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Abstract—When dealing with floating-point numbers there
are several sources of error which can drastically reduce the
numerical quality of computed results. Among those errors, the
loss of significance, or cancellation, occurs during for example
the subtraction of two nearly equal numbers. In this article, we
propose a representation format named Floating-Point Adaptive
Noise Reduction (FP-ANR). This format embeds cancellation
information directly into the floating-point representation format
thanks to a dedicated pattern. With this format, unsignificant
trailing bit lost during cancellation are removed from every
manipulated floating-point number. The immediate consequence
is that it increases the numerical confidence of computed values.
The proposed representation format corresponds to a simple
and efficient implementation of significance arithmetic based and
compatible with the IEEE-754 standard.

I. INTRODUCTION

Floating-point numbers, which are normalized by the
IEEE-754 standard [1], correspond to a bounded discretization
of real numbers. Therefore, a floating-point number corre-
sponds to a representation of an exact number combined with
errors due to discretization, accumulation of rounding error or
cancellation. In other words, a floating-point number embeds
useful information along with noises linked with those errors.

When numerical noises become dominant, for example
during dramatic cancellation, there are no more useful bit of
information in the representation numbers. Unfortunately, in
this situation there is no way to figure out that such situation
occurred by just looking at the representation. This is due to the
fact that with the widely used IEEE-754 representation format,
there is no way to distinguish useful numerical information
from noises. This problem is not new and has been identified
and addressed since the late 1950s with significance arithmetic
[2]. Significance arithmetic addressed this issues by tailoring
the number of digits to the needs.

Significance arithmetics is gaining in popularity again
directly through unum [3] or indirectly through numerous
problem encountered with exascale computer and the lack of
confidence in numerical results [4]. If Unum system is based
on real problems, the proposed solution is subject to criticism
for numerous reasons as pointed out by W. Kahan [5]. On
the other side, indirect solutions based on software solution to
detect cancellation [6], [7], or avoid rounding error [4] are not
meant to be efficient and for real time execution.

In this article, we propose a new way to keep track of
unsignificant information. The solution consists in an altered

IEEE-754 representation format of the mantissa. That informa-
tion is stored using a simple pattern that replace unsignificant
digits. This makes such representation numbers almost as
accurate as original IEEE-754 numbers. In addition, operations
on that format can be easily implemented in hardware at no
cost. Therefore, the proposed solution corresponds to an effi-
cient implementation of significance arithmetic that is simple,
efficient and compatible with IEEE-754 format.

This article is organized as follows: Section II gives some
background on rounding error management. Section III details
the proposed format named FP-ANR to embed cancellation
information within the representation format of floating-point
numbers. Section IV presents how to implement the proposed
approach both in software and hardware. Then, Section V
presents some experimental results and comparison with others
solutions, before concluding in Section VI.

II. PRELIMINARIES

Floating-point numbers consist in approximations of real
numbers. Associated with the concept of approximation is
the concept of errors. Therefore, digits of a floating-point
representation numbers can be split in two parts; a significant
and an unsignificant part. To make the paper self-complete, we
recall in this section some background on IEEE-754 floating-
point arithmetic, errors and significance arithmetic.

A. The IEEE-754 standard

The current version of the floating-point standard, the IEEE
754-2008 [1] published in August 2008, includes the original
binary formats along with three new basic formats (one binary
and two decimal).

Definition 1 (Floating-Point Numbers). A IEEE-754 repre-
sentation format is a ”set of representations of numerical
values and symbols” made of finite numbers, two infinities and
two kinds of NaN (Not A Number). The set of finite numbers
are described by a set of three integers (s,m,e) corresponding
respectively to the sign, the mantissa and the exponent. The
numerical value associated with this representation is

(−1)s ×m× be.
Values that can be represented are determined by the base or
radix b (2 or 10), the number (p) of digits in the mantissa and
the exponent parameter emax such that:

0 ≤ m ≤ bp − 1



and
1− emax ≤ e+ p− 1 ≤ emax

The value Zero is represented with a 0 mantissa and a sign
bit specifying a positive or negative zero.

