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Abstract
Given a tournament T and a positive integer k, the C3-Packing-T problem asks if there

exists a least k (vertex-)disjoint directed 3-cycles in T . This is the dual problem in tournaments of
the classical minimal feedback vertex set problem. Surprisingly C3-Packing-T did not receive
a lot of attention in the literature. We show that it does not admit a PTAS unless P=NP,
and so is NP-complete, even if we restrict the considered instances to sparse tournaments, that is
tournaments with a feedback arc set (FAS) being a matching. Focusing on sparse tournaments we
provide a (1+ 6

c−1 ) approximation algorithm for sparse tournaments having a linear representation
where all the backward arcs have “length” at least c. Concerning kernelization, we show that
C3-Packing-T admits a kernel with O(m) vertices, where m is the size of a given feedback
arc set. In particular, we derive a O(k) vertices kernel for C3-Packing-T when restricted to
sparse instances. On the negative size, we show that C3-Packing-T does not admit a kernel of
(total bit) size O(k2−ε) unless NP ⊆ coNP/Poly. The existence of a kernel in O(k) vertices for
C3-Packing-T remains an open question.
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meterized algorithms
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1 Introduction and related work

Tournament
A tournament T on n vertices is an orientation of the edges of the complete undirected
graph Kn. Thus, given a tournament T = (V,A), where V = {vi, i ∈ [n]}, for each i, j ∈ [n],
either vivj ∈ A or vjvi ∈ A. A tournament T can alternatively be defined by an ordering
σ(T ) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T ) (which will be denoted
A(T ) as the considered ordering is not ambiguous), where each arc a ∈ A(T ) is of the
form vi1vi2 with i2 < i1. Indeed, given σ(T ) and A(T ), we can define V = {vi, i ∈ [n]}
and A = A(T ) ∪ A(T ) where A(T ) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T )} is the set of
forward arcs of T in the given ordering σ(T ). In the following, (σ(T ),A(T )) is called a
linear representation of the tournament T . For a backward arc e = vjvi of σ(T ) the span
value of e is j − i− 1. Then minspan(σ(T )) (resp. maxspan(σ(T ))) is simply the minimum
(resp. maximum) of the span values of the backward arcs of σ(T ).
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XX:2 Triangle packing in (sparse) tournaments: approximation and kernelization.

A set A′ ⊆ A of arcs of T is a feedback arc set (or FAS) of T if every directed cycle of T
contains at least one arc of A′. It is clear that for any linear representation (σ(T ),A(T ))
of T the set A(T ) is a FAS of T . A tournament is sparse if it admits a FAS which is
a matching. We denote by C3-Packing-T the problem of packing the maximum number
of vertex disjoint triangles in a given tournament, where a triangle is a directed 3-cycle.
More formally, an input of C3-Packing-T is a tournament T , an output is a set (called a
triangle packing) S = {ti, i ∈ [|S|]} where each ti is a triangle and for any i 6= j we have
V (ti) ∩ V (tj) = ∅, and the objective is to maximize |S|. We denote by opt(T ) the optimal
value of T . We denote by C3-Perfect-Packing-T the decision problem associated to
C3-Packing-T where an input T is positive iff there is a triangle packing S such that
V (S) = V (T ) (which is called a perfect triangle packing).

Related work
We refer the reader to Appendix where we recall the definitions of the problems mentioned
bellow as well as the standard definitions about parameterized complexity and approxima-
tion. A first natural related problem is 3-Set-Packing as we can reduce C3-Packing-T to
3-Set-Packing by creating an hyperedge for each triangle.

Classical complexity / approximation. It is known that C3-Packing-T is polynomial if the
tournament does not contain the three forbidden sub-tournaments described in [5]. From the
point of view of approximability, the best approximation algorithm is the 4

3 +ε approximation
of [7] for 3-Set-Packing, implying the same result for K3-packing and C3-Packing-T.
Concerning negative results, it is known [10] that even K3-packing is MAX SNP-hard on
graphs with maximum degree four. We can also mention the related "dual" problem FAST
and FVST that received a lot of attention with for example the NP-hardness and PTAS for
FAS in [6] and [13] respectively, and the 7

3 approximation and inapproximability results for
FVST in [14].

Kernelization. We precise that the implicitly considered parameter here is the size of the
solution. There is a O(k2) vertex kernel for K3-packing in [15], and even a O(k2) vertex
kernel for 3-Set-Packing in [1], which is obtained by only removing vertices of the ground
set. This remark is important as it directly implies a O(k2) vertex kernel for C3-Packing-
T (see Section 4). Let us now turn to negative results. There is a whole line of research
dedicated to finding lower bounds on the size of polynomial kernels. The main tool involved
in these bounds is the weak composition introduced in [11] (whose definition is recalled in
Appendix). Weak composition allowed several almost tight lower bounds, with for example
the O(kd−ε) for d-Set-Packing and O(kd−4−ε) for Kd-packing of [11]. These results
where improved in [8] to O(kd−ε) for perfect d-Set-Packing, O(kd−1−ε) forKd-packing,
and leading to O(k2−ε) for perfect K3-packing. Notice that negative results for the
"perfect" version of problems (where parameter k = n

d , where d is the number of vertices of
the packed structure) are stronger than for the classical version where k is arbitrary. Kernel
lower bound for these "perfect" versions is sometimes referred as sparsification lower bounds.

Our contributions
Our objective is to study the approximability and kernelization of C3-Packing-T. On the
approximation side, a natural question is a possible improvement of the 4

3 +ε approximation
implied by 3-Set-Packing. We show that, unlike FAST, C3-Packing-T does not admit
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a PTAS unless P=NP, even if the tournament is sparse. We point out that, surprisingly,
we were not able to find any reference establishing a negative result for C3-Packing-T,
even for the NP-hardness. As these results show that there is not much room for improving
the approximation ratio, we focus on sparse tournaments and followed a different approach
by looking for a condition that would allow ratio arbitrarily close to 1. In that spirit,
we provide a (1 + 6

c−1 ) approximation algorithm for sparse tournaments having a linear
representation with minspan at least c. Concerning kernelization, we complete the panorama
of sparsification lower bounds of [12] by proving that C3-Perfect-Packing-T does not
admit a kernel of (total bit) size O(n2−ε) unless NP ⊆ coNP/Poly. This implies that C3-
Packing-T does not admit a kernel of (total bit) size O(k2−ε) unless NP ⊆ coNP/Poly.
We also prove that C3-Packing-T admits a kernel of O(m) vertices, where m is the size
of a given FAS of the instance, and that C3-Packing-T restricted to sparse instances has
a kernel in O(k) vertices (and so of total size bit O(k log(k))). The existence of a kernel in
O(k) vertices for the general C3-Packing-T remains our main open question.

2 Specific notations and observations

Given a linear representation (σ(T ),A(T )) of a tournament T , a triangle t in T is a triple t =
(vi1 , vi2 , vi3) with il < il+1 such that either vi3vi1 ∈ A(T ), vi3vi2 /∈ A(T ) and vi2vi1 /∈ A(T )
(in this case we call t a triangle with backward arc vi3vi1), or vi3vi1 /∈ A(T ), vi3vi2 ∈ A(T )
and vi2vi1 ∈ A(T ) (in this case we call t a triangle with two backward arcs vi3vi2 and vi2vi1).

Given two tournaments T1, T2 defined by σ(Tl) and A(Tl) we denote by T = T1T2 the
tournament called the concatenation of T1 and T2, where σ(T ) = σ(T1)σ(T2) is the concat-
enation of the two sequences, and A(T ) = A(T1) ∪ A(T2). Given a tournament T and a
subset of vertices X, we denote by T \X the tournament T [V (T ) \X] induced by vertices
V (T ) \X, and we call this operation removing X from T . Given an arc a = uv we define
h(a) = v as the head of a and t(a) = u as the tail of a. Given a linear representation
(V (T ),A(T )) and an arc a ∈ A(T ), we define s(a) = {v : h(a) < v < t(a)} as the span of a.
Notice that the span value of a is then exactly |s(a)|.
Given a linear representation (V (T ),A(T )) and a vertex v ∈ V (T ), we define the de-
gree of v by d(v) = (a, b), where a = |{vu ∈ A(T ) : u < v}| is called the left degree
of v and b = |{uv ∈ A(T ) : u > v}| is called the right degree of v. We also define
V(a,b) = {v ∈ V (T )|d(v) = (a, b)}. Given a set of pairwise distinct pairs D, we denote by C3-
Packing-TD the problem C3-Packing-T restricted to tournaments such that there exists a
linear representation where d(v) ∈ D for all v. Notice that when DM = {(0, 1), (1, 0), (0, 0)},
instances of C3-Packing-TDM are the sparse tournaments.
Finally let us point out that it is easy to decide in polynomial time if a tournament is sparse
or not, and if so, to give a linear representation whose FAS is a matching. The corresponding
algorithm is detailed in Appendix in Lemma 23. Thus, in the following, when considering a
sparse tournament we will assume that a linear ordering of it where backward arcs form a
matching is also given.

3 Approximation for sparse tournaments

3.1 APX-hardness for sparse tournaments
In this subsection we prove that C3-Packing-TDM is APX-hard by providing a L-reduction
(see Definition 17 in appendix) from Max 2-SAT(3), which is known to be APX-hard [2, 3].

ESA 2017
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Recall that in the Max 2-SAT(3) problem where each clause contains exactly 2 variables
and each variable appears in at most 3 clauses (and at most twice positively and once
negatively).

Definition of the reduction Let F be an instance of Max 2-SAT(3). In the following, we
will denote by n the number of variables in F and m the number of clauses. Let {xi, 1 ∈ [n]}
be the set of variables of F and {Cj , j ∈ [m]} its set of clauses.

We now define a reduction f which maps an instance F of Max 2-SAT(3) to an instance
T of C3-Packing-TDM . For each variable xi with i ∈ [n], we create a tournament Li as
follows and we call it variable gadget. We refer the reader to Figure 1 where an example
of variable gadget is depicted. Let σ(Li) = (Xi, X

′
i, Xi, Xi

′
, {βi}, {β′i} , Ai, Bi, {αi}, A′i, B′i).

We define C = {Xi, X
′
i, Xi, Xi

′
, Ai, Bi, A

′
i, B
′
i}. All sets of C have size 4. We denote Xi =

(x1
i , x

2
i , x

3
i , x

4
i ), and we extend the notation in a straightforward manner to the other others

sets of C. Let us now define A(Li). For each set of C, we add a backward arc whose head is
the first element and the tail is the last element (for example for Xi we add the arc x4

ix
1
i ).

Then, we add to A(Li) the set {e1, e2, e3, e4} where e1 = x3
i a

3
i , e2 = x

′3
i a

′3
i , e3 = x3

i b
3
i ,

e4 = x
′3
i b

′3
i and the set {m1,m2} where m1 = a

′2
i a

2
i , m2 = b

′2
i b

2
i called the two medium arcs

of the variable gadget. This completes the description of tournament Li. Let L = L1 . . . Ln
be the concatenation of the Li.

a2i a
3
i a

4
ia1i

βiXi X ′
i Xi X ′

i β′
i αi

Ai Bi B′
iA′

i

e1 e2

e3 e4

m1 m2

Figure 1 Example of a variable gadget Li.

