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Abstract

This paper deals with two nonlinear controllers based on saturation functions with varying parameters, for set-point regulation
and trajectory tracking on an Underwater Vehicle. The proposed controllers combine the advantages of robust control and easy
tuning in real applications. The stability of the closed-loop system with the proposed nonlinear controllers is proven by Lyapunov
arguments. Experimental results for the trajectory tracking control in 2 degrees of freedom, these are the depth and yaw motion of
an underwater vehicle, show the performance of the proposed control strategy.
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1. INTRODUCTION

Underwater vehicles are more and more used for various
types of applications, such as inspection, exploration, oceanog-
raphy, biology, to name a few. They can be classified in two
classes: the Autonomous Underwater Vehicles (AUVs) and the
Remotely Operated Vehicles (ROVs). One of the main chal-
lenges for these types of vehicles lies in the design of the control
strategy, given the nonlinear dynamics and the difficulty to ac-
curately identify their hydrodynamic parameters [2][3][4]. The
controller is used either to fully control the vehicle (for AUVs),
or to assist the pilot (for ROVs) by providing features such as
auto-depth, auto-altitude (with respect to the seabed), or auto-
heading. Although many types of controllers have been studied
during last decades, most of commercial underwater vehicles
use PID controllers. For instance, PID control and acceleration
feedback can be found in [5]; in [7] a PD controller consider-
ing the time-delay produced by the sensor has been proposed
for an underwater vehicle. Nevertheless the drawback of these
controllers is that they do not have a good performance when
the parameters of the system change.

In practical applications, we can notice that a standard PID
control design can be improved by bounding its signal. Con-
sequently, several nonlinear PID controllers with bounded sig-
nal have been proposed in order to improve the performance
of the closed-loop system. For instance, in [8] a nonlinear PD
controller has been proposed for robot manipulators, where the
constant proportional and derivative gains have been replaced
with nonlinear functions. In [9] a nonlinear PID controller is
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Figure 1: View of the L2ROV underwater vehicle. Its six thrusters allow precise
control of its 6 degrees of freedom

proposed for a superconducting magnetic energy storage, where
the idea was to improve the stability of the power system in a
relatively wide operation range. In [10] a nonlinear PID con-
troller was applied to a class of truck ABS (Anti-lock Brake
System), where it has been shown that the nonlinear PID con-
troller has better performance than the conventional PID con-
troller.

In the literature there are some works about control strate-
gies for AUVs, for example in the paper [11] the authors present
a trajectory tracking control using a linear system to implement
a sliding mode controller. In this case the unmodeled dynam-
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ics are consider as external perturbations. In [12] the simu-
lation of a back-stepping controller for robust diving against
pitch perturbations is given. The reference [13] describes a
classical algorithm of sliding mode, where the vehicle has a
input/output decentralized dynamics; the main problem of this
technic is the chattering. The paper [15] presents a trajectory
tracking control using Lagrange’s operators, allowing propose
a novel path-following controller for UUVs. Concerning robust
controllers, one possibility is to try to reduce undesirable dy-
namic couplings, for instance dynamic pitch and yaw coupling
suppression using a robust H∞ control technique has been con-
sidered in [16].

In the present paper, our aim is to reinforce the prominent
place PD controllers have gained in a number of applications.
In this vein, we propose a nonlinear PD and PD+ based on sat-
uration function with variable parameters. Both controllers are
proposed for set-point regulation as well as time varying tra-
jectory tracking control of an Underwater Vehicle. To the best
knowledge of the authors, this method has never been applied
yet to control this type of vehicles. Moreover the proof of sta-
bility, based on Lyapunov arguments, is given and the control
scheme is validated on a new underwater vehicle. Furthermore
the experimental results presented herein have been extended to
two degrees of freedom, namely depth and yaw.

The real-time experiments have been conducted using the
tethered underwater vehicle L2ROV (Figure 1 and 2) entirely de-
signed and built at LIRMM (University Montpellier 2). One of
the main advantages of this vehicle is that we can use it either as
an Autonomous Underwater Vehicle (AUV) or as a Remotely
Operated Vehicle (ROV), depending on the task we want to
carry out. The propulsion system consists of six thrusters used
to control the 6-DOF, although roll and pitch are naturally sta-
ble. This paper is organized as follows: in section 2 we briefly
describe the L2ROV prototype as well as its dynamic model. The
control strategy is presented in section 3. The obtained experi-
mental results for trajectory tracking control are presented and
discussed in section 4. Finally, some concluding remarks and
future works are given in section 5.