In case of binary formats, representation of finite numbers
is made unique by choosing the smallest representable expo-
nent. Numbers with an exponent in the normal range have the
leading bit set to 1. It corresponds to the explicit bit as it is not
present in the memory encoding allowing the memory format
to have one more bit of precision. This extra bit is not present
for subnormal numbers which have an exponent outside the
normal exponent range.

For example, the IEEE-754 double precision format (or
binary64) are represented with 64 bits which are split in 1
sign bit, p = 52 bits of mantissa and e = 11 bits of exponent
whereas single precision format (or binary32) are represented
with 32 bits split in 1 sign bit, p = 23 bit of mantissa and
e = 8 bits of exponent.

B. Floating-Point Errors

Representation format of floating-point numbers differs by
their radix and the number of bits used for the encoding.
The 2008 revision of the IEEE-754 includes new formats
to better adapt to the real need of the computation ranging
from 16 to 128 bits. However, those formats rely on fixed
numbers of bit, which implies that it does not exactly matches
the real needs. Therefore, numbers must be rounded or filled
with zeros in the least significand digits of the mantissa when
the used format is respectively undersized or oversized. This
means that by constructions FP numbers embed errors in their
representation. These errors can be separated into three groups:
data uncertainty, rounding and cancellation.

1) Uncertainty: Uncertainty in data are linked with initial
input values, especially when data come from measurements
or experimentations using physical sensor. It may also come
from the model or the algorithm used to model real phenomena
such as polynomial approximation [8].

For example, due to uncertainty, data produced by indus-
trial measurement are accurate to a few digits (thermal sensor
[9], voltage sensor [10]). This uncertainty can be given in
percentage such as in [11]. This mean that for example the
twenty digits measure x = 12345.678901234567890 obtained
with a process exhibiting an uncertainty of U = 10−3%
correspond to a real value in the interval [x · (1 − U);x ·
(1 + U)] = [12345.555; 12345.802]. This translates into 5
significant digits, the rest of the information corresponding
solely to noise or unsignificant digits. Due to the lack of
knowledge, or simply because floating-point number are over-
dimensioned, this noise is kept in manipulated numbers during
computation. However, those extra digits do not bring any
benefit for the numerical quality of the final results.

2) Rounding: Because floating-point numbers have a lim-
ited number of digits, there cannot represent real numbers
accurately. When there are more digits than the format allows,
the number is rounded and the leftover ones are omitted.

Let fl() denote the result of a floating-point computation,
which has to be rounded according to the relative rounding

error u. We have
fl(1 + u) = 1

with u that depends on the radix b and the precision p as
follow:

u = b/2 · b−p

Let F ∈ R be the set of floating-point numbers, if x ∈ R
belongs to the range of representable floating-point numbers,
then

fl(x) = x · (1 + ε) with |ε| < u

Floating-point operations in IEEE-754 satisfy

fl(a ◦ b) = (a ◦ b) · (1 + ε) |ε| ≤ u ◦ ∈ {+,−,×, /}

The standard defines five rounding rules, two rounding to
nearest (ties to even, ties away from zero) and three directed
rounding (toward 0,−∞,+∞).

3) Cancellation: Cancellation occurs when two nearby
quantities are subtracted such that the most significant digits
cancel each other. Cancellations are very common but when
many digits are lost, the effect can be severed as the number
of informative digits is reduced. In that case, it corresponds
to catastrophic cancellation as the impact on the sequel of the
computation can be dramatic.

For example, let x = 1.5 × 20 and y = 1.0 × 226 be two
floating-point numbers stored in binary32 format. Then the
sequence of operations r = fl(fl(x + y) − y) produces the
result r = 0.0 which has no correct digit as the real result
should be 1.5. This is due to the catastrophic cancellation
which occurred during the subtraction. Such cancellations
cannot be detected, meaning there is no way to know that
r = 0.0 was completely incorrect, except through dedicated
sequence of operations.

