M. Goldstein, Significance arithmetic on a digital computer, Communications of the ACM, vol.6, issue.3, pp.111-117, 1963.
DOI : 10.1145/366274.366339

J. Gustafson, The end of numerical error, 2015 IEEE 22nd Symposium on Computer Arithmetic, p.74, 2015.
DOI : 10.1109/ARITH.2015.34

S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, Numerical reproducibility for the parallel reduction on multi- and many-core architectures, Parallel Computing, vol.49, pp.83-97, 2015.
DOI : 10.1016/j.parco.2015.09.001

URL : https://hal.archives-ouvertes.fr/hal-00949355

W. M. Kahan, July) A critique of John L. Gustafson's. the end of error ? unum computation and his a radical approach to computation with real numbers, 2016.

C. Denis, P. De-oliveira-castro, and E. Petit, Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic, 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), pp.55-62, 2016.
DOI : 10.1109/ARITH.2016.31

URL : https://hal.archives-ouvertes.fr/hal-01417293

F. Jézéquel and J. Chesneaux, CADNA: a library for estimating round-off error propagation, Computer Physics Communications, vol.178, issue.12, pp.933-955, 2008.
DOI : 10.1016/j.cpc.2008.02.003

D. Funaro, Polynomial approximation of differential equations, 2008.

T. Huynh, Fundamentals of Thermal Sensors, Thermal Sensors, pp.5-42, 2015.
DOI : 10.1007/978-1-4939-2581-0_2

N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power electronics and control techniques for maximum energy harvesting in photovoltaic systems, 2012.
DOI : 10.1201/b14303

. Fluke, Understanding specifications for precision multimeters Available: http://support.fluke.com/calibration-sales/ Download Quasi double-precision in floating point addition, BIT Numerical Mathematics, vol.12, issue.5 1, pp.37-50, 1965.

D. E. Knuth, The Art of Computer Programming): Seminumerical Algorithms, 1997.

H. L. Gray and C. J. Harrison, Normalized floating-point arithmetic with an index of significance, Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference on, IRE-AIEE-ACM '59 (Eastern), p.244, 1959.
DOI : 10.1145/1460299.1460329

E. A. Bond, Significant digits in computation with approximate numbers, The Mathematics Teacher, pp.208-21227951340, 1931.

J. M. Hyman, Forsig: an extension of fortran with significance arithmetic, Los Alamos National Lab., NM (USA), 1982.

F. L. Johansson-]-r, N. Ashenhurst, and . Metropolis, Basic implementation of significance arithmetic Available: http://fredrik-j.blogspot.frbasic-implementation-of-significance.html Unnormalized floating point arithmetic, J. ACM, vol.06, issue.6 3, pp.415-428, 1959.

G. Langdon, Method and means for tracking digit significance in arithmetic operations executed on decimal computers Available: https, p.831, 1978.

V. Lefèvre, J. Muller, A. Tisserand, ´. E. Martin-dorel, G. Melquiond et al., Towards correctly rounded transcendentals Some issues related to double rounding, Proceedings of the 13th IEEE Symposium on Computer Arithmetic, pp.897-924, 1997.

P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel, High performance numerical validation using stochastic arithmetic, Reliable Computing, pp.35-52, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01254446

D. S. Parker, Monte Carlo arithmetic: exploiting randomness in floating-point arithmetic, 1997.