For each clause Cj with j ∈ [1,m], we create a tournament Kj with ordering σ(Ki) =
(θj , d1

j , c
1
j , c

2
j , d

2
j ) and A(Ki) = {d2

jd
1
j}. We also define K = K1 . . .Km. Let us now define

T = LK. We add to A(T ) the following backward arcs from V (K) to V (L). If Cj = li1 ∨ li2
is a clause in F then we add the arcs c1jvi1 , c2jvi2 where vic is the vertex in {x2

ic
, x

′2
ic
, x2
ic
}

corresponding to lic : if lic is a positive occurrence of variable ic we chose vic ∈ {x2
ic
, x

′2
ic
},

otherwise we chose vic = x2
ic
. Moreover, we chose vertices vic in such a way that for any

i ∈ [n], for each v ∈ {x2
i , x

′2
i , x

2
i } there exists a unique arc a ∈ A(T ) such that h(a) = v. This

is always possible as each variable has at most two positive occurrences and one negative
occurrence. Thus, x2

i represent the first positive occurrence of variable i, and x
′2
i the second

one. We refer the reader to Figure 2 where an example of the connection between variable
and clause gadget is depicted.

d2jc2jd1j c
1
jθjX ′

3

e2

L3
Kj representing Cj = x3 ∨ x5

X5

L5

e3

Figure 2 Example showing how a clause gadget is attached to variable gadgets.
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Notice that vertices of X ′i are never linked to the clauses gadget. However, we need this
set to keep the variable gadget symmetric so that setting xi to true or false leads to the same
number of triangles inside Li. This completes the description of T . Notice that the degree
of any vertex is in {(0, 1), (1, 0), (0, 0)}, and thus T is an instance of C3-Packing-TDM .

Let us now distinguish three different types of triangles in T . A triangle t = (v1, v2, v3)
of T is called an outer triangle iff ∃j ∈ [m] such that v2 = θj and v3 = clj (implying
that v1 ∈ V (L)), variable inner iff ∃i ∈ [n] such that V (t) ⊆ V (Li), and clause inner
iff ∃j ∈ [m] such that V (t) ⊆ V (Kj). Notice that a triangle t = (v1, v2, v3) of T which
is neither outer, variable or clause inner has necessarily v3 = clj for some j, and v2 6= θj
(v2 could be in V (L) or V (K)). In the following definition, for any Y ∈ C (where C =
{Xi, X

′
i, Xi, Xi

′
, Ai, Bi, A

′
i, B
′
i}) with Y = (y1, y2, y3, y4), we define t2Y = (y1, y2, y4) and

t3Y = (y1, y3, y4). For example, t2X′
i

= (x′1
i , x

′2
i , x

′4
i ). For any i ∈ [n], we define Pi and Pi,

two sets of vertex disjoint variable inner triangles of V (Li), by:
Pi = {t3Xi

, t3X′
i
, t2
Xi
, t2
X′

i

, t3Ai
, t2Bi

, t3A′
i
, t2B′

i
, (h(e3), βi, t(e3)), (h(e4), β′i, t(e4)), (h(m1), αi, t(m1))}

Pi = {t2Xi
, t2X′

i
, t3
Xi
, t3
X′

i

, t2Ai
, t3Bi

, t2A′
i
, t3B′

i
, (h(e1), βi, t(e1)), (h(e2), β′i, t(e2)), (h(m2), αi, t(m2))}

Notice that Pi (resp. Pi) uses all vertices of Li except {x2
i , x

′2
i } (resp. {x2

i , x
′2
i }). For any j ∈

[m], and x ∈ [2] we define the set of clause inner triangle of Kj , that is Qxj = {(d1
j , c

x
j , d

2
j )}.

Informally, setting variable xi to true corresponds to create the 11 triangles of Pi in Li (as
leaving vertices {x2

i , x
2′

i } available allows to create outer triangles corresponding to satisfied
clauses), and setting it to false corresponds to create the 11 triangles of Pi. Satisfying
a clause j using its xth literal (represented by a vertex v ∈ V (L)) corresponds to create
triangle in Q3−x

j as it leaves cxj available to create the triangle (v, θj , cxj ). Our final objective
(in Lemma 4) is to prove that satisfying k clauses is equivalent to find 11n+m+ k vertex
disjoint triangles.

Restructuration lemmas Given a solution S, let ILi = {t ∈ S : V (t) ⊆ V (Li)}, IKj = {t ∈
S : V (t) ⊆ V (Kj)}, IL = ∪i∈[n]I

L
i be the set of variable inner triangles of S, IK = ∪j∈[m]I

K
j

be the set of clause inner triangles of S, and O = {t ∈ S t is an outer triangle } be the set
of outer triangles of S. Notice that a priori IL, IK , O does not necessarily form a partition
of S. However, we will show in the next lemmas how to restructure S such that IL, IK , O
becomes a partition.

I Lemma 1. For any S we can compute in polynomial time a solution S′ = {t′l, l ∈ [k]}
such that |S′| ≥ |S| and for all j ∈ [m] there exists x ∈ [2] such that I ′K

j = Qxj and
either S′ does not use any other vertex of Kj (V (S′) ∩ V (Kj) = V (Qxj ))
either S′ contains an outer triangle t′l = (v, θj , c3−xj ) with v ∈ V (L) (implying V (S′) ∩
V (Kj) = V (Kj))

Proof. Consider a solution S = {tl, l ∈ [k]}. Let us suppose that S does not verify the
desired property. We say that j ∈ [m] satisfies (?) iff there exists x ∈ [2] such that IKj = Qxj
and either S does not use any other vertex of Kj , or S contains an outer triangle tl =
(v, θj , c3−xj ) with v ∈ V (L).

Let us restructure S to increase the number of j satisfying (?), which will be sufficient
to prove the lemma. Consider the largest j ∈ [m] which does not satisfy (?). Let c = |IKj |.
Notice that the only possible triangle of IKj contains a = d2

jd
1
j , implying c ≤ 1.

If c = 1, let t ∈ IKj and v0 = {c1j , c2j}\V (t). If v0 /∈ V (S), then let us prove that θj /∈ V (S).
Indeed, by contradiction if θj ∈ V (S), let t′ ∈ S such that θj ∈ V (t′). As d(θj) = (0, 0) we
necessarily have t′ = (u, θj , w) with w = cx

′

j′ with j′ ≥ j, which contradicts the maximality

ESA 2017
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of j. Otherwise (v0 ∈ V (S)), then denoting by t′ the triangle of S which contains v0 we
must have t′ = (u, v, v0). Indeed, we cannot have (for some u′, v′) t′ = (v0, u

′, v′) as there is
no backward arc a with h(a) = v0 and we cannot have either t′ = (u′, v0, v

′) as this would
imply v′ = cx

′

j′ for j′ > j and again contradict the definition of j. As, again, by maximality
of j we get θj /∈ V (S) (and since uθj and θjv0 are forward arcs), we can replace t′ by the
triangle (u, θj , v0) which is disjoint to the other triangles of S.

If c = 0. Notice first that by maximality of j, d2
j /∈ V (S) as d2

j could only be used
in a triangle t = (v, d2

j , c
x
j′) with j′ > j. Let Z = V (S) ∩ {c1j , c2j}. If |Z| = 0, then by

maximality of j we get d1
j /∈ V (S) and θj /∈ V (S), and thus we add to S triangle (d1

j , c
1
j , d

2
j ).

If |Z| = 1, let cxj ∈ Z and t ∈ S such that cxj ∈ V (t). By maximality of j we necessarily
have t = (u, v, cxj ) for some u, v. If v 6= θj then by maximality of j we have θj /∈ V (S), and
thus we swap v and θj in t and now suppose that θj ∈ V (t). This implies that d1

j /∈ V (S)
(before the swap we could have had v = d1

j , but now by maximality of j we know that d1
j

is unused), and we add (d1
j , c

3−x
j , d2

j ) to S. It only remains now case where |Z| = 2. If
there exists t ∈ S with Z ⊆ V (t), then t = (u, c1j , c2j ). Using the same arguments as above
we get that {θj , d1

j} ∩ V (S) = ∅, and thus we swap c1j by θj in t and add (d1
, c

1
j , d

2
j ) to S.

Otherwise, let tx ∈ S such that cxj ∈ V (tx) for x ∈ [2]. This implies that tx = (ux, vx, cxj ).
If θj /∈ V (t1) ∪ V (t2) then θj /∈ V (S) and we swap v1 with θj . Therefore, from now on we
can suppose that θj ∈ V (tx) for x ∈ [2]. Then, if d1

j /∈ V (t3−x) then d1
j /∈ V (S) and thus we

swap v3−x with d1
j and we now assume that d1

j ∈ V (t3−x). Finally, we remove t3−x from S

and add instead (d1
j , c

3−x
j , d2

j ). J

I Corollary 2. For any S we can compute in polynomial time a solution S′ such that
|S′| ≥ |S|, and S′ only contains outer, variable inner, and clause inner triangles. Indeed,
in the solution S′ of Lemma 1, given any t ∈ S′, either V (t) intersects V (Kj) for some j
and then t is an outer or a clause inner triangle, or V (t) ⊆ V (Li) for i ∈ [n] as there is no
backward arc uv with u ∈ V (Li1) and v ∈ V (Li2) with i1 6= i2 .

I Lemma 3. For any S we can compute in polynomial time a solution S′ such that |S′| ≥ |S|,
S′ satisfies Lemma 1, and for every i ∈ [n], I ′L

i = Pi or I
′L
i = Pi.

Proof. Let S0 be an arbitrary solution, and S be the solution obtained from S0 after applying
Lemma 1. By Corollary 2, we partition S into S = IL ∪ IK ∪ O. Let us say that i ∈ [n]
satisfies (?) if ILi = Pi or ILi = Pi. Let us suppose that S does not verify the desired
property, and show how to restructure S to increase the number of i satisfying (?) while still
satisfying Lemma 1, which will prove the lemma.

Let Lfti = Xi ∪ X ′i ∪ Xi ∪ X ′i and Rgti = Ai ∪ Bi ∪ {αi} ∪ A′i ∪ B′i be two sub-
set of vertices of V (Li). Given any solution S̃ satisfying Lemma 1, we define the fol-
lowing sets. Let S̃Lfti = {t ∈ ĨLi : V (t) ⊆ Lfti}, S̃Rgti = {t ∈ ĨLi : V (t) ⊆ Rgti},
and S̃LftiRgti = {t ∈ ĨLi : V (t) ∩ Lfti 6= ∅ and V (t) ∩Rgti 6= ∅}. Observe that these three
sets define a partition of ĨLi , and that triangles of S̃Lfti are even included in W with
W ∈ {Xi, X

′
i, Xi, Xi

′}. Let S̃Oi = {t ∈ Õ : V (t) ∩ V (Li) 6= ∅} be the set of outer tri-
angles of S̃ intersecting Li. We also define gi(S̃) = (|S̃Lfti |, |S̃LftiRgti |, |S̃Rgti |, |S̃Oi |) and
hi(S̃) = |S̃Lfti |+ |S̃LftiRgti |+ |S̃Rgti |+ |S̃Oi | = |ĨLi ∪ S̃Oi |.