Such sequence are used for example in numerical algo-
rithms that computes the error such as the 2sum algorithm
[12], [13]. This corresponds to specific pattern of computation
with correlation between variables.

C. Significance arithmetic

Significance arithmetic [2], [14], [15] brings a solution to
the problem of representing an approximation of the error
along with floating-point numbers. It relies on the concept of
significant and unsignificant digits.

Definition 2 (Significant and Unsignificant digits). Let α
be the number of significant digits of a p-digits number X
represented in radix b. Then, the error e in X is such that
|e| ≤ X · b−α and the number of unsignificant digits is p−α.

Significance arithmetic sets two methods to calculate a
bound for the propagated and generated error called nor-
malized significance and unnormalized significance. The nor-
malized significance always keeps the floating-point num-
ber normalized and provide an index of significance. The
unnormalized significance does not normalize floating-point
numbers and uses the count of digits remaining after leading
zeros as an indication of their significance.

With the normalized method, as many digits as possible
of a number are retained and an added index defines the



number of significant digits. Such arithmetic is implemented
in software using set of numbers in FORTRAN with FORSIG
[16], or Python [17]. With the unnormalized method [18], only
digits considered significant are retained.

The integration of specific pattern in the mantissa to
categorize significant and unsignificant digit has already been
proposed for decimal computer in BCD format [19]. It relies
upon unused bit pattern in BCD format which are bit-field
1010 and 1011 corresponding to respectively digits 10 and
11. More recently, Gustafson extended significance arithmetic
by proposing the Unum representation format which is able
to represent exact and approximate numbers with varying
mantissa and exponent field length [3].

Even though significance arithmetic offers an approxima-
tion of the error, it is not suitable for every numerical problem
related to the management of error. In particular, significance
arithmetic is not meant for self-correcting numerical algorithm
such as Newton’s algorithm.

III. A FORMAT TO EMBED CANCELLATION INFORMATION

In this section we described the proposed representation
format named Floating-Point Adaptive Noise Reduction (FP-
ANR) as it allows the user to distinguish significant from
unsignificant digit. Unsignificant digit, or noise, can come
from initial uncertainty, or cancellation generated during com-
putation. This format corresponds to an implementation of
significance arithmetics which can be easily done in hardware
or software based on existings IEEE-754 format. To simplify
the article, in the sequel we will consider radix-2 arithmetic,
where bit or digit will refer to the same notion.

A. The representation format

Our goal is to propose a non-intrusive solution while being
able to keep track of uncertainty and cancellation. By non-
intrusive, we mean that the proposed solution must be compat-
ible with existing floating-point representation format without
exhibiting a large overhead. This discards any solutions relying
on shadow memory, or extra fields.

The proposed format, named FP-ANR, is based on a mod-
ification of the mantissa to embed cancellation information.
The modification of the mantissa consists in replacing unin-
formative bit, for example bit of noise lost during cancellation,
by a given pattern. This pattern must be self-detectable to
avoid using extra fields as in Unum. There are two candidates
for such pattern. We can use a 0 followed by as many 1 as
needed (or a 1 followed by as many 0 as needed). With such
patterns, one can easily deduce the number of cancelled bit by
scanning from right to left the mantissa to detect the first 1
(or 0 respectively). The assembly instruction that perform this
operation is usually named Count Trailing Zero/One. For the
sake of simplicity, in the sequel of this article we will focus
on the pattern made of a 1 followed by 0. We call that first 1
encountered from right to left in the mantissa the significant
flag.

