability that h(α) =
y1 + y2 when l 6= h is less than s

|S| , which then gives a
probability of success greater than 1− s

|S| as promised.
From Lemma 4.1 and the cost of dot product in

dimension at most s, one can deduce the complexity
of O(s). Since the bitsize of α is less than log2 |S|, this
concludes the proof.

Remark 1: Assuming |S| > 2s, one can run k times
Algorithm CertifiedMP(f, g, l) on same inputs to raise
the probability to 1− 1

2k .
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6 A MORE GENERAL RESULT

Following our previous result we are able to generalize
our algorithm to certify any operations that compute
only a certain consecutive chunk of a polynomial prod-
uct. This is for instance the case for the so-called short
product operation that correspond to the multiplication
of power series at a given precision [12], [13].

Let f, g ∈ K[X] of degree s − 1, the short product of
f and g is denoted SPs(f, g) = fg mod Xs. Similarly,
one can define the high short product of f and g to be
HPs(f, g) = fg divXs−1, corresponding to the s highest
term of the product fg. Assuming f is fixed, one can
define these two operations as linear applications from
Ks → Ks with the matrix Lf for SPs(f, g) and the
matrix Uf for HPs(f, g). As before, picking a random
element α ∈ S ⊂ K, one can check the two short product
operations by checking respectively h(α) = (~αLf ) · ~g or
h(α) = (~αUf ) · ~g. Indeed, using Lemma 4.1 one can
achieve a complexity of O(s) operations in K and a
probability of success greater than 1− s/|S|.

Without loss of generality, assuming that deg f = m ≥
deg g = n and s | n. One can define a partial product op-
eration on f and g as PPs(f, g, i) = (fg divXi) mod Xs.
This operation corresponds to extracting the s consecu-
tive terms of the product fg starting from the monomial
Xi. Assuming f is fixed, this operation is a linear
application from Kn → Ks where its matrix has the form

Mf =
(
Tf̄0 Tf̄1 . . . Tf̄n/s−1

)
∈ Ks×n

such that each Tf̄k ∈ Ks×s for k ∈ [0, . . . , n/s − 1] is
a Toeplitz matrix formed from the coefficients of the
polynomial f . More precisely, we have

Tf̄k =


fi−ks fi−ks−1 . . . fi−(k+1)s+1

fi−ks+1
. . . . . .

...
...

. . . . . . fi−ks−1

fi−(k−1)s−1 . . . fi−ks+1 fi−ks


with fj = 0 when j < 0 or j > m and fj is the
coefficient of the polynomial f at Xj otherwise. Let
h = PPs(f, g, i) and ~g, ~h be the vector of the coefficients
of the polynomial g and h. By definition of Mf we
have ~h = Mf~g. Here again, applying a vector ~α to this
equality provides us a way to certify the partial product
operation.

The following algorithm provides a probabilistic cer-
tificate for h = PPs(f, g, i) with a complexity of O(n):

Algorithm CertifiedPP(f, g, h, s, i) :
1) choose a random α from a finite subset S ⊂ K and

set ~αs ← [1, α, . . . , αs−1]

2) for k from 0 to n/s
yk ← (~αsTf̄k) · [gks, . . . , g(k+1)s−1]

3) return true if h(α) =
∑n/s−1

k=0 yk, false otherwise

Lemma 6.1: Algorithm CertifiedPP(f, g, h, s, i) ensures
that h = PPs(f, g, i) with a probability greater or equal
to 1 − s/|S|. The algorithms uses O(n) operations in K
and dlog2 |S|e random bits.

Proof: From the definition of Mf we know that
~h = Mf~g corresponds to the partial product operation
h = PPs(f, g, i). There, multiplying both side of the
equation gives ~α ·~h = h(α) = (~αMf ) ·~g. Since

∑n/s−1
k=0 yk

corresponds, in our algorithm, exactly to (~αMf ) · ~g, this
proves the correctness of our algorithm.

Assuming h 6= PPs(f, g, i), the value h(α)− (~αMf ) · ~g
is a non zero polynomial of K[α] of degree less than s.
Hence, such polynomial can be zero only for s values of
α ∈ S ⊂ K which gives the expected probability. Finally,
the complexity of our algorithm is dominated by step 2.
Each loop costs exactly O(s) operations in K by using
Corollary 4.3. Since the size of the loop is n/s, the final
complexity is O(n) as promised.

For some specific cases, one is able to reduce the
complexity of PPs(f, g, i). Indeed, depending on the
value of i some Toeplitz matrices Tf̄k will be zero. Using
the structure of Mf , one can prove that the number of
non zero matrices is given by d ise if i < n and dm−is e
if i > m. For such cases, the complexity drops down to
O(sd ise) and O(sdm−is e) which are are below O(n).
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