Our objective is to restructure S into a solution S′ with S′ = (S\(ILi ∪SOi))∪(I ′L
i ∪S

′Oi).
We will define I ′L

i and S′Oi verifying the following properties (4):
41 : I ′L

i = Pi or I
′L
i = Pi,

42 : S′Oi ⊆ SOi ,
43 : |(I ′L

i ∪ S
′Oi)| ≥ |(ILi ∪ SOi)| (which is equivalent to hi(S′) ≥ hi(S)),

44 : triangles of I ′L
i ∪ S

′Oi are vertex disjoint.
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Notice that 42 and 44 imply that all triangles of S′ are still vertex disjoint. Indeed, as S
satisfies Lemma 1, the only triangles of S intersecting Li are ILi ∪ SOi , and thus replacing
them with I ′L

i ∪S
′Oi satisfying the above property implies that all triangles of S′ are vertex

disjoint. Moreover, S′ will still satisfy Lemma 1 even with S
′Oi ⊆ SOi as removing outer

triangles cannot violate property of Lemma 1. Finally 43 implies that |S′| ≥ |S|. Thus,
defining I ′L

i and S′Oi satisfying (4) will be sufficient to prove the lemma. Let us now state
some useful properties.

p1 : |SLfti | ≤ 4
p2 : |SLftiRgti | ≤ 4 as for any t ∈ SLftiRgti there exists l ∈ [4] such that V (t) ⊇ V (el).
p3 : |SRgti | ≤ 5 (as |V (SRgti)| = 17). Let Z = V (SLftiRgti) ∩Rgti. Let us also prove that

if Z ⊇ {a3
i , b

3
i }, Z ⊇ {a

′3
i , b

′3
i }, Z ⊇ {a3

i , b
′3
i } or Z ⊇ {a

′3
i , b

3
i } then |SRgti | ≤ 4. For any

W ∈ {Ai, Bi, A′i, B′i}, let sW be the unique arc a of T such that V (a) ⊆W and let mW

be the unique medium arc a such that V (a) ∩W 6= ∅. Let us call the {sW } the four
small arcs of the tournament induced by Rgti. Let A(SRgti) = {a ∈ A(Li) : ∃t ∈ SRgti
such that V (a) ⊆ V (t)} be the set of backward arcs used by SRgti . Observe that arcs of
A(SRgti) are small or medium arcs. Let us bound |A(SRgti)| = |SRgti |. Notice that for
any W ∈ {Ai, Bi, A′i, B′i}, W ∩Z 6= ∅ implies that A(SRgti) cannot contain both sW and
mW . If SRgti contains the 4 small arcs then by previous remark SRgti cannot contain
any medium arc, and thus |SRgti | ≤ 4. If SRgti contains 3 small arcs then it can only
contain one medium arc, implying |SRgti | ≤ 4. Obviously, if |SRgti | contains 2 or less
small arcs then |SRgti | ≤ 4.

p4 : property p3 implies that if |SLftiRgti | ≥ 3, or if |SLftiRgti | = 2 and triangles of
SLftiRgti contain {e1, e3}, {e1, e4}, {e2, e3} or {e2, e4}, then |SRgti | ≤ 4 (where tri-
angles of SLftiRgti contains {ei, ej} means that there exist t1, t2 in SLftiRgti such that
V (t1) ⊇ V (ei) and V (t2) ⊇ V (ej)).

p5 : |SOi | ≤ 3. Moreover, if |SLfti | = 4 then |SOi | ≤ 4− |SLftiRgti |, and if |SLfti | = 3 and
|SLftiRgti | = 4 then |SOi | ≤ 1. The last two inequalities come from the fact that for any
W ∈ {Xi, X

′
i, Xi, X ′i}, we cannot have both t1 ∈ SOi , t2 ∈ SLftiRgti and t3 ∈ SLfti with

V (ti) ∩W 6= ∅.

Notice that if a solution S′ satisfies I ′L
i = Pi or I

′L
i = Pi then gi(S′) = (4, 2, 5, z) where

z ∈ [2], and hi(S′) = 11 + z. In the following we write (u1
1, u

1
2, u

1
3, u

1
4) ≤ (u2

1, u
2
2, u

2
3, u

2
4) iff

u1
i ≤ u2

i for any i ∈ [4]. Let us describe informally the following argument which will be
used several times. Let z = |SOi |. If z ≤ 1 or if z = 2 but the two corresponding outer
triangles do not use one vertex in Xi∪X ′i and one vertex in Xi, then we will able to "save" all
these outer triangles (while creating the optimal number of variable inner triangles in Li),
meaning that S′Oi = SOi , as either Pi or Pi will leave vertices of SOi∩Lfti available for outer
triangles. Let us proceed by case analysis according to the value |SLftiRgti |. Remember that
|SLftiRgti | ≤ 4 according to p2.

Case 1: |SLftiRgti | ≤ 1. According to p1, p3 we get gi(S) ≤ (4, 1, 5, z) where z ∈ [3]. In
this case, S′Oi = SOi \ {t ∈ S : V (t) 3 x2

i } and I
′L
i = Pi verify (4). In particular, we have

hi(S′) ≥ hi(S) as gi(S′) ≥ (4, 2, 5, z − 1).
Case 2: |SLftiRgti | = 2. Let gi(S) = (x, 2, y, z). If x ≤ 3, then gi(S) ≤ (3, 2, 5, z) by

p3 and we set S′Oi = SOi \ {t ∈ S : V (t) 3 x2
i } and I

′L
i = Pi. This satisfies (4) as in

particular we have hi(S′) ≥ hi(S) as gi(S′) ≥ (4, 2, 5, z − 1). Let us now turn to case where
x = 4. Let SLftiRgti = {t1, t2}. Let us first suppose that triangles of SLftiRgti contain
{ei, ej} with {ei, ej} ∈ {{e1, e3}, {e1, e4}, {e2, e3}, {e2, e4}}. By p4 we get y ≤ 4, implying
gi(S) ≤ (4, 2, 4, z). In this case, S′Oi = SOi \ {t ∈ S : V (t) 3 x2

i } and I
′L
i = Pi verify (4).
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In particular, we have hi(S′) ≥ hi(S) as gi(S′) = (4, 2, 5, z− 1). Let us suppose now that t1
contains e1 and t2 contains e2 (case (2a)), or t1 contains e3 and t2 contains e4 (case (2b)).
In both cases we have gi(S) ≤ (4, 2, 5, z) where z ∈ [2] by p5. More precisely, p5 implies that
{W ∈ {Xi, X

′
i, Xi, X ′i} : W ∩V (SOi)} 6= ∅ is included in {X,X

′
i} (case 2b) or in Xi (case 2a).

Thus, in case (2a) we define S′Oi = SOi and I ′L
i = Pi. In case (2b) we define S′Oi = SOi

and I ′L
i = Pi. In both cases these sets verify (4) as in particular gi(S′) = (4, 2, 5, z).

Case 3: |SLftiRgti | = 3. In this case gi(S) ≤ (x, 3, 4, z) by p4. If x ≤ 3, the
sets S′Oi = SOi \ {t ∈ S : V (t) 3 x2

i } and I
′L
i = Pi verify (4). In particular, we have

hi(S′) ≥ hi(S) as gi(S′) ≥ (4, 2, 5, z − 1). If x = 4 then z ≤ 1 by p5. Thus, we define
I

′L
i = Pi if V (SOi) ∩ (Xi ∪X ′i) 6= ∅, and I

′L
i = Pi otherwise, and S

′Oi = SOi . These sets
satisfy (4) as in particular gi(S′) = (4, 2, 5, z).

Case 4: |SLftiRgti | = 4. Let gi(S) = (x, 4, y, z). If x = 4 then z ≤ 0 by p5 and y ≤ 3 as
x+ 4 + y ≤ |V (Li)|

3 .
Thus, we set S′Oi = SOi = ∅, I ′L

i = Pi (which is arbitrary in this case), and we
have property (4) as gi(S′) ≥ (4, 2, 5, 0). If x = 3 (this case is depicted Figure 3) then
y ≤ 4 by p3 and z ≤ 1 by p5, implying gi(S) = (3, 4, 4, z). Thus, we define I ′L

i = Pi if
V (SOi) ∩ (Xi ∪X ′i) 6= ∅, and I

′L
i = Pi otherwise, and S

′Oi = SOi . These sets satisfy (4)
as in particular gi(S′) = (4, 2, 5, z). Finally, if x ≤ 2 then gi(S) ≤ (2, 4, 4, z) by p3. In this
case, S′Oi = SOi \ {t ∈ S : V (t) 3 x2

i } and I
′L
i = Pi verify (4). In particular, we have

hi(S′) ≥ hi(S) as gi(S′) ≥ (4, 2, 5, z − 1).

6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12

e1 e2

e3 e4

m1 m2

1 1 12 2 23 3 34 4 4

arc of the outer triangle t5

5

Figure 3 Example showing a "bad shaped" solution of case 4 with gi(S) = (3, 4, 4, 1). We have
SLftiRgti = {t1, t2, t3, t4}, SOi = {t5}, SLfti = {t6, t7, t8} and SRgti = {t9, t10, t11, t12}. The three
vertices of triangle tl are annotated with label l.

J

Proof of the L-reduction We are now ready to prove the main lemma (recall that f is the
reduction from Max 2-SAT(3) to C3-Packing-TDM described in Section 3.1), and also
the main theorem of the section.

I Lemma 4. Let F be an instance of Max 2-SAT(3). For any k, there exists an assignment
a of F satisfying at least k clauses if and only if there exists a solution S of f(F) with
|S| ≥ 11n + m + k, where n and m are respectively is the number of variables and clauses
in F . Moreover, in the ⇐ direction, assignment a can be computed from S in polynomial
time.

Proof. For any i ∈ [n], let Ai = Pi if xi is set to true in a, and Ai = Pi otherwise. We
first add to S the set ∪i∈[n]Ai. Then, let {Cjl

, l ∈ [k]} be k clauses satisfied by a. For any
l ∈ [k], let il be the index of a literal satisfying Cjl

, let x ∈ [2] such that cxjl
corresponds to

this literal, and let Zl = {x2
il
, x

′2
il
} if literal il is positive, and Zl = {x2

il
} otherwise. For any

j ∈ [m], if j = il for some l (meaning that j corresponds to a satisfied clause), we add to
S the triangle in Q3−x

j , and otherwise we arbitrarily add the triangle Q1
j . Finally, for any
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l ∈ [k] we add to S triangle tl = (yl, θjl
, cxjl

) where yl ∈ Zl is such that yl is not already
used in another triangle. Notice that such an yl always exists as triangles of Ai, i ∈ [n] do
not intersect Zl (by definition of the Ai), and as there are at most two clauses that are true
due to positive literal, and one clause that is true due to a negative literal. Thus, S has
11n+m+ k vertex disjoint triangles.

