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Abstract: This paper introduces a new visual odometry method for underwater vehicles. It is based on 

images grabbed by a monocular video camera, and aided by inertial and pressure measurements. This 

approach offers several advantages. Firstly, it is compact and runs very fast, even with limited 

computational resources. This allows to embed it on very small vehicles. Secondly, and probably most 

importantly, the method is able to estimate online the scale factor of the observed scene, thanks to the 

combined measures of a low-cost IMU and a pressure sensor. The paper ends with an experimental 

validation onboard the Leonard underwater vehicle. 
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

1. INTRODUCTION 

Accurate localization is required when underwater vehicles are 

operating close to the seabed. For instance, while performing 

predefined survey tracks (e.g. photogrammetric acquisition of 

a wide area) or doing remote manipulation (e.g. collecting 

samples or operating on an industrial structure), the accuracy 

of acoustic based localization systems is not enough. Indeed, 

USBL (Ultra Short BaseLine) or LBL (Long BaseLine) 

acoustic systems are accurate enough to control the vehicle 

during its descent into the water column, but provide too noisy 

measures (from 10cm to several meters), at too low frequency 

(often less than 1Hz), for accurate operations near the seabed. 

On mid and big sized underwater vehicles, the solution 

consists in using inertial measurement systems based on FOG 

(Fiber Optical Gyroscopes), combined with the ground speed 

measurements of a DVL (Doppler Velocity Log) and the 

absolute acoustic localization of an USBL or an LBL for 

instance. These methods are unfortunately heavy (several kg) 

and very expensive (more than 100k€) and are not suited to 

small or very small vehicles, due to the limited payload of such 

vehicles. These are some of the reasons for which various 

localization and mapping methods based on video have been 

proposed for several years. Some works exploit monocular 

vision as Garcia (2001), Gracias (2002), or Mahon (2004), 

who used also a sonar to preselect best areas for the vision 

system. Some other papers are based on stereoscopic systems, 

like Negahdaripour (2005). This author performed numerous 

real-time experiments (15Hz), demonstrating that stereoscopic 

methods have smaller accuracy errors (2%) than monocular 

approaches, especially for low contrasted scenes (e.g. ship-

hulls or walls of pools). The author suggests that this is due to 

the inaccurate pose estimation of monocular methods when too 

few feature points are available. Drap (2015) used a 

stereoscopic system to perform real-time (10Hz) stereoscopic 

localization and pose estimation of a submarine to guide the 

pilot so as to completely cover a shipwreck. After the dive, the 

images of a third high resolution camera are combined with the 

images of the low-resolution stereoscopic system to build an 

accurate 3D model of the scene. 

Some other authors have combined vision with other 

measurements. This was the case of Eustice (2006), who 

performed monocular SLAM, robust to low-overlap 

constraint, on a part of RMS Titanic. Using an inertial unit, his 

approach improves the reliability of data association. More 

recently, Shkurti (2011), proposed to integrate the data from 

both a low-cost IMU and a pressure sensor in an Extended 

Kalman Filter (EKF). Then, the authors track features (SURF 

with Approximate Nearest Neighbor matching) in several 

monocular frames. This gives a 3D position estimate, regarded 

as true and used to correct the EKF. In particular, the authors 

reported for experimental accuracy of 1 meter over a 30-meter-

long straight trajectory, with a system running at 15Hz. In spite 

of the heavy computations of feature detection and matching, 

real-time was achieved but necessitated trade-offs between 

performances and robustness. Warren (2012) used the data 

from a magnetometer to constrain the pose estimation of a 

stereoscopic system installed on the Sirius AUV. This 

minimizes the angular drift and the authors reported for error 

smaller than 6.4 meters over a 300-meter-long trajectory. The 

stereoscopic system ran at 1Hz to save energy.  

The previous examples integrate the data of external sensors 

(IMU, depth sensor) either to improve/constrain the pose 

estimation process or directly to estimate a state of the vehicle 

that will be corrected by the visual information. Most of them 

rely on heavy computations. Some of them may fail during 

station keeping operations, due to the difficulty to perform 

bundle adjustment while keeping the robot still. 