With FP-ANR, one bit of the mantissa is used to represent
the significant flag. It means that a p-bit mantissa number
will have at most p − 1 informative bits which is 1 bit less
than the corresponding IEEE-754 representation format which

FP-ANR is built upon. For example, the value 1.0 which
corresponds to the binary32 IEEE-754 representation number
0 01111111 00000000000000000000000 will be represented
in the FP-ANR format by

0 01111111 00000000000000000000001

The rightmost bit equal to 1 and corresponding to the sig-
nificant flag, indicates the position between significant and
unsignificant bit in the mantissa. In other words, this represen-
tation corresponds to the floating-point number 1.0 accurate up
to 23 bits. Alternatively, the FP-ANR representation string

0 01111111 00000000000010000000000

corresponds to the floating-point number 1.0 as well, but
accurate to 13 bits.

This slight modification affects the set of finite numbers as
defined by the IEEE-754 standard including normal and sub-
normal numbers. The representation format of special values
which includes infinities, NaN and 0 remains unchanged as no
significant flag is embedded.

In other words, the major difference between the IEEE-
754 representation format and the FP-ANR format is that
IEEE-754 can manipulate exact values such as 1.0 whereas
FP-ANR deals only with approximation (except for 0). This
could be a drawback as discussed in section II-C, but we
believe that exact values have to be handled with fixed-point
arithmetic which are meant for that purpose. On the contrary,
floating-point values are by essence finite representation and
therefore approximation of real number and should integrate
that information.

B. Managing uncertainties

With FP-ANR, uncertainty is integrated directly in the
mantissa. For example, let consider a physical process which
produces a value 1234.56 with an uncertainty U = 10−3%.
This measure will be converted in:

binary32 0 10001001 00110100101000111101100

FP-ANR 0 10001001 00110100101001000000000

As we can observe, with the IEEE-754 format the value
will be translated directly in its binary format where the last 10
unsignificant bits correspond to noise. Whereas with FP-ANR
we can distinguish significant and unsignificant bits.

To the extreme, when all bits of information are lost we
can keep track of that information, which is not the case with
other representation format. It means that FP-ANR offers a
new concept over other representation format including IEEE-
754 which is the concept of error.

For example, let consider the following number where all
bits of the mantissa are set to 0 and only the implicit bit is set
to 1.

0 01111111 00000000000000000000000

This representation number means that there are no significant
bits in the mantissa. It is therefore difficult to produce valid
bit out of such numbers, except that there is another useful
embedded information. It is the order of magnitude of the
error stored in the exponent. This information can be used
in further computation involving such a number: For example,



in an addition to discard bits of weight less than the order of
the error (unsignificant bit). It can potentially avoid a division
by zero resulting from an unwanted catastrophic cancellation
where all bits are lost.

C. Addition of FP-ANR

As we have seen in section II-B3, least significant bit of
the mantissa are usually uninformative as they corresponds to
noise due to cancelation or discretization. The information on
unsignificant bit has to be propagated during operations. This
can be done by updating the position of the significant flag of
the result of an addition between two FP-ANR as follow.

Let A, B and R be three FP-ANR numbers with re-
spectively αA, αB and αR significant bits. The number of
significant bits αR of the results R = A ◦B with ◦ ∈ {+,−}
is determined by:

αR = expR−MAX((expA−αA), (expB −αB))

where expX corresponds to the exponents of the FP-ANR
number X with X ∈ {A,B,R}. One can notice that the
quantities (expA−αA) and (expB −αB) correspond to the
absolute error.

D. Multiplication and division of FP-ANR

Error propagation during multiplication corresponds to the
simplest case. The number of significant bits resulting from a
multiplication between two FP-ANR numbers is computed as
follow:

Let X with X ∈ A,B,R be a FP-ANR representation
of the number x with x ∈ {a, b, r} respectively, with αX
significant bits. The error eX in X is such that X = x·(1+eX)
with |eX | ≤ 2−αX .

The error in the multiplication R = A · B is computed as
follow:

R = (a · b) · (1 + ea + eb + ea · eb)

and the error term er = ea + eb + ea · eb is such that

|er| ≤ 2−αA + 2−αB + 2−αA−αB

The number of significant bits in the results R is approximated
using

αR =MIN(αA, αB) (1)

The number of significant bits in the results R = A/B for
the division can be computed as follow:

R =
a

b
· 1 + ea
1 + eb

This formula can be rewritten by expressing the denominator
term for the error as an infinite series as follow:

R =
a

b
· (1 + ea) · (1− eb + e2b + ...)