Conversely, let S a solution of f(F) with |S| ≥ 11n+m+k. By Lemma 3 we can construct
in polynomial time a solution S′ from S such that |S′| ≥ |S|, S′ only contains outer, variable
or clause inner triangles, for each j ∈ [m] there exists x ∈ [2] such that I ′K

j = Qxj , and for
each i ∈ [n], I ′L

i = Pi or I
′L
i = Pi. This implies that the k′ ≥ k remaining triangles must

be outer triangles. Let {t′l, l ∈ [k′]} be these k′ outer triangles with t′l = (yl, θjl
, cxl
jl

) Let us
define the following assignation a: for each i ∈ [n], we set xi to true if I ′L

i = Pi, and false
otherwise. This implies that a satisfies at least clauses {Cjl

, l ∈ [k′]}. J

I Theorem 5. C3-Packing-TDM is APX-hard, and thus does not admit a PTAS unless
P = NP.

Proof. Let us check that Lemma 4 implies a L-reduction (whose definition is recalled in
Definition 17 of appendix). Let OPT1 (resp. OPT2) be the optimal value of F (resp.
f(F)). Notice that Lemma 4 implies that OPT2 = OPT1 + 11n + m. It is known that
OPT1 ≥ 3

4m (where m is the number of clauses of F). As n ≤ m (each variable has at least
one positive and one negative occurrence), we get OPT2 = OPT1 +11n+m ≤ αOPT1 for an
appropriate constant α, and thus point (a) of the definition is verified. Then, given a solution
S′ of f(F), according to Lemma 4 we can construct in polynomial time an assignment a
satisfying c(a) clauses with c(a) ≥ S′ − 11n −m. Thus, the inequality (b) of Definition 17
with β = 1 becomes OPT1 − c(a) ≤ OPT2 − S′ = OPT1 + 11n+m− S′, which is true. J

Reduction of Theorem 5 does not imply the NP-hardness of C3-Perfect-Packing-T as
there remain some unused vertices. However, it is straightforward to adapt the reduction
by adding backward arcs whose head (resp. tail) are before (resp. after) T to consume the
remaining vertices. This leads to the following result.

I Theorem 6. C3-Perfect-Packing-TDM is NP-hard.

Proof. Let (F , k) be an instance of the decision problem of MAX − 2 − SAT (3) and let
T = f(F) be the tournament defined in Section 3.1. Recall that we have T = LK. Let
N = |V (T )| = 35n+5m, x∗ = 33n+3m+3k and n′ = N −x∗. We now define T ′ by adding
2n′ new vertices in T as follows: V (T ′) = R1V (T )R2 with Ri = {rli, l ∈ [n′]}. We add to
A(T ′) the set of arcs R = {(rl2rl1), l ∈ [n′]} which are called the dummy arcs. We say that
a triangle t = (u, v, w) is dummy iff (wu)inR and v ∈ V (T ). Let us prove that there are at
least k clauses satisfiable in F iff there exists a perfect packing in T ′.
⇒

Given an assignement satisfying k clause we define a solution S with V (S) ⊆ V (T ) as in
Lemma 4 (triangles of Pi or Pi for each i ∈ [n], a triangle Qxj for each j ∈ [m], and an outer
triangle tl with l ∈ [k] for each satisfied clause. We have |S| = 11n + m + k. This implies
that |V (T ) \ V (S)| = n′, and thus we use n′ remaining vertices of V (T ) by adding to S n′

dummy triangles.
⇐

Let S′ be a perfect packing of T ′. Let S = {t ∈ S′ : V (t) ⊆ V (T )}. Let X = V (T ) \ V (S).
As S′ is a perfect packing of T ′, vertices of X must be used by |X| dummy triangles of S′,
implying |X| ≤ n′ and |S| ≥ 11n+m+k. As S is set of vertex disjoint triangles of T of size
at least 11n+m+ k, this implies by Lemma 4 that at least k clauses are satisfiable in F .
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J

To establish the kernel lower bound of Section 4, we also need the NP-hardness of C3-
Perfect-Packing-T where instances have a slightly simpler structure (to the price of
losing the property that there exists a FAS which is a matching).

I Theorem 7. C3-Perfect-Packing-T remains NP-hard even restricted to tournament
T admitting the following linear ordering.
T = LK where L and K are two tournaments
tournaments L and K are "fixed":
K = K1 . . .Km for some m, where for each j ∈ [m] we have V (Kj) = (θj , cj)
L = R1L1 . . . LnR2, where each Li has is a copy of the variable gadget of Section 3.1,
Ri = {rli, l ∈ [n′]} where n′ = 2n−m, and in addition L also contains R = {(rl2rl1), l ∈
[n′]} which are called the dummy arcs.

Proof. We adapt the reduction of Section 3.1, reducing now from 3-SAT(3) instead of MAX
2-SAT(3). Given F be an instance of 3-SAT(3) with n variables {xi} nd m clauses {Cj}.
For each variable xi with i ∈ [n], we create a tournament Li exactly as in Section 3.1 and
we define L = L1 . . . Ln. For each clause Cj with j ∈ [m], we create a tournament Kj with
V (Kj) = (θj , cj), and we define K = K1 . . .Km. Let us now define T = LK. Now, we add
to A(T ) the following backward arcs from V (K) to V (L) (again, we follow the construction
of Section 3.1 except that now each cj has degree (3, 0)). If Cj = li1 ∨ li2 ∨ li3 is a clause in F
then we add the arcs cjvi1 , cjvi2 , cjvi3 where vic is the vertex in {x2

ic
, x

′2
ic
, x2
ic
} corresponding

to lic : if lic is a positive occurrence of variable ic we chose vic ∈ {x2
ic
, x

′2
ic
}, otherwise we

chose vic = x2
ic
. Moreover, we chose vertices vic in such a way that for any i ∈ [n], for each

v ∈ {x2
i , x

′2
i , x

2
i } there exists a unique arc a ∈ A(T ) such that h(a) = v. This is always

possible as each variable has at most 2 positive occurrences and 1 negative one.
Finally, we add 2n′ new vertices in T as follows: V (T ) = R1V (L)R2V (K), Ri = {rli, l ∈

[n′]} where n′ = 2n −m. We add to A(T ) the set of arcs R = {(rl2rl1), l ∈ [n′]} which are
called the dummy arcs. Notice that T satisfies the claimed structure (defining the left part
as R1LR2 and not only L). We define an outer and variable inner triangle as in Section 3
(there are no more clause inner triangle), and in addition we say that a triangle t = (u, v, w)
is dummy iff (wu) ∈ R and v ∈ V (L). Let us prove that there is an assignment satisfying
the m clauses of F iff T has a perfect packing.
⇒

Given an assignment satisfying the m clauses we define a solution S containing only outer,
variable inner and dummy triangles. The variable inner triangle are defined as in Lemma 4
(triangles of Pi or Pi for each i ∈ [n]). For each clause j ∈ [m] satisfied by a literal lix we
create an outer triangle (vix , θj , cj). It remains now 2n−m = n′ vertices of L, that we use
by adding n′ dummy triangles to S.
⇐

Let S be a perfect packing of T ′. Notice that restructuration lemmas of Section 3 do not
directly remain true because of the dummy arcs. However, we can adapt in a straightforward
manner arguments of these lemmas, using the fact that S is even a perfect packing. Given
a solution S, we define as in Section 3 set ILi = {t ∈ S : V (t) ⊆ V (Li), IL = ∪i∈[n]I

L
i ,

O = {t ∈ S t is an outer triangle }, and D = {t ∈ S t is a dummy triangle }. Again, we do
not claim (at this point) that S does not contain other triangles. Given any perfect packing
S of T , we can prove the following properties.
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S must contain exactly m outer triangles (|O| = m). Indeed, for any j from m to 1, the
only way to use θj is to create an outer triangle (uj , θj , cj). This implies that triangles
of O consume exactly m disjoint vertices in L.
for any i ∈ [n], we must have |ILi | = 11. Indeed, let x be the number of vertices of L
used in S (as S is a perfect packing we know that x = |L| = 35n). The only triangles of
S that can use a vertex of L are the outer, the variable inner and the dummy triangles,
implying x ≤ (

∑
i∈[n] |ILi |) +m+ n′ as |D| ≤ n′. As |V (Li)| = 35 we have |ILi | ≤ 11 and

thus we must have |ILi | = 11 for any i.

Let us now consider the tournament T0 = T [V (T )\V (R)] without the dummy arcs, and
S0 = {t ∈ S : V (t) ⊆ V (T0)}. We adapt in a straightforward way the notion of variable
inner and outer triangle in T0. Observe that the variable inner and outer triangles of S
and S0 are the same, and thus are both denoted respectively ILi and SOi . In particular, S0
still contains m outer triangle of T0. Now we simply apply proof of Lemma 3 on S0. More
precisely, Lemma 3 restructures S0 into a solution S′0 with S′0 = (S0\(ILi ∪SOi))∪(I ′L

i ∪S
′Oi),

where I ′L
i and S′Oi satisfy properties (4). In particular, as |ILi | = |I ′L

i | = 11, 43 implies
that |S

′Oi
0 | ≥ |S

Oi
0 |, and thus that |S′O

0 | ≥ |SO0 | = m. Thus, S′0 satisfies ILi = Pi or
ILi = Pi for any i, and has m outer triangles. We can now define as in Lemma 4 from S′0 an
assignment satisfying the m clauses.

J

3.2 (1 + 6
c−1)-approximation when backward arcs have large minspan

Given a set of pairwise distinct pairs D and an integer c, we denote by C3-Packing-
TD
≥c the problem C3-Packing-TD restricted to tournaments such that there exists a linear

representation of minspan at least c and where d(v) ∈ D for all v. In all this section we
consider an instance T of C3-Packing-TDM

≥c with a given linear ordering (V (T ),A(T )) of
minspan at least c and whose degrees belong to DM . The motivation for studying the
approximability of this special case comes from the situation of MAX-SAT(c) where the
approximability becomes easier as c grows, as the derandomized uniform assignment provides
a 2c

2c−1 approximation algorithm. Somehow, one could claim that MAX-SAT(c) becomes
easy to approximate for large c as there many ways to satisfy a given clause. As the same
intuition applies for tournament admitting an ordering with large minspan (as there are c−1
different ways to use a given backward in a triangle), our objective was to find a polynomial
approximation algorithm whose ratio tends to 1 when c increases.

Let us now define algorithm Φ. We define a bipartite graph G = (V1, V2, E) with V1 =
{v1
a : a ∈ A(T )} and V2 = {v2

l : vl ∈ V(0,0)}. Thus, to each backward arc we associate a
vertex in V1 and to each vertex vl with d(vl) = (0, 0) we associate a vertex in V2. Then,
{v1
a, v

2
l } ∈ E iff (h(a), vl, t(a)) is a triangle in T .