In this paper, we propose a method for underwater odometry 

(not for mapping), that is able to online estimate the scale 

factor of the observed scene. This method is based on a 

monocular video camera, associated with a low-cost MEMS 



 

 

     

 

IMU (Inertial Measurement Unit) and a pressure sensor (depth 

sensor). It is fast enough (at least 30Hz) to be included in the 

low-level control loop of an underwater vehicle and is enough 

computationally efficient to be implemented on very small 

computer boards (running at 10Hz on a Raspberry Pi 3 Model 

B). Moreover, this method does not drift with time, but only 

with the covered distance. This makes it very well suited for 

station-keeping, or for accurate control of the motion of a 

vehicle during underwater manipulations. It can also be 

combined with an external acoustic positioning system (e.g. 

USBL) for longer range navigation. Its specificity with respect 

to previous work is that the inertial data are directly used in the 

image processing, and the depth measurements allow to 

compute the altitude of the vehicle in a straightforward 

manner. Compared with methods based on stereovision, this 

approach uses frames grabbed by a single monocular camera. 

This makes it more compact and this requires less computation 

and energy. Section 2 will present the details of the algorithm. 

In section 3, we present experimental results obtained in a pool 

with the Leonard underwater vehicle (Fig. 1). These 

experiments have also been reproduced in real-time during the 

demonstrator session of IFAC 2017. 

2. VISUAL ODOMETRY ALGORITHM 

2.1  Technical setup 

To perform the visual odometry only three devices are needed 

(Fig. 2): a downward facing monocular video camera 

(resolution: 640x480), a depth sensor, and a MEMS IMU (9 

dof) running at least at the same frequency as the camera frame 

rate. 

In our case, the IMU is located inside the housing of the 

camera, but could be placed anywhere else as long as a 

calibration procedure allows to align the axes of the IMU with 

the axes of the camera and the axes of the ROV. The positions 

of the camera frame and the pressure sensor with respect to the 

body frame of the ROV have to be accurately measured. This 

will be used later to compensate for the effects induced by 

pitch, roll and yaw motions. 

2.2  Assumptions 

For clarity purposes, in the following, we will assume that the 

camera and the IMU axes are aligned. We will also assume 

that the camera frame ℛ𝑐 coincides with the body frame ℛ𝑏 of 

the vehicle and that the pressure sensor is located at the center 

of the body frame of the vehicle. In practical conditions, these 

assumptions are not realistic, but can easily be compensated 

by well-known geometric transformations that we will not 

detail here. We also assume that the calibration of the camera 

(pinhole model) has been done, so that the intrinsic parameters 

are known. The distortion coefficients, are also assumed to be 

known and are used to undistorted any grabbed image. This 

will not appear in the following, but is of course taken into 

account in the implemented code. Finally, we also assume that 

the seabed is quite regular, i.e. without any sudden depth 

variation. 

 

Fig. 1. The Leonard ROV (at the top of the picture) during 

coordinated archaeological operations with its twin brother 

Speedy ROV (at the bottom of the picture), on the Lune 

shipwreck (Depth: 90 meters, Toulon, France). Courtesy of: 

F. Osada/T. Seguin - DRASSM. 

 

       

 

Fig. 2. Example of setup, here mounted on the Leonard ROV. 

The IMU is mounted inside the camera housing. The depth 

sensor is located on the ROV’s main housing. 

2.3  Algorithm 

The algorithm is based on several steps: 

Initialization 

At the initialization of the algorithm (at time 𝑡0), an image 𝐼0 

is grabbed by the camera and the depth 𝑝0 is recorded, as well 

as the attitude (yaw, pitch, roll) of the camera provided by the 

IMU (i.e. the attitude of the ROV) and denoted Θ0 =
(𝜑0, 𝜃0, 𝜓0). 

Then one selects an initial set 𝑆0 of 𝑛0 strong feature points. 

The selection method is not detailed in this paper but could 

done for instance by selecting the most relevant Harris points 

in the image, as described by Shi and Tomasi (1994). 

Each point of the 𝑆0 set is denoted 𝑚𝑖,0 = (𝑢𝑖,0, 𝑣𝑖,0), with 𝑖 ∈

[1, 𝑛] and (𝑢𝑖,0, 𝑣𝑖,0) being its coordinates in the image 𝐼0, i.e. 

at time 𝑡 = 𝑡0. 