Since the error eb is assumed less than 1, e2b and all the higher
order terms can be neglected. The error term for the division
er = ea − eb − ea · eb is such that

|er| ≤ 2−αA + 2−αB + 2−αA−αB

and the number of significant bits in the results R of the
division can be approximated using Equation 1 as well.

E. Other operations in FP-ANR

To be complete, we must consider the propagation of
uncertainty in the case of more complex operation such as ex-
ponential, logarithms or trigonometric function. Let R and X
be FP-ANR representations of the number r and x respectively,
with αR and αX significant bits. We would like to estimate
the number of significant bits αR when R = f(X) with f a
function of X .

The number of significant digit is determined similarly as
the propagation of uncertainty. It can be done by looking at
the extremum on the interval of values corresponding to the
initial uncertainty interval [X−eX ;X+eX ] with eX the error
in X such that |eX | ≤ X · 2−αX .

This uncertainty can be estimated using a first-order Taylor
series expansion. It consists in replacing function f by its local
tangent:

f(X + eX) = f(X) + f ′(X) · eX + o(eX)

with o(x) a function which quickly tend toward 0. Therefore,
the uncertainty in the result R can be estimated by:

eR ≈ |f ′(X)| · eX
This estimation is valid only if the function is considered quasi-
linear and quasi-gaussian on the interval [X − eX ;X + eX ].
This corresponds to an estimation of the number of significant
bit of the result αR:

αR = log2

∣∣∣∣ f(X)

f ′(X) · eX

∣∣∣∣
Combining this formulae with the following estimation of the
number of significant digit in x:

αX = log2

∣∣∣∣ XeX
∣∣∣∣

we get

αR − αX ≈ log2
∣∣∣∣ f(X)

f ′(X) ·X

∣∣∣∣
where for any number y, log2(y) can be approximated using
the exponent part of its floating-point representation format. In
particular:

• For f(X) =
√
X , f ′(X) = − 1

2·
√
X

, we have
αR ≈ αX + log2|2| = αX + 1

• For f(X) = exp(X), f ′(X) = exp(X), we have
αR ≈ αX + log2|1/X| = αX − log2|X|

• For f(X) = ln(X), f ′(X) = 1/X , we have
αR ≈ αX + log2|ln(X)|

• For f(X) = sin(X), f ′(X) = cos(X), we have
αR ≈ αX + log2

∣∣∣ sin(X)
X·cos(X)

∣∣∣
• For f(X) = cos(X), f ′(X) = −sin(x), we have
αR ≈ αX + log2

∣∣∣ cos(X)
X·sin(X)

∣∣∣
F. Rounding in FP-ANR

We should mention that the presence of the significant flag
is independent of the rounding problem. Therefore, we propose
to use similar rounding strategy with FP-ANR than with IEEE-
754 format. The only difference is the bit position where



rounding will be done. With FP-ANR, rounding is operated
on the last bit of the significant part, whereas it is done on the
last bit of the mantissa for IEEE-754 representation format.

G. FP-ANR and the Table Maker’s Dilemma

In addition to the propagation of the significant flag, there
is another problem regarding elementary functions: the Table
Maker’s Dilemma [20]. Table Maker’s Dilemma corresponds
to the problem of computing approximation of elementary
functions with enough bit to ensure correct rounding. This
problem is known to be difficult with IEEE-754 representa-
tion format since there are no bound on the number of bit
mandatory for every function and every format.

With FP-ANR, the Table Maker’s Dilemma is circum-
vented as follow. One can set a target accuracy t function
of the number of significant bit αX of the input number X
mandatory to evaluate the results of an elementary function.
For example, one can set t = 2 ·αX . If rounding can be done,
then the process ends. If not, which corresponds to a hard to
round case, it means that we are not sure of the last bit in the
significant part. This corresponds to an uncertainty due to the
Table Maker’s Dilemma, and this uncertainty can be integrated
in the FP-ANR format by left-shifting by one position the
significant flag. This way reproducibility and portability of
results provided by correct rounding is preserved.