In phase 1, Φ computes a maximum matching M = {el, l ∈ [|M |]} in G. For every
el = {v1

ij , v
2
l } ∈ M create a triangle t1l = (vj , vl, vi). Let S1 = {t1l , l ∈ [|M |]}. Notice that

triangles of S1 are vertex disjoint. Let us now turn to phase 2. Let T 2 be the tournament
T where we removed all vertices V (S1). Let (V (T 2),A(T 2)) be the linear ordering of T 2

obtained by removing V (S1) in (V (T ),A(T )). We say that three distinct backward edges
{a1, a2, a3} ⊆ A(T 2) can be packed into triangles t1 and t2 iff V ({t1, t2}) = V ({a1, a2, a3})
and the ti are vertex disjoint. For example, if h(a1) < h(a2) < t(a1) < h(a3) < t(a2) < t(a3),
then {a1, a2, a3} can be packed into (h(a1), h(a2), t(a1)) and (h(a3), t(a2), t(a3)) (recall that
when A(T ) form a matching, (u, v, w) is triangle iff wu ∈ A(T ) and u < v < w), and if
h(a1) < h(a2) < t(a2) < h(a3) < t(a3) < t(a1), then {a1, a2, a3} cannot be packed into two

ESA 2017



XX:12 Triangle packing in (sparse) tournaments: approximation and kernelization.

triangles. In phase 2, while it is possible, Φ finds a triplet of arcs of Y ⊆ A(T 2) that can be
packed into triangles, create the two corresponding triangles, and remove V (Y ). Let S2 be
the triangle created in phase 2 and let S = S1 ∪ S2.

I Observation 8. For any a ∈ A(T ), either V (a) ⊆ V (S) or V (a) ∩ V (S) = ∅. Equivalently,
no backward arc has one endpoint in V (S) and the other outside V (S).

According to Observation 8, we can partition A(T ) = A0 ∪ A1 ∪ A2, where for i ∈ {1, 2},
Ai = {a ∈ A(T ) : V (a) ⊆ V (Si) is the set of arcs used in phase i, and A0 =def {bi, i ∈ [x]}
are the remaining unused arcs. Let AΦ = A1 ∪ A2, mi = |Ai|, m = m0 + m1 + m2 and
mΦ = m1 + m2 the number of arcs (entirely) consumed by Φ. To prove the 1 + f( 6

c−1 )
desired approximation ratio, we will first prove in Lemma 9 that Φ uses at most all the arcs
(mA ≥ (1− ε(c))m), and in Theorem 10 that the number of triangles made with these arcs
is "optimal". Notice that the latter condition is mandatory as if Φ used its mΦ arcs to only
create 2

3 (mΦ) triangles in phase 2 instead of creating m′ ≈ mΦ triangle with m′ backward
arcs and m′ vertices of degree (0, 0), we would have a 3

2 approximation ratio.

I Lemma 9. For any c ≥ 2, mΦ ≥ (1− 6
c+5 )m

Proof. In all this proof, the span s(a) is always considered in the initial input T , and not
in T 2. For any i ∈ [x], let us associate to each bi ∈ A0 a set Bi ⊆ AΦ defined as follows (see
Figure 4 for an example). Let bj ∈ A0 such that s(bj) ⊆ s(bi) and there does not exist a
bk ∈ A0 such that s(bk) included in s(bj) (we may have bj = bi). Let Z = V (A0) ∩ s(bj).
Notice that |Z| ≤ 1, meaning that there is at most one endpoint of a bl, l 6= j in s(bj), as
otherwise we would be three arcs in A0 that could be packed in two triangles. If there exists
a ∈ AΦ with s(a) ⊆ s(bj) we define a0 = a, and otherwise we define a0 = bj . Now, let
v ∈ s(a0) \ Z. Observe that V (T ) is partitioned into V (A0) ∪ V (AΦ) ∪ V(0,0). If v ∈ V(0,0),
then there exists t1l = (u, v, w) with wu ∈ A1 (as otherwise the matching in phase 1 would
not be maximal and we could add bj and v), and we add wu to Bi. Otherwise, v ∈ V (a) with
a ∈ AΦ (this arcs could have been used in phase 1 or phase 2), and we add a to Bi. Notice
that as a0 does not properly contains another arc of AΦ, all the added arcs are pairwise
distinct, and thus |Bi| = |s(a0) \ Z| ≥ c− 1.

a0 = bj = bi

a2

a1
a3

v1 v2 v3

∈ Z

Figure 4 On this example white vertices represent V (T ) \ V (S) (vertices not used by Φ), and
black ones represent V (S). In this case we have Bi = {al, l ∈ [3]}. Indeed, each vl ∈ s(a0) \ Z, for
l ∈ [3], brings al in Bi. In particular v2 ∈ V(0,0) and was used with a2 to create a triangle in phase
1.

Given a ∈ AΦ, let B(a) = {Bi, a ∈ Bi}. Let us prove that |B(a)| ≤ 6 for any a ∈ AΦ.
For any v ∈ V (S), let dB(v) = |{bi : v ∈ s(bi)}|. Observe that dB(v) ≤ 2, as otherwise any
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a

b1 b2 b3 b4 b5 b6

Figure 5 Example where |B(a)| = 6 for a ∈ AΦ, where B(a) = {bl, l ∈ [6]}.

triplet of arcs containing v in their span could be packed into two triangles (there are only
6 cases to check according to the 3! possible ordering of the tail of these 3 arcs). For any
a ∈ A1, let V ′(a) = V (ta) where ta ∈ S is the triangle containing a, and for any a ∈ A2, let
V ′(a) = V (a). Observe that by definition of the Bi, a ∈ Bi implies that bi contributes to
the degree dB(v) for a v ∈ V ′(a). As in particular dB(v) for any v ∈ V ′(a), this implies by
pigeonhole principle that |B(a)| ≤ 6 (notice that this bound is tight as depicted Figure 5).
Thus, if we consider the bipartite graph with vertex set (A0,AΦ) and an edge between bi ∈ A0

and a ∈ AΦ iff a ∈ Bi, the number of edges x of this graph satisfies |A0|(c− 1) ≤ x ≤ 6|AΦ|,
implying the desired inequality as mΦ = m−m0. J

I Theorem 10. For any c ≥ 2, Φ is a polynomial (1 + 6
c−1 ) approximation algorithm for

C3-Packing-TDM

≥c .

Proof. Let OPT be an optimal solution. Let us define set OPTi ⊆ OPT and A∗i ⊆ A(T )
as follows. Let t = (u, v, w) ∈ OPT . As the FAS of the instance is a matching, we know
that wu ∈ A(T ) as we cannot have a triangle with two backward arcs. If d(v) = (0, 0) then
we add t to OPT1 and wu to A∗1. Otherwise, let v′ be the other endpoint of the unique arc
a containing v. If v′ /∈ V (OPT ), then we add t to OPT3 and {wu, a} to A∗3. Otherwise, let
t′ ∈ OPT such that v′ ∈ V (t′). As the FAS of the instance is a matching we know that v′
is the middle point of t′, or more formally that t′ = (u′, v′, w′) with u′w′ ∈ A(T ). We add
{t, t′} to OPT2 and {wu, a, w′u′} to A∗2. Notice that the OPTi form a partition of OPT , and
that the A∗i have pairwise empty intersection, implying |A∗1|+ |A∗2|+ |A∗3| ≤ m. Notice also
that as triangles of OPT1 correspond to a matching of size |OPT1| in the bipartite graph
defined in phase 1 of algorithm Φ, we have |OPT1| = |A∗1| ≤ |A1|.

Putting pieces together we get (recall that S is the solution computed by Φ): |OPT | =
|OPT1|+ |OPT2|+ |OPT3| = |A∗1|+ 2

3 |A
∗
2|+ 1

2 |A
∗
3| ≤ |A∗1|+ 2

3 (|A∗2|+ |A∗3|) ≤ |A∗1|+ 2
3 (m−

|A∗1|) ≤ 1
3 |A1| + 2

3m and |S| = |S1| + |S2| = |A1| + 2
3 |A2| ≥ |A1| + 2

3 ((1 − 6
c+5 )m − |A1|) =

1
3 |A1|+ 2

3 (1− 6
c+5 )m which implies the desired ratio. J

4 Kernelization

In all this section we consider the decision problem C3-Packing-T parameterized by the
size of the solution. Thus, an input is a pair I = (T , k) and we say that I is positive iff
there exists a set of k vertex disjoint triangles in T .

4.1 Positive results for sparse instances
Observe first that the kernel in O(k2) vertices for 3-Set Packing of [1] directly implies a
kernel in O(k2) vertices for C3-Packing-T. Indeed, given an instance (T = (V,A), k) of
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C3-Packing-T, we create an instance (I ′ = (V,C), k) of 3-Set Packing by creating an
hyperedge c ∈ C for each triangle of T . Then, as the kernel of [1] only removes vertices,
it outputs an induced instance (I ′ = I ′[V ′], k′) of I with V ′ ⊆ V , and thus this induced
instance can be interpreted as a subtournament, and the corresponding instance (T [V ′], k′)
is an equivalent tournament with O(k2) vertices.

As shown in the next theorem, as we could expect it is also possible to have kernel
bounded by the number of backward arcs.

I Theorem 11. C3-Packing-T admits a polynomial kernel with O(m) vertices, where m
is the number of arcs in a given FAS of the input.

Proof. Let I = (T , k) be an input of the decision problem associated to C3-Packing-T.
Observe first that we can build in polynomial time a linear ordering σ(T ) whose backward
arcsA(T ) correspond to the given FAS. We will obtain the kernel by removing useless vertices
of degree (0, 0). Let us define a bipartite graph G = (V1, V2, E) with V1 = {v1

a : a ∈ A(T )}
and V2 = {v2

l : vl ∈ V(0,0)}. Thus, to each backward arc we associate a vertex in V1 and
to each vertex vl with d(vl) = (0, 0) we associate a vertex in V2. Then, {v1

a, v
2
l } ∈ E iff

(h(a), vl, t(a)) is a triangle in T . By Hall’s theorem, we can in polynomial time partition
V1 and V2 into V1 = A1 ∪ A2, V2 = B0 ∪ B1 ∪ B2 such that N(A2) ⊆ B2, |B2| ≤ |A2|,
and there is a perfect matching between vertices of A1 and B1 (B0 is simply defined by
B0 = V2 \ (B1 ∪B2)).

For any i, 0 ≤ i ≤ 2, let Xi = {vl ∈ V(0,0) : v2
l ∈ Bi} be the vertices of T corresponding

to Bi. Let V6=(0,0) = V (T ) \ V(0,0). Notice that |V6=(0,0)| ≤ 2m. We define T ′ = T [V6=(0,0) ∪
X1∪X2] the sub-tournament obtained from T by removing vertices of X0, and I ′ = (T ′, k).
We point out that this definition of T ′ is similar to the final step of the kernel of [1] as
our partition of V1 and V2 (more precisely (A1, B0 ∪ B1)) corresponds in fact to the crown
decomposition of [1]. Observe that |V (T ′)| ≤ 2m+ |A1|+ |A2| ≤ 3m, implying the desired
bound of the number of vertices of the kernel.