2. DESCRIPTION AND MODELING OF THE L2ROV
VEHICLE

This section describes the technical features of the L2ROV
underwater vehicle and its dynamic model. Based on the design
of the vehicle and in order to reduce further analysis, we assume
that the vehicle is moving at low speeds, leading to a slightly
simplified dynamics.

2.1. Prototype description

The L2ROV (Figure 1 and 2) is a tethered underwater ve-
hicle, whose size is about 75cm long, 55cm width, and 45cm
height. The propulsion system of this underwater vehicle con-
sists of six thrusters, as illustrated in Figure 2. According to the
SNAME notation [17], the translational motions are referred
to as surge, sway, and heave; while the rotational motions are

roll, pitch, and yaw. The surge motion is generated by the sum
of the forces created by T4 and T5, sway movement is actu-
ated by T6, and heave is produced by the sum of thrusts of T1,
T2 and T3. The roll movement is actuated through differential
force of the thrusters T2 and T3; the pitch motion is obtained
similarly using thrusters T1, T2 and T3, and the yaw motion is
generated by T4 and T5. The experimental platform consists

Figure 2: L2ROV: View of forces generated by the thrusters to perform the
translational and rotational motions.

of a ROV driven by a laptop computer, with CPU Intel Core
i7-3520M 2.9GHz, 8GB of RAM memory. The computer runs
under Windows 7 operating system and the control software is
developed with Visual C++ 2010. The computer receives the
data from the ROV’s sensors (pressure, attitude), computes the
control laws and sends input signals to the actuators. These lat-
ter are controlled by MD03 Motor Drives. The main features of
this vehicle are described in Table 1.

Table 1: The main features of the L2ROV vehicle

Mass 28 kg
Floatability 9N
Dimensions 75cm (l) x 55cm (w) x 45cm (h)
Maximal depth 100m
Thrusters 6 Seabotix BTD150

cont. bollard thrust = 2.2kgf each
with Devantech MD03 drivers

Power 48V - 600W
Light 2 x 50W LED
Attitude sensor Sparkfun Arduimu V3

Invensense MPU-6000 MEMS 3-axis gyro
and accelerometer
3-axis I2C magnetometer HMC-5883L
Atmega328 microprocessor

Camera Pacific Corporation VPC-895A
CCD1/3” PAL –25–fps

Depth sensor Pressure Sensor Breakout-MS5803-14BA
Sampling period 50ms
Surface computer Dell Latitude E6230 - Intel Core i7 - 2.9GHz

Windows 7 Professional 64 bits
Microsoft Visual C++ 2010

Tether length 150m
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2.2. Dynamic Modeling
The dynamics of the vehicle, in the body-fixed-frame (xb, yb, zb)

(more details see Figure 3), can be expressed in a compact ma-
trix form as [18]:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ +we (1)

η̇ = J (η)ν (2)

where M ∈ R6×6 is the inertia matrix, C(ν) ∈ R6×6 defines
the Coriolis-centripetal matrix. In our case we assume that the
vehicle is moving at low speeds, then this Coriolis matrix can
be neglected. D(ν) ∈ R6×6 represents the damping matrix,
g(η) ∈ R6×1 describes the vector of restoring forces and mo-
ments, τ = (τ, τ)T = ((τX , τY , τZ), (τK , τM , τN))T ∈ R6×1

defines the vector of control inputs; we ∈ R6×1 defines the vec-
tor of disturbances; ν = (ν1,ν2)T = ((u, v,w), (p, q, r))T ∈ R6×1

represents the linear and angular velocity vector in the body-
fixed-frame; η = (η1,η2)T = ((x, y, z), (φ, θ, ψ))T ∈ R6×1 is
the position and attitude vector decomposed in the earth-fixed-
frame, and J (η) ∈ R6×6 is the transformation matrix mapping
from the body-fixed-frame to earth-fixed-frame (see Figure 3).
For more details about the dynamic modeling, the reader can
refer to [19],[20].

