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Abstract—When dealing with floating-point numbers there are several
sources of error which can drastically reduce the numerical quality of
computed results. Among those errors, is of the loss of significance
or cancellation, which occurs during for example, the subtraction of
two nearly equal numbers. In this article, we propose a representation
format named Floating-Point Adaptive Noise Reduction (FP-ANR). This
format embeds cancellation information directly into the floating-point
representation format thanks to a dedicated pattern. With this format,
insignificant trailing bits lost during cancellation are removed from every
manipulated floating-point number. The immediate consequence is that
it increases the numerical confidence of computed values. The proposed
representation format corresponds to a simple and efficient implemen-
tation of significance arithmetic based and compatible with the IEEE
Standard 754 standard.

1 INTRODUCTION

Floating-point numbers, which are normalized by the IEEE
Standard 754 standard [1], correspond to a bounded dis-
cretization of real numbers. Therefore, a floating-point num-
ber corresponds to the representation of an exact number
combined with errors due to discretization, accumulation of
rounding error or cancellation. In other words, a floating-
point number embeds useful information along with noise
linked to those errors.

When numerical noise become dominant, during catas-
trophic cancellation as example, there are no more useful
bits of information in the representation numbers. Unfortu-
nately, the occurence of this situation is undetectable just by
looking at the representation. This is due to the fact that with
the widely used IEEE Standard 754 representation format,
there is no way to distinguish useful numerical information
from noise. This problem has been identified and addressed
since the late 1950s with significance arithmetic [2]. Sig-
nificance arithmetic addressed these issues by tailoring the
number of digits to their need.

Significance arithmetics is regaining interest through
Unum [3] or indirectly through numerous problem encoun-
tered with exascale computer and the lack of confidence in
numerical results [4]. If the Unum system is based on real
problems, the proposed solution is subject to criticism for
numerous reasons as pointed out by W. Kahan [5]. On the
other hand, indirect solutions based on software solutions
to detect cancellation [6], [7], or avoiding rounding errors

[4] are not meant to be efficient nor effective for real time
execution.

In this article, we propose a new way to keep track of
insignificant information. The solution consists of an altered
IEEE Standard 754 representation format of the significand.
That information is stored using a simple pattern that re-
places insignificant digits. This makes such representation
numbers almost as accurate as original IEEE Standard 754
numbers. In addition, operations based on that format can
be easily implemented in hardwares at no cost. Therefore,
the proposed solution corresponds to a simple, efficient
and IEEE Standard 754 compliant implementation of sig-
nificance arithmetic.

This article is organized as follows: Section 2 gives
some background on rounding error management. Section 3
details the proposed format named FP-ANR to embed can-
cellation information within the representation format of
floating-point numbers. This is followed by Section 4 that
presents how to implement the proposed approach both
in software and hardware. Then, Section 6 presents some
experimental results and comparison with others solutions,
before concluding in Section 7.

2 PRELIMINARIES

Floating-point numbers are approximations of real num-
bers. The concept of approximation is associated with the
concept of errors. Digits of a floating-point representation
number can be split in two parts; a significant and an
insignificant part. This section provides some background
on IEEE Standard 754 floating-point arithmetic, errors and
significance arithmetic.

2.1 The IEEE Standard 754 standard
The current version of the floating-point standard, the IEEE
Standard 754[-2008] [1] published in August 2008, includes
the original binary formats along with three new basic
formats (one binary and two decimal).

Definition 1 (Floating-Point Numbers). A IEEE Standard 754
representation format is a ”set of representations of numerical
values and symbols” made of finite numbers, two infinities and
two kinds of NaN (Not A Number). The set of finite numbers
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are described by a set of three integers (s,m,e) corresponding
respectively to the sign, the significand and the exponent. The
numerical value associated with this representation is

(−1)s ×m× be.

Values that can be represented are determined by the base or radix
b (2 or 10), the number (p) of digits in the significand and the
exponent parameter emax such that:

0 ≤ m ≤ bp − 1

and
1− emax ≤ e+ p− 1 ≤ emax

The value Zero is represented with a 0 significand and a
sign bit specifying a positive or negative zero.