H. Interaction between FP-ANR and IEEE-754

One major advantage of FP-ANR is that it is compatible
with IEEE-754 representation format. As with any formats,
compatibility can be assured thanks to conversion. Conversion
between those two formats is straightforward as only the man-
tissa must be modified. From FP-ANR to IEEE-754 format,
this can be done by replacing the significant flag with a 0. From
IEEE-754 to FP-ANR format, this can be done by replacing
the right-most bit of the mantissa by the significant flag (a 1
in the last position).

In addition to conversion, one can notice that IEEE-754
operators can process FP-ANR numbers. It won’t lead to crash
or irrelevant results, only the meaning of the unsignificant bits
will differs. However, it should not be considered as a serious
issue as those bits correspond to noise. The opposite, which
corresponds to the case where FP-ANR operators process
IEEE-754 numbers is more problematic, as this depends on
the position of the last bit set to 1.

IV. IMPLEMENTATIONS

A. Software implementation

In this section, we describe a simplified software emulation
of the proposed format. For the sake of simplicity, we will
only describe basic operations on FP-ANR format related to
the IEEE-754 binary32 format.

We should mention that we have developed two C++ class
to deal with single and double precision format. These two
class are based on the header file of the CADNA library [7],
where we replaced the code related to stochastic arithmetic
with operations on significance arithmetic. This library can
advantageously replace IEEE-754 double and float format

and major operations over those formats. It is available for
download at http://perso.univ-perp.fr/david.defour/

One can notice that the biggest advantage of FP-ANR over
other solutions that requires extra memory (shadow memory or
extra fields), is that it could be easily integrated in a compiler
pass. Indeed, memory allocation, bit manipulations (such as
extraction of exponent, sign,...), tricky pointer manipulation
are straightforward with the proposed format. However, such
implementations is out of the scope of this article and is kept
for future work.

1) Conversion: Programs in Listing 1 rely on the ieee754.h
header file provided with many Linux distribution. This header
file defines the type ieee754 float that ease access to the
bitfield of floating-point number. The two functions convert a
number between binary32 and FP-ANR format by managing
the significant flag according to the rules defined in section
III-H.

Listing 1. Functions to convert between FP-ANR and binary32 format
# i n c l u d e <i e e e 7 5 4 . h>

/∗ Conver t a b i n a r y 3 2 number f t o
a FP−ANR number w i t h p b i t s ∗ /

f l o a t Floa t2FpAnr ( f l o a t f , i n t p ){
union i e e e 7 5 4 f l o a t d ;
d . f = f ;

p r e c = MIN( 2 2 , p ) ;

d . i e e e . m a n t i s s a &= (0 x7FFFFF<<(23−p ) ) ;
/∗ S e t t h e s i g n i f i c a n t f l a g ∗ /
d . i e e e . m a n t i s s a |= 1<<(22−p ) ;

re turn d . f ;
}

/∗ Conver t a FP−ANR number w i t h
p b i t s t o a b i n a r y 3 2 number ∗ /

f l o a t FpAnr2F loa t ( f l o a t f , i n t ∗p ){
union i e e e 7 5 4 f l o a t d ;
i n t c ;

d . f = t h i s−>v a l u e ;

i f ( d . i e e e . m a n t i s s a !=0 ){
c = c o u n t t r a i l i n g z e r o s ( d . i e e e . m a n t i s s a ) ;
/∗ Remove t h e s i g n i f i c a n t f l a g ∗ /
d . i e e e . m a n t i s s a ˆ= 1<<c ;

}

∗p = 22−c ;
re turn ( d . f ) ;

}

2) Operations: We wrote a set of operations over FP-ANR
numbers. Listing 2 describes how information on cancellation
gets propagated during addition and multiplication.