Figure 3: The L2ROV vehicle, with the body-fixed-frame (Ob, xb, yb, zb), and
the earth-fixed-frame (OI , xI , yI , zI ).

2.2.1. Inertia and Damping Matrices
The inertia matrix M is the sum of the rigid-body inertia

MRB and the inertia of the added massMA, as follows:

M =MRB +MA (3)

In our case, we assume that the vehicle is moving at slow speeds;
hence, theM matrix can be approximated by:

M = diag{m − Xu̇,m − Yv̇,m − Zẇ,
Ixx − Kṗ, Iyy − Mq̇, Izz − Nṙ}

(4)

where m is the mass of the vehicle, Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ repre-
sent hydrodynamic added mass, and Ixx, Iyy, Izz are the moments

of inertia of the rigid-body. L2ROV inertia parameters (com-
puted from the ROV’s 3D model), then we have obtained the
following values in kg · m2:

I =

 0.35 −0.02 −0.04
−0.02 0.69 −0.02
−0.04 −0.02 0.65

 (5)

Concerning the hydrodynamic damping, we consider the damp-
ing model for low-speed underwater vehicles. Thus we have:

D(ν) = diag{Xu,Yv,Zw,Kp,Mq,Nr} (6)

For the L2ROV prototype the damping parameters included
in the damping matrix have been experimentally estimates by
applying the following procedure. First, the buoyancy of the
ROV is adjusted to exactly compensate for the weight, so that
the floatability is neutral. Then, a known force is applied to the
ROV along the z axis. This force is produced by the thrusters
and is known thanks to a previous calibration. As the vehicle
submerses, the value of z is recorded ( thanks to the depth sen-
sor). Then, the speed along z is computed. After few seconds,
the ROV reaches a steady state limit speed. The value of Zw, the
damping parameter along z, is approximated by: Zw ' fz/wlim,
where fz is the force exerted by the thrusters along z, and wlim

is the linear speed of the ROV along z. The estimated value of
Zw is 80 N.s.m−1.

According to the symmetry of the vehicle, we consider that Yv

is roughly equal to Zw. The value of Xu is computed by mea-
suring the time needed by the ROV to run a known horizon-
tal distance in a pool, with a known horizontal thrust. Then,
the speed is computed and the damping parameter is estimated.
The estimated value of Xu is 30 N.s.m−1. Regarding the rota-
tional damping parameter, we applied a known torque along z
axis with the thrusters and we recorded the rate of turn mea-
sured by the gyrometer (along z axis) of the embedded IMU.
Once the rate of turn reaches its steady state value rlim, the rota-
tional damping parameter Nr is approximated by: Nr 'z /rlim,
where γz is the applied torque.

The estimated value of Nr is 2.9 N.m.s.rad−1.The symmetry
of the L2ROV vehicle allows us to consider that Mq is roughly
equal to Nr. The value of Kp (along x axis) has not be experi-
mentally estimated as this would require to make the center of
gravity coincide with the center of buoyancy. This is long and
useless, since in our case the roll is naturally stable and is not
controlled. According to the previous values and the geometry
of the vehicle, we have considered that Kp ' 1.4 N.m.s.rad−1.
Please note that we have assumed that the speed of the vehi-
cle is sufficiently low to consider only the skin friction effects.
Thus, we estimate only linear damping. Would the speed be
higher, then quadratic damping would be taken into account
and quadratic damping parameters should be computed by the
same method, replacing each speed by its squared value. Given
that the vehicle is moving slow and then, non diagonal terms

3



of the damping matrix are neglected and only linear damping
parameters have been estimated for this prototype, then

D(ν) = diag{30, 70, 80, 1.4, 2.5, 2.9} (7)

in ( N.s
m ) (first three) and in ( N.s

rad ) (last three).