In the case of binary formats, representation of finite
numbers is made unique by choosing the smallest repre-
sentable exponent. Numbers with an exponent in the normal
range have the leading bit set to 1. It corresponds to an
implicit bit as it is not present in the memory encoding,
allowing the memory format to have one more bit of pre-
cision. This extra bit is not present for subnormal numbers
which have an exponent outside the normal exponent range.

For example, the IEEE Standard 754 double precision
format (or binary64) is represented with 64 bits which are
split into 1 sign bit, p = 52 bits of significand and e = 11 bits
of exponent whereas single precision format (or binary32) is
represented with 32 bits split into 1 sign bit, p = 23 bit of
significand and e = 8 bits of exponent.

2.2 Floating-Point Errors
Representation format of floating-point numbers differs by
their radix and the number of bits used for their encoding.
The 2008 revision of the IEEE Standard 754 includes new
formats to better adapt to the real need of the computation
ranging from 16 to 128 bits. However, those formats rely on
fixed numbers of bit, which implies that it does not exactly
match the real need. Therefore, numbers must be rounded
or padded with zeros in the least significand digits of the
significand when the used format is respectively undersized
or oversized. This means that by construction, FP numbers
embed errors in their representation. These errors can be
separated into three groups: data uncertainty, rounding and
cancellation.

2.2.1 Uncertainty
Uncertainty in data is linked to initial input values, espe-
cially when data come from measurements or experimenta-
tions using physical sensor. It can also be due to the model
or the algorithm used to model real phenomena such as
polynomial approximation [8].

For example, due to uncertainty, data produced by
industrial measurement is accurate up to a few dig-
its (thermal sensor [9], voltage sensor [10]). This uncer-
tainty can be given in percentage such as in [11]. This
means that for example the twenty digits measure x =
12345.678901234567890 obtained with a process exhibiting
an uncertainty of U = 10−3% correspond to a real value in
the interval [x ·(1−U);x ·(1+U)] = [12345.555; 12345.802].
This translates into 5 significant digits, the rest of the infor-
mation corresponding solely to noise or insignificant digits.

Due to the lack of knowledge, or simply because floating-
point number are over-dimensioned, this noise is kept in
the representation of those numbers during computation.
However, those extra digits do not bring any benefit for the
numerical quality of the final results.

2.2.2 Rounding
Because floating-point numbers have a limited number of
digits, they cannot represent real numbers accurately. When
there are more digits than the format allows, the number is
rounded and the leftover ones are omitted.

Let fl() denote the result of a floating-point compu-
tation, which has to be rounded according to the relative
rounding error u. We have

fl(1 + u) = 1

with u that depends on the radix b and the precision p as
follow:

u = b/2 · b−p

Let F ∈ R be the set of floating-point numbers, if x ∈ R be-
longs to the range of representable floating-point numbers,
then

fl(x) = x · (1 + ε) with |ε| < u

Floating-point operations in IEEE Standard 754 satisfy

fl(a ◦ b) = (a ◦ b) · (1 + ε) |ε| ≤ u ◦ ∈ {+,−,×, /}

The standard defines five rounding rules, two rounding to
the nearest (ties to even, ties away from zero) and three
directed rounding (toward 0,−∞,+∞).

2.2.3 Cancellation
Cancellation occurs when two nearby quantities are sub-
tracted and the most significant digits cancel each other.
Cancellations are very common but when many digits are
lost, the effect can be severe as the number of informative
digits is reduced. In that case, this results in catastrophic
cancellation that has a dramatical impact on the sequel of
the computation.

For example, let x = 1.5 × 20 and y = 1.0 × 226 be two
floating-point numbers stored in binary32 format. Then the
sequence of operations r = fl(fl(x + y) − y) produces the
result r = 0.0 which has no correct digit as the real result
should be 1.5. This is due to catastrophic cancellation which
occurred during the subtraction. Such cancellations cannot
be detected, leaving no trace of the fact that r = 0.0 was
completely incorrect, except through a dedicated sequence
of operations.

Such sequences are used for example in numerical algo-
rithms that computes errors such as the 2sum algorithm [12],
[13]. This corresponds to specific pattern of computation
with correlation between variables.