Listing 2. Functions to perform addition and multiplication over FP-ANR
format

f l o a t FpAnrAdd ( f l o a t a1 , f l o a t a2 ){
f l o a t r e s ;
i n t e1 , e2 , e r ;
i n t p1 , p2 ;

r e s = FpAnr2F loa t ( a1 , &p1 ) + FpAnr2F loa t ( a2 , &p2 ) ;

f r e x p ( a1 , &e1 ) ;
f r e x p ( a2 , &e2 ) ;

http://perso.univ-perp.fr/david.defour/
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Figure 1. Generation of the significant flag from a mantissa in FP-ANR
format based on a tree of OR gate.

f r e x p ( r e s , &e r ) ;

re turn Floa t2FpAnr ( r e s , er−MAX( ( e1−p1 ) , ( e2−p2 ) ) ) ;
}

f l o a t FpAnrMul ( f l o a t a1 , f l o a t a2 ){
f l o a t r e s ;
i n t p1 , p2 ;

r e s = FpAnr2F loa t ( a1 , &p1 ) ∗ FpAnr2F loa t ( a2 , &p2 ) ;

re turn Floa t2FpAnr ( r e s , MIN( p1 , p2 ) ) ;
}

One can notice that this simplified version implement
truncation as rounding mode. There are two solutions to im-
plement other rounding. The first and easiest solution consists
in adding a given quantity to the mantissa followed by a
truncation. However, this solution is subject to the double
rounding problem [21]. The second solution consists in letting
the hardware perform the rounding at the right position in
the mantissa. It can be done by shifting the mantissa by some
quantity so that the least significant bit of the significant part of
the FP-ANR format corresponds with the least significant bit of
the mantissa of the IEEE-754 representation format. Providing
those rounding modes just consists in adding extra shifting
instructions. Therefore, there are kept out of this article.

B. Hardware implementation

Hardware implementation of FP-ANR is more straightfor-
ward and simpler than the software solution. As FP-ANR and
IEEE-754 format are similar, FP-ANR can rely on existing
IEEE-754 hardware implementation. The only difference is the
introduction of the necessary hardware to manage the position
of the significant flag. This position dictates the position of
rounding. It can be determined by implementing in hardware
a trailing zero count operation. This operation can be done
with a priority enforcer/encoder corresponding to a chain of
elements with a ripple signal scanning bit of the mantissa from
right to left. The ripple signal means ”nobody before it” is
valid and it could be replaced with a tree of OR gates to split
mantissa between its significant and unsignificant part. This
could be done using a carry lookahead implementation. Figure
IV-B exhibit a simple implementation of this operation based
on a tree of OR gates.

V. COMPARISONS WITH OTHER METHODS

A. Performance

We have tested the overhead for the addition, multipli-
cation and division of the proposed format compared to
hardcoded IEEE-754 operations and CADNA [22] operations
on an 2,4 Ghz Intel Core i5, with LLVM version 8.1.0.

double float
Operations FP-ANR CADNA FP-ANR CADNA
Addition 21 7.5 18.5 15

Multiplication 8.7 3.5 8.5 4.0
Division 8.9 5.0 15 14.2

Table I. EXECUTION TIME OF COMMON OPERATIONS IN FP-ANR AND
CADNA FORMAT NORMALIZED WITH IEEE-754 OPERATIONS.

Results are reported in table I. Those results corresponds
to the implementation of the prototype library available at
http://perso.univ-perp.fr/david.defour/. One can notice that the
overhead of FP-ANR over hardcoded operations range between
8.5 for the multiplication and 21 for the addition. If this
overhead is higher than the one of CADNA, we should recall
that FP-ANR is intended to be implemented in hardware and
therefore available at no cost.

B. Comparison with Unum

Recently, Gustafson proposed in [3] a modified version of
significance arithmetic with an extra field (unum field) which
indicate if a number is exact. However, according to William
Kahan, the principal architect of IEEE 754-1985, this format
presents several drawbacks [5]. Among them, he is stating that:

• The Unum computation does not always deliver correct
results.