2.2.2. Restoring Forces and Moments
The restoring forces and moments are generated by the weight

fW and the buoyancy force fB , this latter, always acts in the
opposite direction of vehicle weight, that is:

fB = −

 0
0
B

 fW =

 0
0
W

 (8)

where B represents the magnitude of the buoyancy force, de-
fined according to the Archimedes’ principle; W = mg is the ve-
hicle’s weight, with g the gravitational acceleration. Notice that
these forces are defined with respect to the earth-fixed-frame.
Now, using the zyx-convention for navigation and control ap-
plications [5], the transformation matrix J(η) = Rz,ψRy,θRx,φ

is introduced in order to obtain the buoyancy force and weight
with respect to the body-fixed-frame:

FB = J(η)−fB , FW = J(η)−fW (9)

Then, the restoring forces acting on the vehicle are fg=FB+FW ,
leading to:

fg =

 (B −W)sin(θ)
(W − B)cos(θ)sin(φ)
(W − B)cos(θ)cos(φ)

 (10)

On the other hand, the restoring moments depend on the posi-
tions of the center of gravity (CG) and the center of buoyancy
(CB), as we can notice in the following equation:

mg = rw × FW + rb × FB (11)

where rw = [xw, yw, zw]T and rb = [xb, yb, zb]T represent the
positions of the center of gravity and the center of buoyancy,
respectively. In our case the origin of the body-fixed-frame is
chosen in the center of gravity, this implies that rw = [0, 0, 0]T ,
while the center of buoyancy is rb = [0, 0,−zb]T . For practical
purposes, the buoyancy force is greater than the weight, i.e. B−
W = fb > 0. Then, from equations (10) and (11), we obtain the
vector of restoring forces and moments as follows:

g(η) =
[
fg
mg

]
=



fbsin(θ)
− fbcos(θ)sin(φ)
− fbcos(θ)cos(φ)
−zbBcos(θ)sin(φ)
−zbBsin(θ)

0


(12)

2.2.3. Control Inputs: Forces and torques generated by the
thrusters

The forces generated by the thrusters T1 to T6 are denoted
f to f, and are defined by: f = [0, 0, f1]T , f = [0, 0, f2]T ,

f = [0, 0, f3]T , f = [ f4, 0, 0]T , f = [ f5, 0, 0]T , f = [0, f6, 0]T ,
as illustrated in Figure 2. Then, the translation motions are pro-
duced by:

τ =

 τX

τY

τZ

 =
 f4 + f5

f6
f1 + f2 + f3

 (13)

and the torques generated by the above forces, are defined as
follows:

τ =
6∑

i=1

li × fi (14)

where li = (lix, liy, liz) is the position vector describing where
the fi (for i = 1, .., 6.) forces apply, with respect to the body-
fixed reference frame. The torques generated by the thrusters
are then described by:

τ =

 τK

τM

τN

 =
 l2y f2 + l3y f3

l2x f2 + l3x f3 + l1x f1
l4y f4 + l5y f5

 (15)

Finally, the vector of control inputs is expressed as follows:

τ =



f4 + f5
f6

f1 + f2 + f3
l2y f2 + l3y f3

l2x f2 + l3x f3 + l1x f1
l4y f4 + l5y f5


(16)

3. PROPOSED CONTROL STRATEGY

In this section, nonlinear PD and PD+ controllers based on
saturation functions with variable parameters are introduced.
Both of them are proposed for set point regulation as well as
for trajectory tracking control. The stability analysis of the re-
sulting closed-loop system for both cases is detailed.

3.1. Nonlinear PD Controller With Gravity and Buoyancy Com-
pensation

Considering the dynamics given by equations (1) and (2),
the PD control law with static feedback gains and gravity/buoyancy
compensation is given by:

τ = g(η) − JT (η)τPD (17)

with
τPD =Kpe(t) +Kd

de(t)
dt

(18)

where Kp, Kd∈ R6×6 are diagonal, positive definite matrices,
and e(t) = η − ηd represents the error.

In order to improve the performance of the closed-loop sys-
tem, we propose to introduce (in each term of equation (18)) a
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saturation function σb̄(h) illustrated in Figure 4 and defined by:

σb̄(h) =


b̄ i f h > b̄
h i f | h |≤ b̄
−b̄ i f h < −b̄

(19)

where b̄ is a positive constant, and h represents a linear function.
In our case, the terms to which this saturation will be applied
are the error and its time derivative.

Figure 4: Saturation function with fixed parameters.

Then, if we introduce the above saturation function into
in the control law (18), we obtain the following nonlinear PD
(NLPD) controller:

τNLPD = σb̄p [Kpe(t)] + σb̄d [Kd
de(t)
dt

] (20)

where

σb̄p [Kpe(t)] =


up1 0 ... 0
0 up2 ... 0
...

...
. . .