2.3 Significance arithmetic

Significance arithmetic [2], [14], [15] brings a solution to
the problem of representing an approximation of the error
along with floating-point numbers. It relies on the concept
of significant and insignificant digits.
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Definition 2 (Significant and insignificant digits). Let α be
the number of significant digits of a p-digits number X repre-
sented in radix b. Then, the error e inX is such that |e| ≤ X ·b−α
and the number of insignificant digits is p− α.

Significance arithmetic sets two methods to calculate a
bound for the propagated and generated error called normal-
ized significance and unnormalized significance. The normal-
ized significance always keeps the floating-point number
normalized and provides an index of significance. The un-
normalized significance does not normalize floating-point
numbers and uses the count of digits remaining after lead-
ing zeros as an indication of their significance.

The normalized method allows as many digits as possi-
ble of a number to be retained and an added index defines
the number of significant digits. Such arithmetic is imple-
mented in software using set of numbers in FORTRAN with
FORSIG [16], or Python [17]. With the unnormalized method
[18], only digits considered significant are retained.

The integration of a specific pattern in the significand
to categorize significant and insignificant digit has already
been proposed for decimal computer in the BCD format [19].
It relies upon unused bit pattern in the BCD format which
are bit-field 1010 and 1011 corresponding to respectively
digits 10 and 11. More recently, Gustafson [3] extended sig-
nificance arithmetic by proposing the Unum representation
format which is able to represent exact and approximate
numbers with varying significand and exponent field length
.

Even though significance arithmetic offers an approxi-
mation of the error, it is not suitable for every numerical
problem related to the management of error. In particular,
significance arithmetic is not meant for self-correcting nu-
merical algorithm a found in iterative refinement.

3 A FORMAT TO EMBED CANCELLATION INFORMA-
TION

In this section we described the proposed representation
format: Floating-Point Adaptive Noise Reduction (FP-ANR).
It allows the user to distinguish the significant and the
insignificant digit from the significand. Insignificant digits,
or noise, can come from initial uncertainty, or cancellation
generated during computation. This format corresponds to
an implementation of significance arithmetics which can be
easily done in hardware or software based on the existing
IEEE Standard 754 format. In this article, we will consider
the radix-2 arithmetic, where bit or digit will refer to the
same notion.

3.1 The representation format
Our goal is to propose a non-intrusive solution while be-
ing able to keep track of uncertainty and cancellation. By
non-intrusive, we mean that the proposed solution must
be compatible with existing floating-point representation
format without exhibiting a large overhead. This discards
any solutions relying on shadow memory, or extra fields.

The proposed format, named FP-ANR, is based on a
modification of the significand that integrates information
on cancellation. The modification of the significand consists
in replacing uninformative bits, for example bits of noise

lost during cancellation, by a given pattern. This pattern
must be self-detectable to avoid using extra fields as in
the Unum. There are two candidates for such pattern. We
can use a 0 followed by as many 1 as needed (or a 1
followed by as many 0 as needed). With such patterns, one
can easily deduce the number of cancelled bits by scanning
from right to left the significand to detect the first 1 (or
0 respectively). The assembly instruction that perform this
operation is usually named Count Trailing Zero/One. For the
sake of simplicity, in the sequel of this article we will focus
on the pattern made of a 1 followed by 0. We call that
first 1 encountered from right to left in the significand the
significant flag.

With FP-ANR, one bit of the significand is used to
represent the significant flag. It means that a p-bit signif-
icand number will have at most p − 1 informative bits
which is 1 bit less than the corresponding IEEE Stan-
dard 754 representation format which FP-ANR is built
upon. For example, the value 1.0 which corresponds to
the binary32 IEEE Standard 754 representation number
0 01111111 00000000000000000000000 will be represented
in the FP-ANR format by

0 01111111 00000000000000000000001

The rightmost bit equal to 1 and corresponding to the
significant flag, indicates the position between significant
and insignificant bit in the significand. In other words, this
representation corresponds to the floating-point number 1.0
accurate up to 23 bits. Alternatively, the FP-ANR represen-
tation string

0 01111111 00000000000010000000000

corresponds to the floating-point number 1.0 as well, but
accurate to 13 bits.