  

Side view Front view 

video camera + IMU depth sensor 



 

 

     

 

Iterations 

The iterative process starts by grabbing a new image 𝐼𝑘 at time 

𝑡 = 𝑡𝑘. As for the initialization, the attitude Θ𝑘 = (𝜑𝑘 , 𝜃𝑘 , 𝜓𝑘) 
and the depth 𝑝𝑘 are also recorded. 

Then, one calculates the optical flow for every points 𝑚𝑖 of 𝑆0 

using the iterative Lucas-Kanade method with pyramids, as 

proposed by Bouguet (2000). This allows to find the new 

positions 𝑚𝑖,𝑘 = (𝑢𝑖,𝑘, 𝑣𝑖,𝑘) of the points of 𝑆0. During this 

step, some points cannot be tracked and are lost (e.g. when 

optical flow fails, or when points disappear or exit from the 

image). In this case, we eliminate them from the set 𝑆0. The 

rest of the points form the 𝑆𝑘 set. 

We now apply a yaw, pitch and roll compensation to the points 

of 𝑆𝑘. This gives the attitude-compensated points 𝑚𝜑𝜃𝜓𝑖,𝑘
=

(𝑢𝜑𝜃𝜓𝑖,𝑘 , 𝑣𝜑𝜃𝜓𝑖,𝑘), located where the feature points should be 

(in the image) if the pitch and roll angles had not changed with 

respect to their initial values (at time 𝑡0). For this, we use the 

attitudes Θ0 = (𝜑0, 𝜃0, 𝜓0) and Θ𝑘 = (𝜑𝑘 , 𝜃𝑘, 𝜓𝑘) measured 

by the IMU respectively at time 𝑡 = 𝑡0 and 𝑡 = 𝑡𝑘. 

Once the variation of the attitude has been compensated, the 

mean zooming ratio < 𝜌𝑘 > is computed. For this, for every 

duets of the 𝑛𝑘 points remaining in the 𝑆𝑘 set, we firstly 

compute (𝑑𝑖𝑗)𝑘 the distance between points 𝑚𝜑𝜃𝜓𝑖,𝑘
 and 

𝑚𝜑𝜃𝜓𝑗,𝑘
 at time 𝑡 = 𝑡𝑘 and (𝑑𝑖𝑗)0 at time 𝑡 = 𝑡0, with 𝑖 < 𝑗 

and 𝑖, 𝑗 ∈ 𝑆𝑘. 

Then, the mean zooming ratio < 𝜌𝑘 > is defined as: 

< 𝜌𝑘 >=
2

𝑛𝑘(𝑛𝑘 − 1)
∑

(𝑑𝑖𝑗)𝑘
(𝑑𝑖𝑗)0𝑖<𝑗 𝑎𝑛𝑑 𝑖,𝑗∈𝑆𝑘

                              (1) 

It has to be mentioned that the observed zooming effect is only 

due to the depth variation of the robot between 𝑡0 and 𝑡𝑘. 

Indeed, 𝜌𝑘 is not affected by the seabed depth variations as the 

features points used correspond to fixed point of the seabed 

that are tracked from 𝑡0 to 𝑡𝑘.  

From the mean zooming ratio < 𝜌𝑘 >, and the depth 𝑝𝑘 

measured by the pressure sensor, one can compute as follows 

the altitude 𝑎𝑘 of the vehicle, i.e. its distance to the seabed. Let 

us consider the 2D example of Fig.3. For better readability, the 

yaw-pitch-roll compensated feature points 𝑚𝜑𝜃𝜓𝑖,𝑘
 are simply 

denoted 𝑚𝑖,𝑘 on the figure. The seabed point corresponding to 

𝑚𝑖,0 and 𝑚𝑖,𝑘 image points is denoted 𝑀𝑖. 

The focal length of the camera is denoted 𝑓 and the center of 

projection (optical center) coincides with the center of the 

ROV’s body frame ℛ𝑏. The position of the ROV is denoted 𝜂𝑘 

and 𝑢𝑘 is the image coordinate of point 𝑚𝑖,𝑘. The distance 

between the principal axis and the seabed point 𝑀𝑖 is denoted 

𝑑. 

For sake of clarity, in this example, we consider the distance 𝑑 

between a point 𝑀𝑖 and the principal axis, but the same results 

could be obtained between two points 𝑀𝑖 and 𝑀𝑗 by 

application of the intercept theorem. 