It remains to prove that I and I ′ are equivalent. Let k ∈ N, and let us prove that
there exists a solution S of T with |S| ≥ k iff there exists a solution S′ of T ′ with |S′| ≥
k. Observe that the ⇐ direction is obvious as T ′ is a subtournament of T . Let us now
prove the ⇒ direction. Let S be a solution of T with |S| ≥ k. Let S = S(0,0) ∪ S1 with
S(0,0) = {t ∈ S : t = (h(a), v, t(a)) with v ∈ V(0,0), a ∈ A(T )} and S1 = S \ S(0,0). Observe
that V (S1) ∩ V(0,0) = ∅, implying V (S1) ⊆ V 6=(0,0). For any i ∈ [2], let Si(0,0) = {t ∈
S(0,0) : t = (h(a), v, t(a)) with v ∈ V(0,0), v

1
a ∈ Ai} be a partition of S(0,0). We define S′ =

S1 ∪ S2
(0,0) ∪ S

′1
(0,0), where S

′1
(0,0) is defined as follows. For any v1

a ∈ A1, let v2
µ(a) ∈ B1 be the

vertex associated to v1
a in the (A1, B1) matching. To any triangle t = (h(a), v, t(a)) ∈ S1

(0,0)

we associate a triangle f(t) = (h(a), vµ(a), t(a)) ∈ S′1
(0,0), where by definition vµ(a) ∈ X1. For

the sake of uniformity we also say that any t ∈ S1 ∪ S2
(0,0) is associated to f(t) = t.

Let us now verify that triangles of S′ are vertex disjoint by verifying that triangles of
S

′1
(0,0) do not intersect another triangle of S′. Let f(t) = (h(a), vµ(a), t(a)) ∈ S′1

(0,0). Observe
that h(a) and t(a) cannot belong to any other triangle f(t′) of S′ as for any f(t′′) ∈ S′,
V (f(t′′)) ∩ V 6=(0,0) = V (t′′) ∩ V 6=(0,0) (remember that we use the same notation V6=(0,0) to
denote vertices of degree (0, 0) in T and T ′). Let us now consider vµ(a). For any f(t′) ∈ S1,
as V (f(t′)) ∩ V(0,0) = ∅ we have vµ(a) /∈ V (f(t′)). For any f(t′) = (h(a′), vl, t(a′)) ∈ S2

(0,0),
we know by definition that v1

a′ ∈ A2, implying that v2
l ∈ B2 (and vl ∈ X2) as N(A2) ⊆ B2

and thus that vl 6= vµ(a). Finally, for any f(t′) = (h(a′), vl, t(a′)) ∈ S
′1
(0,0), we know that

vl = vµ(a′), where a 6= a′, leading to vl 6= vµ(a) as µ is a matching. J
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Using the previous result we can provide a O(k) vertices kernel for C3-Packing-T re-
stricted to sparse tournaments.

I Theorem 12. C3-Packing-T restricted to sparse tournaments admits a polynomial kernel
with O(k) vertices, where k is the size of the solution.

Proof. Let I = (T , k) be an input of the decision problem associated to C3-Packing-
T such that T is a sparse tournament. We say that an arc a is a consecutive backward arc
of σ(T ) if it is a backward arc of T and a = vi+1vi with vi and vi+1 being consecutive in
σ(T ). If T admits a consecutive backward arc vivi+1 then we can exchange vi and vi+1 in
T . The backward arcs of the new linear ordering is exactly A(T ) \ vi+1vi and so is still a
matching. Hence we can assume that T does not contain any consecutive backward arc.
Now if |A(T )| < 5k then by Theorem 11 we have a kernel with O(k) vertices. Otherwise,
if |A(T )| ≥ 5k we will prove that T is a yes instance of C3-Packing-T. Indeed we can
greedily produce a family of k vertex disjoint triangles in T . For that consider a backward
arc vjvi of T , with i < j. As vjvi is not consecutive there exists l with i < l < j and we
select the triangle vivjvl and remove the vertices vi, vl and vj from T . Denote by T ′ the
resulting tournament and let σ(T ′) be the order induced by σ(T ) on T ′. So we loose at most
2 backward arcs in σ(T ′) (vjvi and a possible backward arc containing vl) and create at most
3 consecutive backward arcs by the removing of vi, vl and vj . Reducing these consecutive
backward arcs as previously, we can assume that σ(T ′) does not contain any consecutive
backward arc and satisfies |A(T ′)| ≥ |A(T )| − 5 ≥ 5(k − 1). Finally repeating inductively
this arguments, we obtain the desired family of k vertex-disjoint triangles in T , and T is a
yes instance of C3-Packing-T. J

4.2 No (generalised) kernel in O(k2−ε)
In this section we provide an OR-cross composition (see Definition 21 in Appendix) from
C3-Perfect-Packing-T restricted to instances of Theorem 7 to C3-Perfect-Packing-
T parameterized by the total number of vertices.

Definition of the instance selector The next lemma build a special tournament, called an
instance selector that will be useful to design the cross composition.

I Lemma 13. For any γ = 2γ′ and ω we can construct in polynomial time (in γ and ω) a
tournament Pω,γ such that

there exists γ subsets of ω vertices Xi = {xij : j ∈ [ω]}, that we call the distinguished set
of vertices, such that

the Xi have pairwise empty intersection
for any i ∈ [γ], there exists a packing S of triangles of Pω,γ such that V (Pω,γ)\V (S) =
Xi (using this packing of Pω,γ corresponds to select instance i)
for any packing S of triangles of Pω,γ with |V (S)| = |V (Pω,γ)| − ω there exists i ∈ [γ]
such that V (Pω,γ) \ V (S) ⊆ Xi

|V (Pω,γ)| = O(ωγ).

Proof. Let us first describe vertices of Pω,γ . For any i ∈ [γ − 1]0 (where [x]0 denotes
{0, . . . , x}) let Xi = {xij : j ∈ [ω]}, and let X = ∪i∈[γ−1]0X

i. For any l ∈ [γ′ − 1]0, let
V l = {vlk, k ∈ [|V l|]} be the vertices of level l with |V l| = ωγ/2l + 2, and V = ∪l∈[γ′−1]0V

l.
Finally, we add a set α = {αl : l ∈ [γ′ − 1]0} containing one dummy vertex for each level
and finally set V (Pω,γ) = X ∪ V ∪α. Observe that |V (Pω,γ)| = ωγ +

∑
l∈[γ′−1]0(|V l|+ 1) =
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v01

v11
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x12
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x22
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v09

v15
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x13

v011
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x23

v012

x33

v013

v17
α0α1
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Figure 6 An example of the instance selector, where ω = 3 and γ = 4. All depicted arcs are
backward arcs.

O(ωγ). Let us now describe σ(Pω,γ) and A(Pω,γ) recursively. Let P 0
ω,γ be the tournament

such that σ(P 0
ω,γ) = (v0

1 , x
0
1, v

0
2 , x

1
1, . . . , v

0
γ , x

γ−1
1 ) (v0

γ+1, x
0
2, . . . , v

0
2γ , x

γ−1
2 ) . . . (v0

(ω−1)γ+1

, x0
ω, . . . , v

0
ωγ , x

γ−1
ω ) (v0

ωγ+1, α
1, v0

ωγ+2) and A(P 0
ω,γ) = Z0

P where Z0
P = A0

P ∪ A
′0
P with

A0
P = {v0

k+1v
0
k : k ∈ [|V 0| − 2]} and A′0

P = {v0
|V 0|v

0
|V 0|−1, v

0
|V 0|v

0
1}.

Then, given a tournament P lω,γ with 0 ≤ l < γ′ − 1, we construct the tournament P l+1
ω,γ

such that the vertices of P l+1
ω,γ are those of P lω,γ to which are added the set V l+1. For

j ∈ [|V l+1| − 2], we add the vertex vl+1
j of V l+1 just after the vertex vl2j−1 in the order

of P l+1
ω,γ , and we for i ∈ {0, 1} we add vertex vl+1

|V l+1|−i just after vl|V l|−i. Similarly, we
add the vertex αl+1 just after the vertex αl. The backward arcs of P l+1

ω,γ are defined by:
A(P l+1

ω,γ ) = A(P lω,γ) ∪ Zl+1
P where Zl+1

P = Al+1
P ∪ A

′l+1
P are called the arcs of level l, with

Al+1
P = {vl+1

k+1v
l+1
k : k ∈ [|V l+1| − 2]]} and A

′l+1
P = {vl+1

|V l+1|v
l+1
|V l+1|−1, v

l+1
|V l+1|v

l+1
1 }. We can

now define our gadget tournament Pω,γ as the tournament corresponding to P γ′−1
ω,γ . We refer

the reader to Figure 6 where an example of the gadget is depicted, where ω = 3 and γ = 4.
In all the following given i ∈ [γ − 1]0 we call the last x bits (resp. the xth bit) i its x

right most (resp. the xth, starting from the right) bits in the binary representation of i. Let
us now state the following observations.
41 The vertices of X have degree (0, 0) in Pω,γ .
42 For any l ∈ [γ′ − 1]0, the extremities of the arcs of level l are exactly V l (V (ZlP ) = V l)

and the arcs of ZlP induce an even circuit on V l.
43 For any a ∈ AlP , the span of a contains 2l consecutive vertices of X, more precisely

s(a)∩X = {xij , . . . , xi+2l−1
j } for j ∈ [m] and i such that the l− 1 last bits of i are equal

to 0.
44 There is a unique partition ZlP = Zl,0P ∪ Z

l,1
P such that |Zl,0P | = |Z

l,1
P | = µl, the size of a

maximum matching of backward arcs in Pω,γ [V l], such that each Zl,xP is a matching (for
any a, a′ ∈ Zl,xP , V (a) ∩ V (a′) = ∅), and such that ∪a∈Zl,x

P
\A′l

P
s(a) ∩ X is the set of all

vertices xij of X whose lth bit of i is x.
Now let us first prove that for any i ∈ [γ − 1]0, there exists an packing S of Pω,γ such that
V (Pω,γ) \ V (S) = Xi. Let (xγ′−1 . . . x0) be the binary representation of i. Let us define
recursively S = ∪l∈[γ′−1]0Sl in the following way. We maintain the invariant that for any
l, the remaining vertices of X after defining ∪z∈[l]0Sz are all the vertices of X having their
l last bits equal to (xl−1, . . . , x0). We define Sl as the µl − 1 triangles {(h(a), xa, t(a), a ∈
Zl,1−xl

P ) \ A′l
P } such that xa is the unique remaining vertex of X in s(a) (by 43 and our

invariant of the S≤l, there remains exactly one vertex in s(a), and by 44 these µl − 1
triangles consume all remaining vertices of X whose lth bit is 1 − xl), and a last triangle
using an arc in A

′l
P with t = (vl|V 0|, α

l, vl|V 0|−1) if xl = 1 and t = (vl0, αl, v0
|V 0|) otherwise.

Thus, by our invariant, the remaining vertices of X after defining S are exactly Xi. As S
also consumes α and V we have V (Pω,γ)\V (S) = Xi. Notice that this definition of S shows
that |V (Pω,γ)| −m = |V (S)| = 3

∑
l∈[γ′−1]0 µ

l

Let us now prove that for any packing S of Pω,γ with |V (S)| = |V (Pω,γ)| − m =



S. Bessy, M. Bougeret and J. Thiebaut XX:17

3
∑
l∈[γ′−1]0 µ

l, there exists i ∈ [γ] such that V (Pω,γ) \ V (S) ⊆ Xi. Let t1, . . . , tµ be
the triangles of S. For any tk of S, we associate one backward arc ak of tk (if there are two
backward arcs, we pick one arbitrarily). Let Z = {ak : k ∈ [|S|]} and for every l ∈ |γ′ − 1]0
let Zl = {ak ∈ A : V (ak) ⊂ V l} the set of the backward arcs which are between two vertices
of level l. Notice that the Zl ’s form a partition of Z. For any l ∈ [γ′−1]0, we have |Zl| ≤ µl
as two arcs of Zl correspond to two different triangles of S, implying that Zl is a matching.
Furthermore, as |S| = |Z| =

∑
l∈[γ′−1]0 |Z

l| = µ =
∑
l∈[γ′] µ

l, we get the equality |Zl| = µl

for any l ∈ [γ′ − 1]0. This implies that for each Zl there exists x such that Zl = Zl,xP ,
implying also that V (Zl) = V l, and V (Z) = V .