This slight modification affects the set of finite numbers
as defined by the IEEE Standard 754 standard including nor-
mal and subnormal numbers. The representation format of
special values which includes infinities, NaN and 0 remains
unchanged as no significant flag is embedded.

In other words, the major difference between the IEEE
Standard 754 representation format and the FP-ANR format
is that IEEE Standard 754 can manipulate exact values such
as 1.0 whereas FP-ANR deals solely with approximation
(except for 0). This could be a drawback as discussed in
section 2.3, but we believe that the exact values have to
be handled with fixed-point arithmetic which are meant for
that purpose. On the contrary, floating-point values are by
essence finite representation and therefore an approxima-
tion of real numbers and should integrate that information.

3.2 Managing uncertainties
With FP-ANR, uncertainty is integrated directly in the
significand. For example, let us consider a physical process
which produces the value x = 1234.56 with an uncertainty
U = 10−3%. With IEEE Standard 754, there is no direct
solution to integrate the information on uncertainty in the
representation number leading the representation given in
table 1. Indeed, It is still possible to circumvent this problem
by using interval number, but this will requires at least
2 numbers. With FPANR, the information on uncertainty
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binary32 0 10001001 00110100101000111101100

FP-ANR 0 10001001 00110100101000110000000
Table 1

Binary representation of the value 1234.56 with an uncertainty 10−3%

could be integrated by evaluating the number of significant
digit, which corresponds to b|log2(U)|c = 16 bits.

As we can observe, with the IEEE Standard 754 format
the value will be translated directly into its binary format
where the last 8 insignificant bits correspond to noise.
Whereas with FP-ANR we can distinguish significant and
insignificant bits.

When all signicant bits are lost we can keep track of
that information, which is not the case with the other
representation format. In that case we have information on
the order of magnitude of the insignificance. This concept is
related the concept of informatical zero represented by @.0
in CADNA [7]. For example, let us consider the following
number where all bits of the significand are set to 0 and only
the implicit bit is set to 1.

0 01111111 00000000000000000000000

This representation number means that there are no signifi-
cant bits in the significand. However, there is another useful
embedded information which is the order of magnitude of
the error stored in the exponent. This information can be
used in further computation involving such a number: For
example, in an addition to discard bits of weight less than
the order of the error (insignificant bit). It can potentially
avoid a division by zero resulting from an unwanted catas-
trophic cancellation where all bits are lost.

3.3 Addition of FP-ANR
As we have seen in section 2.2.3, the least significant bits
of the significand are usually uninformative as they corre-
sponds to noise due to cancelation or discretization. The
information on insignificant bit has to be propagated during
operations. This can be done by updating the position of the
significant flag of the result of an addition between two FP-
ANR as follow.

Let A, B and R be three FP-ANR numbers with re-
spectively αA, αB and αR significant bits. The number of
significant bits αR of the results R = A ◦B with ◦ ∈ {+,−}
is determined by:

αR = expR−MAX((expA−αA), (expB −αB))

where expX corresponds to the exponents of the FP-ANR
number X with X ∈ {A,B,R}. One can notice that the
quantities (expA−αA) and (expB −αB) correspond to the
absolute error.

3.4 Multiplication and division of FP-ANR
Error propagation during multiplication corresponds to the
simplest case. The number of significant bits resulting from a
multiplication between two FP-ANR numbers is computed
as follows:

Let X with X ∈ A,B,R be a FP-ANR representation
of the number x with x ∈ {a, b, r} respectively, with αX
significant bits. The error eX in X is such that X = x · (1 +
eX) with |eX | ≤ 2−αX .

The error in the multiplication R = A ·B is computed as
follows:

R = (a · b) · (1 + ea + eb + ea · eb)

and the error term er = ea + eb + ea · eb is such that:

|er| ≤ 2−αA + 2−αB + 2−αA−αB

The number of significant bits in the results R is approxi-
mated using

αR =MIN(αA, αB) (1)

The number of significant bits in the results R = A/B
for the division can be computed as follow:

R =
a

b
· 1 + ea
1 + eb

This formula can be rewritten by expressing the denomina-
tor term for the error as an infinite series as follow:

R =
a

b
· (1 + ea) · (1− eb + e2b + ...)