• The Unums can be expensive in terms of time and power
consumption.

• The bit length of Unum format can change during com-
putation, which make its hardware implementation harder
than with fixed-size format especially regarding memory
allocation, de-allocation and accesses.

The last two points are serious issues that FP-ANR does not
exhibits.However, Unum has some properties that FP-ANR
don’t, such as being able to handle exact numbers.

C. Comparison with Stochastic arithmetic

Stochastic arithmetic provides an estimation of the nu-
merical confidence of computed results. CESTAC method
formalizes a simplified version of discrete stochastic arithmetic
using randomized rounding for each floating-point operation.
This method is implemented using C++ operator overloading
in CADNA library [7]. This library detects with a high degree
of confidence the number of significant digits, and instability
such as cancellation, branching instability and mathematical
instability. It consists in replacing each floating-point number
by a set of 3 floating-point numbers plus an integer, on
which stochastic operation are performed. Thanks to those
extra fields, such system provides tighter bound than FP-ANR.
However, similarly to the Unum format, those extra fields
manipulated with CADNA hinder memory management and
performance.

D. Comparison with Monte-Carlo arithmetic

Another alternative to estimate numerical quality of com-
puted result consists in using Monte-Carlo arithmetic as
suggested by Parker [23]. Monte-Carlo arithmetic gathers
rounding and catastrophic cancellation errors by applying

http://perso.univ-perp.fr/david.defour/


randomization on input and output operands at a given vir-
tual precision. A recent implementation of this solution has
been proposed with Verificarlo [6]. Verificarlo implement an
LLVM pass which replace every floating-point operation to
automatically use Monte Carlo Arithmetic.

Even though Verificarlo is implemented directly as a com-
piler pass which make it very efficient, one of its drawback is
the number of execution sample necessary to collect qualitative
results. The solution proposed by the authors consists in
running those numerous execution in parallel. If this solution
reduces the global execution time, it does not reduce the total
amount of work to gather this information.

VI. CONCLUSIONS AND PERSPECTIVES

IEEE-754 2008 revision have seen the introduction of new
format which reflect the trend to better adapt the representation
format used in software to the real need of the application.
However, dealing with various format requires to bound at
each step numerical quality of results, which is a tedious task
that can be done only by the expert. Some recent work has
been proposed to automate the estimation of the numerical
quality of computed results produced by software and/or the
benefit of formats changes.

In this article, we have presented a solution that bring up
to date significance arithmetic and make it compatible with the
IEEE-754 standard. Significance arithmetic is a concept that
add information on significant digits on each floating-point
number. It can provide information on cancellation errors,
and if accurate enough, on rounding error. It consists in a
representation format with rules for the propagation of error.

The proposed solution consists in a simple pattern embed-
ded in the mantissa of floating-point numbers. This pattern is
self-sufficient and does not requires extra fields or memory.
This solution presents numerous advantages as it is a simple
concept to understand, simple to implement and memory
efficient. Tests on a preliminary version shows that the cost
for the detection in software of the proposed pattern is high
compared to other solution. However, the simplicity of this
solution suggests that performance could be improved thanks
to hardware support. Support for FP-ANR can be achieve
through specific instructions or execution flag similarly to the
management of rounding mode.

If implemented in hardware, this solution can definitely
help developers gain confidence in their code by providing an
estimation on the number of significance digits at no cost or
help achieve reproducibility.

However, it is not meant to solve all problems related to
floating-point arithmetic. Significance arithmetics suffer from
the same problem of interval arithmetic such as loss of correla-
tion between variables, and produces over pessimistic bound as
results. For example, iterative scheme such as newton iteration
works perfectly with IEEE-754 floating point arithmetic which
is not the case with significance arithmetic. That is why
we advocate that FP-ANR should only come in support to
traditional IEEE-754 floating-point arithmetic.
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