Let Al = Zl \ A′l
P , Sl = {tk ∈ S : ak ∈ Al}. We can now prove by induction that all

the remaining vertices Rl = X \ V (∪x∈[l]0S
l) have the same l last bits. Notice that since

all vertices of V are already used, and as triangles of Sl cannot use a dummy vertex in α,
all triangles of Sl must be of the from (h(ak), x, t(ak)) with x ∈ X. As Al = Zl,xP \ A

′l
P , by

44 we know that ∪a∈Als(a)∩X contains all the remaining vertices of X, and thus of Rl−1,
whose lth bit is x. Moreover, by 43 we know that for any a ∈ Al we have |Rl−1 ∩ s(a)| ≤ 1
because as a ∈ AlP we know exactly the structure of s(a) ∩ X, and if there remain two
vertices in s(a) ∩X then their last l − 1 last bits would be different. Thus, as triangles of
Sl remove on vertex in the span of each a ∈ Al, they remove all vertices of Rl−1 whose lth
bit is x, implying the desired result.

J

Definition of the reduction We suppose given a family of t instances F = {Il, l ∈ [t]} of
C3-Perfect-Packing-T restricted to instances of Theorem 7 where Il asks if there is a
perfect packing in Tl = LlKl. We chose our equivalence relation in Definition 21 such that
there exist n and m such that for any l ∈ [t] we have |V (Ll)| = n and |V (Kl)| = m. We can
also copy some of the t instances such that t is a square number and g =

√
t is a power of

two. We reorganize our instances into F = {I(p,q) : 1 ≤ p, q ≤ g} where I(p,q) asks if there
is a perfect packing in T(p,q) = LpKq. Remember that according to Theorem 7, all the Lp
are equals, and all the Kq are equals. We point out that the idea of using a problem on
"bipartite" instances to allow encoding t instances on a "meta" bipartite graph G = (A,B)
(with A = {Ai, i ∈

√
t}, B = {Bi, i ∈

√
t}) such that each instance p, q is encoded in the

graph induced by G[Ai∪Bi] comes from [8]. We refer the reader to Figure 7 which represents
the different parts of the tournament. We define a tournament G = LMGL̃M̃GP(n,g), where
L = L1 . . . Lg, M̃G is a set of n vertices of degree (0, 0), MG is a set of (g − 1)n vertices
of degree (0, 0), L̃ = L̃1 . . . L̃g where each L̃p is a set of n vertices, and P(n,g) is a copy of
the instance selector of Lemma 13. Then, for every p ∈ [g] we add to G all the possible n2

backward arcs going from L̃p to Lp. Finally, for every distinguished set Xp of P(n,g) (see in
Lemma 13), we add all the possible n2 backward arcs from Xp to L̃p.

Now, in a symmetric way we define a tournament D = KMDK̃M̃DP
′
(m,g), where K =

K1 . . .Kg, M̃D is a set of m vertices of degree (0, 0), MD is a set of (g − 1)m vertices of
degree (0, 0), K̃ = K̃1 . . . K̃g where each K̃q is a set of m vertices, and P ′(m,g) is a copy of
the instance selector of Lemma 13. Then, for every q ∈ [g] we add to G all the m2 possible
backward arcs going from K̃p to Kp. Finally, for every distinguished set X ′q of P ′(m,g) we
add all the possible m2 backward arcs from X

′q to K̃q. Finally, we define T = GD. Let us
add some backward arcs from D to G. For any p and q with 1 ≤ p, q ≤ g, we add backward
arcs from Kq to Lp such that T [KqLp] corresponds to T(p,q). Notice that this is possible as
for any fixed p, all the T(p,q), q ∈ [g] have the same left part Lp, and the same goes for any
fixed right part.
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(g − 1)n nn m

G D

θj cj

L̃1 L̃p0 L̃nL1 Lp0 Ln K1 Kq0 Km K̃1 K̃q0 K̃m

Xp0n (g − 1)m X
′q0m

outer arcs of T(p0,q0)

mP(n,g) P ′
(m,g)

Figure 7 A example of the weak composition. All depicted arcs are backward arcs. Bold arcs
represents the n2 (or m2) possible arcs between the two groups.

Restructuration lemmas Given a set of triangles S we define S⊆P ′ = {t ∈ S|V (t) ⊆
P ′(m,g)}, S⊆P = {t ∈ S : V (t) ⊆ P(n,g)}, SM̃D

= {t ∈ S : V (t) intersects K̃, M̃D and P ′m,g},
SMD

= {t ∈ S : V (t) intersects K, MD and K̃}, SM̃G
= {t ∈ S : V (t) intersects L̃, M̃G

and Pn,g}, SMG
= {t ∈ S : V (t) intersects L, MG and L̃}, SD = {t ∈ S : V (t) ⊆ V (D)},

SG = {t ∈ S : V (t) ⊆ V (G)}, and SGD = {t ∈ S : V (t) intersects V (G) and V (D)}. Notice
that SG, SGD, SD is a partition of S.

I Claim 13.1. If there exists a perfect packing S of T , then |SM̃D
| = m and |SMD

| = (g−1)m.
This implies that V (SM̃D

∪SMD
)∩V (K̃) = V (K̃), meaning that the vertices of K̃ are entirely

used by SM̃D
∪ SMD

.

Proof. We have |SM̃D
| ≤ m since |M̃D| = m. We obtain the equality since the vertices of

M̃D only lie in the span of backward arcs from P ′m,g to K̃, and they are not the head or the
tail of a backward arc in T . Thus, the only way to use vertices of M̃D is to create triangles in
SM̃D

, implying |SM̃D
| ≥ m. Using the same kind of arguments we also get |SMD

| = (g−1)m.
As |V (K̃)| = gm we get the last part of the claim. J

I Claim 13.2. If there exists a perfect packing S of T , then there exists q0 ∈ [g] such that
K̃S = K̃q0 , where K̃S = K̃ ∩ V (SM̃D

).

Proof. Let SP ′ be the triangles of S with at least one vertex in P ′m,g. As according to
Claim 13.1 vertices of K̃ are entirely used by SM̃D

∪SMD
, the only way to consume vertices

of P ′m,g is by creating local triangles in P ′m,g or triangles in SM̃D
. In particular, we cannot

have a triangle (u, v, w) with {u, v} ⊆ K̃ and w ∈ P ′m,g, or with u ∈ K̃ and {v, w} ⊆ P ′m,g.
More formally, we get the partition SP ′ = S⊆P ′ ∪ SM̃D

. As S is a perfect packing and
uses in particular all vertices of P ′m,g we get |V (SP ′)| = |V (P ′m,g)|, implying |V (S⊆P ′)| =
|V (P ′m,g)|−m by Claim 13.1. By Lemma 13, this implies that there exists q0 ∈ [g] such that
X ′ ⊆ X ′q0 where X ′ = V (P ′m,g) \ V (S⊆P ′). As X ′ are the only remaining vertices that can
be used by triangles of SM̃D

, we get that the m triangles of SM̃D
are of the form (u, v, w)

with u ∈ K̃q0 , v ∈ M̃D, and w ∈ X ′.
J

I Claim 13.3. If there exists a perfect packing S of T , then there exists q0 ∈ [g] such that
V (SP ′ ∪ SM̃D

∪ SMD
) = V (D) \Kq0 .

Proof. By Claim 13.1 we know that |SMD
| = (g − 1)m. As by Claim 13.2 there exists

q0 ∈ [g] such that K̃S = K̃q0 , we get that the (g − 1)m triangles of SMD
are of the form

(u, v, w) with u ∈ K \Kq0 , v ∈MD, and w ∈ K̃ \ K̃q0 . J
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I Lemma 14. If there exists a perfect packing S of T , then V (SGD) ∩ V (G) ⊆ V (L).
Informally, triangles of SGD do not use any vertex of MG, L̃, M̃T and Pn,g.

Proof. By Claim 13.3, there exists q0 ∈ [g] such that V (SP ′ ∪ SM̃D
∪ SMD

) = V (D) \Kq0 .
By Theorem 7 we know that Kq0 = K(q0,1) . . .K(q0,m′) for some m′ (we even have m′ = m

2 ),
where for each j ∈ [m′] we have V (K(q0,j)) = (θj , cj). Moreover, for any p ∈ [g], the last
property of Theorem 7 ensures that for any a ∈ A(T(p,q0)), V (a) ∩ V (Kq0) 6= ∅ implies
a = vcj for v ∈ Lp. So no arc of A(T(p,q0)), and thus no arc of T is entirely included in
Kq0 . This implies that S cannot cover the vertices of Kq0 using triangles t with V (t) ⊆
V (Kq0), and thus that all these vertices must be used by triangles of SGD, implying that
V (SGD) ∩ V (D) = Kq0 . The last property of Theorem 7 also implies that all the θj have a
left degree equal to 0 in T , or equivalently that there is no arc a of T such that t(a) = θj
and h(a) < θj . Thus, by induction for any j from m′ to 1, we can prove that the only
way for triangles of SGD to use θj is to create a triangle tj = (v, θj , cj) with necessarily
v ∈ V (L). J

Lemma 14 will allow us to prove Claims 14.1, 14.2 and 14.3 using the same arguments
as in the right part (D) of the tournament as all vertices of MG, L̃, M̃T and Pn,g must be
used by triangles in SG.
I Claim 14.1. If there exists a perfect packing S of T , then |SM̃G

| = n and |SMG
| = (g−1)n.

This implies that V (SM̃G
∪ SMG

) ∩ V (L̃) = V (L̃), meaning that vertices of L̃ are entirely
used by SM̃G

∪ SMG
.

Proof. We have |SM̃G
| ≤ n since |M̃G| = n. Lemma 14 implies that all vertices of M̃G

must be used by triangles of SG, and thus using arcs whose both endpoints lie in V (G). As
vertices of M̃G are not the head or the tail of a backward arc in T , we get that the only way
for SG to use vertices of M̃G is to create triangles in SM̃G

, implying |SM̃G
| ≥ n. Using the

same kind of arguments (and as all vertices of MG must also be used by triangles of SG) we
also get |SMG

| = (g − 1)n. As |V (L̃)| = gn we get the last part of the claim. J

I Claim 14.2. If there exists a perfect packing S of T , then there exists p0 ∈ [g] such that
L̃S = L̃p0 , where L̃S = L̃ ∩ V (SM̃G

).