...
0 0 . . . upn

 (21)

σb̄d [Kd
de(t)
dt

] =


ud1 0 ... 0
0 ud2 ... 0
...

...
. . .

...
0 0 . . . udn

 (22)

with up j = σb̄p j
[kp je j(t)]; ud j = σb̄d j

[kd j
de j(t)

dt ]; where kp j, kd j

are positive constants, for all j = 1...n.

Without loss of generality, let us consider now the scalar
case, namely:

τNLPD1 = σb̄p1
[kp1e1(t)] + σb̄d1

[kd1
de1(t)

dt
] (23)

The above equation can be rewritten in a compact form as fol-
lows:

τNLPD1 =

2∑
i=1

ui (24)

where ui = σb̄i
(kihi) represents the saturation function, with

b1 = b̄p1, b2 = b̄d1, k1 = kp1, k2 = kd1; h1 is the error and h2 its
first derivative. Then, from equation (19) ui can be rewritten as:

ui =


b̄i i f kihi > b̄i

kihi i f |kihi| ≤ b̄i

−b̄i i f kihi < −b̄i

(25)

In the above equation, we can notice that the linear function
kihi is saturated by |hi| = b̄i/ki. At that time, we define:

di := b̄i/ki (26)

Then, we can rewrite equation (25) as follows:

ui =

{
sign(hi)b̄i i f |hi| > di

b̄id−1
i hi i f |hi| ≤ di

(27)

where the tuning parameters of the controller are bi and di, ∀
i = 1, 2. Moreover, considering that we have:

sign(hi)b̄i = hisign(hi)b̄ih−1
i (28)

which can be simplified as:

sign(hi)b̄i = |hi|b̄ih−1
i (29)

and considering that |hi|h−1
i = |hi|

−1hi, equation (27) can be rewrit-
ten as follows:

ui =

{
b̄i|hi|

−1hi i f |hi| > di

b̄id−1
i hi i f |hi| ≤ di

(30)

Consequently, the control law (23) can be rewritten as:

τNLPD1 = u1 + u2 = kp1(·)e1(t) + kd1(·)ė1(t) (31)

with:

kp1(·) =
{

b̄p1|e1(t)|−1 i f |e1(t)| > dp1
b̄p1d−1

p1 i f |e1(t)| ≤ dp1
(32)

kd1(·) =
{

b̄d1|ė1(t)|−1 i f |ė1(t)| > dd1
b̄d1d−1

d1 i f |ė1(t)| ≤ dd1
(33)

The advantage of this formulation is that the forces and
torques are limited by the parameters b̄p1 and b̄d1. Consequently,
we are sure of the boundedness of the control input. However,
some cases may require slightly larger forces and torques to
correct the system errors, that is why we propose that the satu-
ration value b̄i in equation (30) should be changed as follows:

b̄i = bi|hi|
µi i f |hi| > di (34)

and
b̄i = bi|di|

µi i f |hi| ≤ di (35)
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with bi a positive constant, and µi ∈ [0, 1].

Now, introducing equations (34) and (35) into (30), we ob-
tain:

ui =

{
bi|hi|

µi |hi|
−1hi i f |hi| > di

bi|di|
µi d−1

i hi i f |hi| ≤ di
(36)

∀ i = 1, 2 and µi ∈ [0, 1].

The plots of the above function for different values of the
parameter µi are shown in Figure 5.

Figure 5: Saturation function with various values of parameter µ.

Consequently, the nonlinear PD control law based on satu-
ration function with variable parameters can be expressed as:

τNLPD j = kp j(·)e j(t) + kd j(·)ė j(t) (37)

with:

kp j(·) =
 bp j|e j(t)|(µp j−1) i f |e j(t)| > dp j

bp jd
(µp j−1)
p j i f |e j(t)| ≤ dp j

(38)

kd j(·) =
 bd j|ė j(t)|(µd j−1) i f |ė j(t)| > dd j

bd jd
(µd j−1)
d j i f |ė j(t)| ≤ dd j

(39)

∀ µp j, µd j ∈ [0, 1]

From Figure 5, it can be noticed that if µp j = µd j = 1, the
nonlinear PD controller given by (37) degenerates into the lin-
ear PD controller given by (18). Besides, if µp j = µd j = 0,
we obtain the case of a constant saturation. To summarize, we
can conclude that the linear PD controller and the nonlinear PD
controller with a simple saturation function, defined by equa-
tion (19), are particular cases of the proposed controller.