From the pinhole model, we have: 

𝑢𝑖,𝑘 . 𝑎𝑘 = 𝑢𝑖,0. 𝑎0 = 𝑓. 𝑑                                                            (2) 

Introducing 𝜌𝑖,𝑘 =  
𝑢𝑖,𝑘

𝑢𝑖,0
 the individual zooming factor, we can 

rewrite (2) as: 

𝜌𝑖,𝑘. 𝑎𝑘 = 𝑎0                                                                                  (3) 

As the relation between altitude 𝑎𝑘 (in meters) and depth 𝑝𝑘 

(also in meters) is: 

𝑎0 = 𝑎𝑘 + (𝑝𝑘 − 𝑝0)                                                           (4) 

we can combine (3) and (4), and get: 

𝑎𝑘 =
𝑝𝑘 − 𝑝0
𝜌𝑖,𝑘 − 1

                                                                                (5) 

Once applied to the entire set 𝑆𝑘 of feature point, this gives: 

𝑎𝑘 =
𝑝𝑘 − 𝑝0

< 𝜌𝑘 > −1
                                                                         (6) 

 

Fig. 3. Positions of a seabed point 𝑀𝑖 in the camera image 

plane, when the ROV is at altitude 𝑎0 and altitude 𝑎𝑘. 

 

The last step of the algorithm is the computation of the current 

position of the vehicle (at 𝑡𝑘), with respect to its initial position 

(at 𝑡0). For this purpose, we firstly compute 𝑚𝜑𝜃𝜓𝝆𝑖,𝑘
=

(𝑢𝜑𝜃𝜓𝝆𝑖,𝑘 , 𝑣𝜑𝜃𝜓𝝆𝑖,𝑘), which are the 𝑛𝑘 positions of the feature 

points, compensated for attitude variation, but also for 

zooming effect (i.e. variation of the altitude). Once this is 

done, the ∆𝑥 and ∆𝑦 variation of the ROV’s position is given 

by: 

{
 
 

 
 ∆𝑥 =  −

𝑎𝑘
𝑓𝑥. 𝑛𝑘

∑ (𝑢𝜑𝜃𝜓𝜌𝑖,𝑘 − 𝑢𝑖,0)

𝑖∈[1,𝑛𝑘]

∆𝑦 =  
𝑎𝑘
𝑓𝑦 . 𝑛𝑘

∑ (𝑣𝜑𝜃𝜓𝜌𝑖,𝑘 − 𝑣𝑖,0)

𝑖∈[1,𝑛𝑘]

 

 



 

 

     

 

where 𝑓𝑥 and 𝑓𝑦 are the focal lengths of the camera, expressed 

in pixels. 

The iterative process is performed while the number 𝑛𝑘 of 

points in the 𝑆𝑘 is large enough to smooth the disturbance 

induced by the irregularities of the seabed (in fact 𝑎𝑘 is a mean 

altitude, as the seabed is not necessarily flat). When too many 

points have been lost (for instance when the vehicle has moved 

away from its original position), 𝑛𝑘 goes under a certain 

threshold 𝑛𝑚𝑖𝑛. Then, the iterative process is stopped and the 

algorithm returns to the initialization step, and renew its set of 

points. The new “initial position” is set to the last “current 

position”. 

It has to be noticed also that in case of non-flat bottoms, after 

every reset of the process (initialization step) the depth 

trajectory has to vary in order to estimate again the altitude of 

the ROV. Navigating at constant depth does not allow to 

estimate the altitude. However, when the vehicle navigates 

close to the seabed (2m or less), a variation of a few 

centimeters in the depth trajectory (as almost every 

commercial ROVs naturally do) is sufficient. 

3. EXPERIMENTS AND DISCUSSION 

3.1  Experimental setup 

Experiments have been conducted with the Leonard ROV 

(Fig. 1). This vehicle has been designed at LIRMM in 2015. 

Its features are summarized in Table 1. 

Table 1.  Leonard ROV’s technical features 

Size 70 x 50 x 50 cm 

weight 28 kg 

max operating depth 100 meters 

IMU Sparkfun ArduIMU V2 

depth sensor Range: 0-150 m  

Relative accuracy: 2 cm 

Camera IM-E630 & 640x480 Grabber 

Thrusters 6 Seabotix BT150 

 

During the experiments, the visual odometry algorithm and the 

control of the ROV were computed from the surface (through 

the tether) by a laptop PC (Intel® Core™ i7 5600U 2.60GHz). 