Since the error eb is assumed less than 1, e2b and all the
higher order terms can be neglected. The error term for the
division er = ea − eb − ea · eb is such that

|er| ≤ 2−αA + 2−αB + 2−αA−αB

and the number of significant bits in the results R of the
division can be approximated using Equation 1 as well.

3.5 Other operations using FP-ANR

We can consider the propagation of uncertainty in the
case of more complex operations as well (e.i. exponential,
logarithms or trigonometric function). Such functions have
already been considered in previous work on significant
arithmetic [2] which we recall next.

Let R and X be FP-ANR representations of the number
r and x respectively, with αR and αX significant bits. We
would like to estimate the number of significant bits αR
when R = f(X) with f a function of X .

The number of significant digits is determined in a simi-
lar manner as the propagation of uncertainty. It can be done
by looking at the extremum on the interval of values corre-
sponding to the initial uncertainty interval [X−eX ;X+eX ]
with eX the error in X such that |eX | ≤ X · 2−αX .

This uncertainty can be estimated using a first-order
Taylor series expansion. It consists in replacing the function
f by its local tangent:

f(X + eX) = f(X) + f ′(X) · eX + o(eX)

with o(x) a function which quickly tends toward 0. There-
fore, the uncertainty in the result R can be estimated by:

eR ≈ |f ′(X)| · eX

This estimation is valid only if the function is considered
quasi-linear and quasi-Gaussian on the interval [X−eX ;X+



IEEE TRANSACTION ON COMPUTER, VOL. XX, NO. Y, AUGUST ZZZZ 5

eX ]. This corresponds to an estimation of the number of
significant bits of the result αR:

αR = log2

∣∣∣∣ f(X)

f ′(X) · eX

∣∣∣∣
Combining this equation with the following estimation αX
of the number of significant digits in x:

αX = log2

∣∣∣∣ XeX
∣∣∣∣

we get

αR − αX ≈ log2
∣∣∣∣ f(X)

f ′(X) ·X

∣∣∣∣
where for any number y, log2(y) can be approximated using
the exponent part of its floating-point representation format.
In particular:
• For f(X) =

√
X , f ′(X) = − 1

2·
√
X

, we have
αR ≈ αX + log2|2| = αX + 1

• For f(X) = exp(X), f ′(X) = exp(X), we have
αR ≈ αX + log2|1/X| = αX − log2|X|

• For f(X) = ln(X), f ′(X) = 1/X , we have
αR ≈ αX + log2|ln(X)|

• For f(X) = sin(X), f ′(X) = cos(X), we have
αR ≈ αX + log2

∣∣∣ sin(X)
X·cos(X)

∣∣∣
• For f(X) = cos(X), f ′(X) = −sin(x), we have
αR ≈ αX + log2

∣∣∣ cos(X)
X·sin(X)

∣∣∣
3.6 Rounding in FP-ANR
We should mention that the presence of the significant flag
is independent of the rounding problem. Therefore, we
propose to use similar rounding strategies with FP-ANR as
done with the IEEE Standard 754 format. The only difference
is the bit position where rounding will be done. With FP-
ANR, rounding is operated on the last bit of the significant
part, whereas it is done on the last bit of the significand for
the IEEE Standard 754 representation format.

3.7 FP-ANR and the Table Maker’s Dilemma
In addition to the propagation of the significant flag, there
is another problem regarding elementary functions: the
Table Maker’s Dilemma [20]. The Table Maker’s Dilemma
corresponds to the problem of computing approximations
of elementary functions with enough bits to ensure correct
rounding. This problem is known to be difficult with the
IEEE Standard 754 representation format since there is no
bound on the number of bits required for every function
and every format.