Proof. Lemma 14 implies that all vertices of M̃G and P(n,g) must be used by triangles
in SG. Let SP be the triangles of SG with at least one vertex in Pn,g. As according to
Claim 14.1 vertices of L̃ are entirely used by SM̃G

∪ SMG
, the only way for SG to consume

vertices of Pn,g is by creating local triangles in Pn,g or triangles in SM̃G
. In particular,

we cannot have a triangle (u, v, w) with {u, v} ⊆ L̃ and w ∈ Pn,g, or with u ∈ L̃ and
{v, w} ⊆ Pn,g. More formally, we get the partition SP = S⊆P ∪ SM̃G

. As SG uses in
particular all vertices of Pn,g we get |V (SP )| = |V (Pn,g)|, implying |V (S⊆P )| = |V (Pn,g)|−n
by Claim 14.1. By Lemma 13, this implies that there exists p0 ∈ [g] such that X ⊆ Xp0

where X = V (Pn,g) \ V (S⊆P ). As X are the only remaining vertices that can be used by
triangles of SM̃G

, we get that the n triangles of SM̃G
are of the form (u, v, w) with u ∈ L̃p0 ,

v ∈ M̃G, and w ∈ X. J

I Claim 14.3. If there exists a perfect packing S of T , then there exists p0 ∈ [g] such that
V (SP ∪ SM̃G

∪ SMG
) = V (G) \ Lp0 .

Proof. By Claim 13.1 we know that |SMG
| = (g−1)n. As by Claim 14.2 there exists p0 ∈ [g]

such that L̃S = L̃p0 , we get that the (g− 1)n triangles of SMG
are of the form (u, v, w) with

u ∈ L \ Lp0 , v ∈MG, and w ∈ L̃ \ L̃p0 . J
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We are now ready to state our final claim is now straightforward as according Claim 13.3
and 14.3 we can define S(p0,q0) = S \ ((SP ′ ∪ SM̃D

∪ SMD
) ∪ (SP ∪ SM̃G

∪ SMG
)).

I Claim 14.4. If there exists a perfect packing S of T , there exists p0, q0 ∈ [g] and S(p0,q0) ⊆ S
such that V (S(p0,q0)) = V (T(p0,q0)) (or equivalently such that S(p0,q0) is a perfect packing of
T(p0,q0)).

Proof of the weak composition

I Theorem 15. For any ε > 0, C3-Perfect-Packing-T (parameterized by the total num-
ber of vertices N) does not admit a polynomial (generalized) kernelization with size bound
O(N2−ε) unless NP ⊆ coNP/Poly.

Proof. Given t instances {Il} of C3-Perfect-Packing-T restricted to instances of The-
orem 7, we define an instance T of C3-Perfect-Packing-T as defined in Section 4. We re-
call that g =

√
t, and that for any l ∈ [t], |V (Ll)| = n and |V (Kl)| = m. Let N = |V (T )|. As

N = |V (P ′(m,g))|+m+(g−1)m+2mg+|V (P(n,g))|+n+(g−1)n+2ng and |V (P(ω,γ))| = O(ωγ)
by Lemma 13, we get N = O(g(n + m)) = O(t

1
2+o(1) max(|Il|)). Let us now verify that

there exists l ∈ [t] such that Il admits a perfect packing iff T admits a perfect packing.
First assume that there exist p0, q0 ∈ [g] such that I(p0,q0) admits a perfect packing. By
Lemma 14.4, there is a packing SP ′ of P ′(m,g) such that V (Sp′) = V (P ′(m,g))\X

′q0 . We define
a set SM̃D

ofm vertex disjoint triangles of the form (u, v, w) with u ∈ L̃q0 , v ∈ M̃D, w ∈ X
′q0 .

Then, we define a set SMD
of (g − 1)m vertex disjoint triangles of the form (u, v, w) with

u ∈ L\Lq0 , v ∈MD, w ∈ L̃\L̃q0 . In the same way we define SP , SM̃G
and SMG

. Observe that
V (T )\ ((SP ′ ∪SM̃D

∪SMD
)∪ (SP ∪SM̃G

∪SMG
)) = Kq0 ∪Lp0 , and thus we can complete our

packing into a perfect packing of T as I(p0,q0) admits a perfect packing. Conversely if there
exists a perfect packing S of T , then by Claim 14.4 there exists p0, q0 ∈ [g] and S(p0,q0) ⊆ S
such that V (S(p0,q0)) = V (T(p0,q0)), implying that I(p0,q0) admits a perfect packing. J

I Corollary 16. For any ε > 0, C3-Packing-T (parameterized by the size k of the solution)
does not admit a polynomial kernel with size O(k2−ε) unless NP ⊆ coNP/Poly.

5 Conclusion and open questions

Concerning approximation algorithms for C3-Packing-T restricted to sparse instances, we
have provided a (1+ 6

c+5 )-approximation algorithm where c is a lower bound of the minspan
of the instance. On the other hand, it is not hard to solve by dynamic programming
C3-Packing-T for instances where maxspan is bounded above. Using these two opposite
approaches it could be interesting to derive an approximation algorithm for C3-Packing-
T with factor better than 4/3 even for sparse tournaments.

Concerning FPT algorithms, the approach we used for sparse tournament (reducing to
the case where m = O(k) and apply the O(m) vertices kernel) cannot work the general case.
Indeed, if we were able to sparsify the initial input such that m′ = O(k2−ε), applying the
kernel in O(m′) would lead to a tournament of total bit size (by encoding the two endpoint of
each arc) O(m′log(m′)) = O(k2−ε), contradicting Corollary 16. Thus the situation for C3-
Packing-T could be as in vertex cover where there exists a kernel in O(k) vertices, derived
from [16], but the resulting instance cannot have O(k2−ε) edges [8]. So it is challenging
question to provide a kernel in O(k) vertices for the general C3-Packing-T problem.
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A Definitions

Approximation

I Definition 17 ([17]). Let Π and Π′ be two optimization (maximization or minimization)
problems. We say that Π L-reduces to Π′ if there are two polynomial-time algorithms f , g,
and constants α, β > 0 such that for each instance I of Π

(a) Algorithm f produces an instance I ′ = f(I) of Π′ such that the optima of I and I ′,
OPT (I) and OPT (I ′), respectively, satisfy OPT (I ′) ≤ αOPT (I)

(b) Given any solution of I ′ with cost c, algorithm g produces a solution of I with cost c
such that |c−OPT (I)| ≤ β|c′ −OPT (I ′)|.

I Definition 18. Let A be an algorithm of a maximization (resp. minimization) problem
Π. For ρ ≥ 1, we say that A is a ρ-approximation of Π iff for any instance I of Π, AI ≥
OPT (I)/ρ (resp. AI ≤ ρOPT (I)) where AI is the value of the solution A(I) and OPT (I)
the value of a optimal solution of I.

I Definition 19. Let Π be a NP-optimization problem. The problem Π is in APX if there
exists a constant ρ > 1 such that Π admits a ρ-approximation algorithm.

I Definition 20. Let Π be a NP-optimization problem. The problem Π admits a PTAS if
for any ε > 0, there exists a polynomial (1 + ε)-approximation of Π.

Parameterized complexity

We refer the reader to [9] for more details on parameterized complexity and kernelization,
and we recall here only some basic definitions. A parameterized problem is a language
L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, the integer k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm
A, a computable function f , and a constant c such that given an instance I = (x, k), A
(called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c,
where |I| denotes the size of I. Given a computable function g, a kernelization algorithm
(or simply a kernel) for a parameterized problem L of size g is an algorithm A that given
any instance I = (x, k) of L, runs in polynomial time and returns an equivalent instance
I ′ = (x′, k′) with |I ′| + k′ ≤ g(k). It is well-known that the existence of an FPT algorithm
is equivalent to the existence of a kernel (whose size may be exponential), implying that
problems admitting a polynomial kernel form a natural subclass of FPT. Among the wide
literature on polynomial kernelization, we only recall in the notion of weak composition used
to lower bound the size of a kernel.

I Definition 21 (Definition as written in [12]). Let L ⊆ Σ∗ be a language, R be a polynomial
equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and let f : N→ N
be a function. An or-cross-composition of L into Q (with respect to R) of cost f(t) is an
algorithm that, given t instances xi ∈ Σ∗ of L belonging to the same equivalence class of R,
takes time polynomial in

∑
i∈[t] |xi| and outputs an instance (y, k) ∈ Σ∗ × N such that:

1. the parameter k is bounded by O(f(t) maxi |xi|c), where c is some constant independent
of t, and

2. (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

I Theorem 22 ([4]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized problem,
and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an or-cross-
composition into Q with cost f(t) = t1/d+o(1) , where t denotes the number of instances,
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and Q has a polynomial (generalized) kernelization with size bound O(kd−ε), then NP ⊆
coNP/Poly.

B Problems

I Problem 1. (FVS)
Input: A directed graph D = (V,A).
Output: A set of vertices X ⊆ V such that D[V \X] is acyclic.
Optimisation: Minimise |X|.
The problem is called FVST if the input is a tournament.
I Problem 2. (d-Set Packing)
Input: An integer d ≥ 3 and a d-uniform hypergraph G = (V,H).
Output: A subset of hyperedges X = {Xi, i ∈ [k] with Xi ∈ H} such that for every i 6= j,
Xi ∩Xj = ∅.
Optimisation: Maximise k.
I Problem 3. (Perfect d-Set Packing)
Input: An integer d ≥ 3 and a d-uniform hypergraph G = (V,H).
Question: Is there a subset of hyperedges X = {Xi, i ∈ [k] with Xi ∈ H} such that for
every i 6= j, Xi ∩Xj = ∅ and

⋃
i∈[k]Xi = V ?

I Problem 4. (H-Packing)
Input: A graph G = (V,E) and a subgraph H.
Output: A collection of subgraphs X = {Hi, i ∈ [k]} such that for every i, Hi is isomorphic
to H and for every j 6= i, V (Hi) ∩ V (Hj) = ∅.
Optimisation: Maximise k.
I Problem 5. (Perfect H-Packing)
Input: A graph G = (V,E) and a subgraph H.
Question: Is there a collection of subgraphs X = {Hi, i ∈ [k]} such that for every i, Hi is
isomorphic to H, for every j 6= i, V (Hi) ∩ V (Hj) = ∅ and

⋃
i∈[k]Hi = V ?

C Polynomial detection of sparse tournaments

I Lemma 23. In polynomial time, we can decide if a tournament is sparse or not, and if
so, to give a linear representation whose FAS is a matching

Proof. Indeed if a tournament T is sparse we can detect the first vertex (or vertices) of a
linear representation σ(T ) of T where A(T ) is a matching. If T has a vertex x of indegree
0 then x must be the first or the second vertex of σ(T ), and we can always suppose that x
is the first vertex of σ(T ). Otherwise, we look at Z the set of vertices of T with indegree
1. As T is a tournament we have |Z| ≤ 3 and if Z = ∅ then T is not a sparse tournament.
If |Z| = 1, then the only element of Z must be the first vertex of σ(T ). If |Z| = 2 with
Z = {x, y} such that xy is an arc of T , then x must be the first element of σ(T ) and y

its second element. Finally, if |Z| = 3 with Z = {x, y, z} then xyz must be a triangle of T
and must be placed at the beginning of σ(T ). So repeating inductively these arguments we
obtain in polynomial time in |T | either σ(T ) such that A(T ) is a matching or a certificate
that T is not sparse. J
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