The codes are written in C++. For some of the functions 

needed in the presented algorithm, we used OpenCV library 

(Bradski2000). The frequency of the algorithm was limited by 

the fps of the camera, so it worked at 25fps (PAL analog 

camera). Under these conditions, the CPU load was around 

8%. 

3.2  Altitude estimation 

To compare the performances of the method with a reliable 

ground truth, we performed tests in a pool. The bottom of the 

pool was flat with sparse 5-cm-high ripples (a removable 

plastic carpet protects the bottom from impacts). These tests 

have been reproduced during demonstrator session of IFAC 

2017. 

The first test consisted in the validation of the altitude 

estimation. The ROV remained stable in the horizontal plane 

and performed a vertical descending trajectory, as depicted on 

Fig. 4. As we knew precisely the depth of the pool (1.05 

meter), the ground truth for altitude was computed from the 

pressure measures (depth sensor). During this test, the 

algorithm has been initialized only once (120 feature points) 

as the set of feature points remained larger than 𝑛𝑚𝑖𝑛 = 30. 

On this picture, one sees the measured depth trajectory of the 

ROV in blue, the true altitude of the ROV in black and the 

altitude estimated by the algorithm in red. This latter tracks 

well the true one. However, as the position of the optical center 

was not accurately known, one observes a 3cm offset. The 

noise level in the altitude estimation is about 2cm during this 

test, but one can predict that it depends on the altitude range. 

One observes also that the altitude is not estimated during the 

first seconds. Indeed, the estimation is not performed until 

< 𝜌𝑘 > −1 is large enough to avoid dividing by a too small 

number in (6). This figure also shows that the method does not 

drift when time grows, which is normal as errors may 

accumulate only during successive resets (initializations) of 

the algorithm (i.e. error is dependent on the horizontal distance 

covered by the ROV). 

 

Fig. 4. Time history of the depth trajectory of the ROV (in 

blue) and the estimated altitude (in red) during combined 

horizontal station keeping and vertical descent. 

3.3  Horizontal odometry 

During the second test, the ROV performed a vertical yoyo 

(30cm) to estimate its altitude and the returned to the surface. 

After this first motion, it has been manually hauled along a rail, 

so as to draw a 2-meter-long straight trajectory. Figure 5 shows 

the experimental result. The beginning of the trajectory is 

noisy as it corresponds to the yoyo phase. The second part of 

the trajectory is straight. The estimated length is 2.07m, while 

one observes offsets smaller than 3cm along the ideal straight 

trajectory. An accurate evaluation of the performance is 

however difficult as the ROV was moved manually and the 

undesired induced roll and pitch disturbances (yaw 

disturbance was mechanically impossible) could have generate 

these offsets in the camera’s position. 



 

 

     

 

 

Fig. 5. Estimated horizontal trajectory. The ROV firstly does a 

yoyo to estimate the altitude and then is manually hauled along 

a 2-meter-long straight rail. 

3.4  Tests at sea 

The ROV has been operated several times at sea, where we 

could only obtain a qualitative appreciation of the proposed 

method as no ground truth was available. These experiments 

demonstrated that natural seafloor always offer far enough 

features to track. We also observed that the algorithm is robust 

towards erratic motions of a minor part of the feature points. 

For instance, we have experienced seabed with moving 

shrimps or fishes, without observing any major disturbance of 

the estimated position. To improve the robustness, we have 

added the computation of the standard deviation of the 
(𝑑𝑖𝑗)𝑘

(𝑑𝑖𝑗)0

 

ratio. Above a certain threshold, we reset the points 

(initialization step). 

In presence of major disturbances, such as large amount of 

suspended particles moving with the sea current, the algorithm 

fails. 

6. CONCLUSION 

In this paper, we have introduced a new method for underwater 

monocular odometry. This method combines vision with IMU 

and depth measurements. This allows to evaluate the altitude 

of a vehicle and its position. The position error of this 

algorithm does not grow with time, but only with the covered 

distance, which made this method ideal for horizontal servoing 

during manipulation or for station-keeping. It is also a good 

complement of absolute acoustic positioning systems (USBL, 

LBL) for operations close to the seabed. Experiments in pool 

and at sea are commented. 
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