With FP-ANR, the Table Maker’s Dilemma is circum-
vented as follows. One can set a target accuracy t function
of the number of significant bits αX of the input number X
mandatory to evaluate the results of an elementary function.
For example, one can set t = 2·αX . If rounding can be done,
then the process ends. If not, which corresponds to a hard
to round case, it means that we are not sure of the last bit
in the significant part. This corresponds to an uncertainty
due to the Table Maker’s Dilemma, and this uncertainty
can be integrated in the FP-ANR format by left-shifting one
position the significant flag. This way reproducibility and
portability of the results provided by correct rounding is
preserved.

3.8 Interaction between FP-ANR and IEEE Standard
754
One major advantage of FP-ANR is that it is compatible with
the IEEE Standard 754 representation format. As with any
format, compatibility can be assured thanks to conversion.
Conversion between those two formats is straightforward
as only the significand must be modified. From FP-ANR to
IEEE Standard 754 format, this can be done by replacing the
significant flag with a 0. From IEEE Standard 754 to FP-ANR
format, this can be done by replacing the right-most bit of
the significand by the significant flag (a 1 in the last position).

In addition to conversion, one can notice that the IEEE
Standard 754 operators can process FP-ANR numbers. This
will not lead to a crash or irrelevant results: it merely
modifies the meaning of the insignificant bits. Nevertheless,
it should not be considered as a serious issue as those
bits correspond to noise. However when FP-ANR operators
process IEEE Standard 754 numbers, the situation becomes
more problematic, as the meaning of the resulting number
depends on the position of the last bit set to 1.

4 IMPLEMENTATIONS

4.1 Software implementation
In this section, we describe a simplified software emulation
of the proposed format. For the sake of simplicity, we
will only describe basic operations on the FP-ANR format
related to the IEEE Standard 754 binary32 format.

We should mention that we have developed two C++
classes to deal with single and double precision formats.
These two classes are based on the header file of the
CADNA library [7], where we replaced the code related to
stochastic arithmetic with operations on significance arith-
metic. This library can advantageously replace the IEEE
Standard 754 double and float format and major opera-
tions for those formats. It is available for download at
http://perso.univ-perp.fr/david.defour/

One can notice that the biggest advantage of the FP-ANR
over other solutions that require extra memory (shadow
memory or extra fields), is that it could be easily integrated
in a compiler pass. Indeed, memory allocation, bit ma-
nipulations (such as extraction of exponent, sign,...), tricky
pointer manipulation are straightforward with the proposed
format. However, such implementations is out of the scope
for this article and will be developed in future work.

4.1.1 Conversion
Programs in Listing 1 rely on the ieee754.h header file pro-
vided by many Linux distributions. This header file defines
the type ieee754 float that eases access to the bitfield of
floating-point numbers. The two functions convert a num-
ber between binary32 and the FP-ANR format by managing
the significant flag according to the rules defined in section
3.8.

Listing 1. Functions to convert between FP-ANR and binary32 format
# include <i eee754 . h>

/ / Conver t a b i n a r y 3 2 number f
/ / t o a p b i t s FP−ANR number
f l o a t Float2FpAnr ( f l o a t f , i n t p){

union i e e e 7 5 4 f l o a t d ;

http://perso.univ-perp.fr/david.defour/
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d . f = f ;

prec = MIN( 2 2 , p ) ;

d . i e e e . s i g n i f i c a n d &= (0 x7FFFFF<<(23−p ) ) ;
/ / S e t t h e s i g n i f i c a n t f l a g
d . i e e e . s i g n i f i c a n d |= 1<<(22−p ) ;

return d . f ;
}

/ / Conver t a p b i t s FP−ANR number
/ / t o a b i n a r y 3 2 number
f l o a t FpAnr2Float ( f l o a t f , i n t ∗p){

union i e e e 7 5 4 f l o a t d ;
i n t c ;

d . f = t h i s−>value ;

i f ( d . i e e e . s i g n i f i c a n d ! = 0){
c = c o u n t t r a i l i n g z e r o s ( d . i e e e . s i g n i f i c a n d ) ;
/ / Remove t h e s i g n i f i c a n t f l a g
d . i e e e . s i g n i f i c a n d ˆ= 1<<c ;

}

∗p = 22−c ;
return ( d . f ) ;

}

4.1.2 Operations

We wrote a set of operations over FP-ANR numbers. Listing
2 describes how information on cancellation is propagated
during addition and multiplication.

Listing 2. Functions to perform addition and multiplication over FP-ANR
format

f l o a t FpAnrAdd( f l o a t a1 , f l o a t a2 ){
f l o a t r es ;
i n t e1 , e2 , er ;
i n t p1 , p2 ;

r es = FpAnr2Float ( a1 , &p1 ) + FpAnr2Float ( a2 , &p2 ) ;

f rexp ( a1 , &e1 ) ;
f rexp ( a2 , &e2 ) ;
f rexp ( res , &er ) ;

return Float2FpAnr ( re s , er−MAX( ( e1−p1 ) , ( e2−p2 ) ) ) ;
}

f l o a t FpAnrMul ( f l o a t a1 , f l o a t a2 ){
f l o a t r es ;
i n t p1 , p2 ;

r es = FpAnr2Float ( a1 , &p1 ) ∗ FpAnr2Float ( a2 , &p2 ) ;

return Float2FpAnr ( re s , MIN( p1 , p2 ) ) ;
}

One can notice that this simplified version implements
truncation as the rounding mode. There are two solutions
to implement other roundings. The first and easiest solu-
tion consists of adding a given quantity to the significand
followed by a truncation. However, this solution is subject
to the double rounding problem [21]. The second solution
consists in allowing the hardware to perform the rounding
at the right position in the significand. It can be done by
shifting the significand by some quantity so that the least
significant bit of the significant part of the FP-ANR format
corresponds with the least significant bit of the significand
of the IEEE Standard 754 representation format. Providing

0

Input mantissa

Significant signal

Significant part Unsignificant part

00001111…

0001101…

Figure 1. Generation of the significant flag from a significand in FP-ANR
format based on a tree of OR gate.

those rounding modes is achieved by adding extra shifting
instructions.

4.2 Hardware implementation

Hardware implementation of the FP-ANR is more straight-
forward and simpler than the software solution. As the FP-
ANR and the IEEE Standard 754 format are similar, FP-ANR
can rely on the existing IEEE Standard 754 hardware im-
plementation. The only difference is the introduction of the
necessary hardware to manage the position of the significant
flag. This position dictates the position of rounding and can
be determined by implementing in hardware a trailing zero
count operation. This operation can be done with a priority
enforcer/encoder corresponding to a chain of elements with
a ripple signal scanning bit of the significand from right to
left. The ripple signal signifies that ”nothing before it” is
valid and it could be replaced with a tree of OR gates to
split the significand between its significant and insignificant
part. This could be done using a carry lookahead imple-
mentation. Figure 4.2 exhibits a simple implementation of
this operation based on a tree of OR gates.

5 EXAMPLES

5.1 Catastrophic cancellation

Instability in quadratic equation, are known to be problem-
atic []

5.2 Reproducible summation

There exist numerous algorithm to perform reproducible
summation.

With what we are proposing

6 COMPARISONS WITH OTHER METHODS

6.1 Performance

We have tested the overhead for the addition, multiplication
and division of the proposed format compared to hardcoded
IEEE Standard 754 operations and CADNA [22] operations
on an 2,4 Ghz Intel Core i5, with LLVM version 8.1.0.
Results are reported in table 2. These results correspond
to the implementation of the prototype library available
at http://perso.univ-perp.fr/david.defour/. One can notice
that the overhead of the FP-ANR over hardcoded operations
range between 8.5 for the multiplication and 21 for the addi-
tion. If this overhead is higher than the one of CADNA, we
should recall that FP-ANR is intended to be implemented in
hardware and therefore available at no cost.

http://perso.univ-perp.fr/david.defour/
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double float
Operations FP-ANR CADNA FP-ANR CADNA
Addition 21 7.5 18.5 15

Multiplication 8.7 3.5 8.5 4.0
Division 8.9 5.0 15 14.2

Table 2
Execution time of common operations in FP-ANR and CADNA format

normalized with IEEE Standard 754 operations.

6.2 Comparison with Unum
Recently [3], Gustafson proposed a modified version of
significance arithmetic with an extra field (unum field)
which indicates if a number is exact. However, according
to William Kahan, the principal architect of IEEE 754-1985,
this format presents several drawbacks [5]. Among them, he
states:
• The Unum computation does not always deliver correct

results.
• The Unums can be expensive in terms of time and

power consumption.
• The bit length of Unum format can change during

computation, which make its hardware implementation
harder than with fixed-size format especially regarding
memory allocation, de-allocation and accesses.

The last two points are serious issues that the FP-ANR
format does not exhibit. However, the Unum possesses
some properties that the FP-ANR does not, such as being
able to handle exact numbers.

6.3 Comparison with Stochastic arithmetic
Stochastic arithmetic provides an estimation of the numer-
ical confidence of computed results. The CESTAC method
formalizes a simplified version of discrete stochastic arith-
metic using randomized rounding for each floating-point
operation. This method is implemented using C++ over-
loaded operators in the CADNA library [7]. This library
detects the number of significant digits with a high degree
of confidence. It also detects instability such as cancel-
lation, branching instability and mathematical instability.
It consists of replacing each floating-point number by a
set of 3 floating-point numbers plus an integer, on which
stochastic operation are performed. Thanks to those extra
fields, such systems provide a tighter bound than the FP-
ANR format. However, similarly to the Unum format, those
extra fields manipulated with the CADNA hinder memory
management and performance.

6.4 Comparison with Monte-Carlo arithmetic
Another alternative to estimate numerical quality of com-
puted result can be achieved by using the Monte-Carlo
arithmetic as suggested by Parker [23]. Monte-Carlo arith-
metic gathers rounding and catastrophic cancellation errors
by applying randomization on input and output operands
at a given virtual precision. A recent implementation of this
solution has been proposed with Verificarlo [6]. Verificarlo
implement a LLVM pass which replaces every floating-point
operation to automatically use the Monte Carlo Arithmetic.

Even though Verificarlo is implemented directly as a
compiler pass, which makes it very efficient, the large

number of execution samples necessary to collect qualitative
results remains a major drawback. The solution proposed by
the authors consists of running those numerous execution in
parallel. Although this solution reduces the global execution
time, it does not however reduce the total amount of work
to gather this information.

7 CONCLUSIONS AND PERSPECTIVES

The IEEE Standard 754[-2008] revision has witnessed the
introduction of a new representation formats which reflects
the trend to better adapt the format used in software to
the real need of the application. However, dealing with
various formats require to determine numerical quality of
each computed results, which is a tedious task that can
be solely executed by the expert. Some recent work has
been proposed to automate the estimation of the numerical
quality of computed results produced by software and/or
the benefit of formats changes.

In this article, we have presented a solution that brings
up-to-date the significance arithmetic, and makes it compat-
ible with the IEEE Standard 754[-2008]. Significance arith-
metic is a concept that adds information on significant digits
to each floating-point number. It can provide information
on cancellation errors, and if accurate enough, on rounding
error. It consists of a representation format with rules for the
propagation of error.

The proposed solution is a simple pattern embedded in
the significand of floating-point numbers. This pattern is
self-sufficient and does not requires extra fields or memory.
This solution presents numerous advantages as it is a simple
concept to understand, simple to implement and proves to
be memory efficient. Tests on a preliminary version shows
that the cost for the detection in software of the proposed
pattern is higher compared to other solutions. However,
the simplicity of this solution suggests that the performance
could be improved using hardware support. Support for the
FP-ANR can be achieved through specific instructions or an
execution flag similarly to the management of the rounding
modes.

If implemented in hardware, this solution can definitely
help developers gain confidence in their code by providing
an estimation on the number of significance digits at no cost
or help achieve reproducibility.

However, it is not meant to solve all problems related
to floating-point arithmetic. Significance arithmetics suf-
fers from the same problem as interval arithmetic such as
loss of correlation between variables, and produces over-
pessimistic bound as results. For example, error computa-
tion used in compensated algorithm works perfectly with
the IEEE Standard 754 floating point arithmetic, which is not
the case with significance arithmetic. That is why we advo-
cate that the FP-ANR format should be used to complement
the traditional IEEE Standard 754 floating-point arithmetic
to take benefit of both formats.
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