Theorem 1. For the case of set-point regulation, under the non-
linear PD control (NLPD) with gravity compensation

τ = g(η) − JT (η)[Kp(·)e +Kd(·)ė] (40)

where the feedback gains Kp(·) and Kd(·) have the following
structure:

Kp(·) =


kp1(·) 0 ... 0

0 kp2(·) ... 0
...

...
. . .

...
0 0 . . . kpn(·)

 > 0 (41)

Kd(·) =


kd1(·) 0 ... 0

0 kd2(·) ... 0
...

...
. . .

...
0 0 . . . kdn(·)

 > 0 (42)

the system (1) is globally asymptotically stable if kp j(·) and
kd j(·) are defined by (38) and (39) respectively.

PROOF. In the case of set-point regulation ηd is constant, then
η̇d = 0 and ė = η̇. As a consequence the control law given by
equation (40) can be rewritten as:

τ = g(η) − JT (η)[Kp(·)e +Kd(·)η̇] (43)

In what follows we will suppose that θ , ±π/2, in order
to avoid possible singularities of J (η) matrix, see [5]. Now
assuming thatwe = 0, the injection of the control law (43) into
(1), leads to the following closed-loop system:

Mν̇ +C(ν)ν +D(ν)ν = −JT (η)[Kp(·)e +Kd(·)η̇] (44)

and if we consider the transformation (2), we obtain:

Mν̇ +C(ν)ν +D(ν)ν = −JT (η)[Kp(·)e +Kd(·)J (η)ν]
(45)

Let us defineKdd(·) = JT (η)Kd(·)J (η), then the previous
equation can be rewritten as:

Mν̇ +C(ν)ν +D(ν)ν = −JT (η)Kp(·)e −Kdd(·)ν (46)

The closed-loop system (46) can be represented as

d
dt

[
e
ν

]
=
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[
J (η)ν

M−[−JT (η)Kp(·)e −Kdd(·)ν −C(ν)ν −D(ν)ν]

]
(47)

Notice that the origin of the state space model is a unique equi-
librium point. Now, in order to proof the globally asymptotic
stability of the closed-loop system we propose the following
Lyapunov function candidate:

V(e,ν) =
1
2
νTMν +

∫ e



ξTKp(ξ)dξ (48)

where∫ e

ξTKp(ξ)dξ =

∫ e1

0 ξ1kp1(ξ1)dξ1 +
∫ e2

0 ξ2kp2(ξ2)dξ2+∫ e3

0 ξ3kp3(ξ3)dξ3 + ... +
∫ en

0 ξnkpn(ξn)dξn.

Now, considering that the inequality

e jkp j(·) ≥ α j(|e j|) (49)

is satisfied with the classK functions

α j(|e j|) =


b j |e j |

µp j e j

a+|e j |
i f |e j| > d j

b jd
µp j
j e j

a+d j
i f |e j| ≤ d j

(50)

with bp j > b j, a > 0 and dp j < d j. Then, according to Lemma 2
from [8] one deduces the following:∫ e



ξTKp(ξ)dξ >0 ∀ e , 0 ∈ Rn (51)

and ∫ e



ξTKp(ξ)dξ → ∞ as ‖ e ‖→ ∞ (52)

Therefore, the Lyapunov function candidate V(e,ν) is a
globally positive definite and radially unbounded.

The time derivative of the Lyapunov function candidate is:

V̇(e,ν) = νTMν̇ + eTKp(e)J (η)ν (53)

by substituting the closed-loop equation (46) into (53) one ob-
tains:

V̇(e,ν) = −νTJT (η)Kp(e)e − νTKdd(η, ė)ν−
νTC(ν)ν − νTD(ν)ν + eTKp(e)J (η)ν (54)

sinceKp(e) =KT
p (e) andC(ν) = −C(ν)T , equation (54) be-

comes:

V̇(e,ν) = −νT [Kdd(η, ė) +D(ν)]ν (55)

Recall thatKd =K
T
d > 0, thereforeKdd =K

T
dd > 0, and

assuming that D(ν) > 0, then one can conclude that V̇(e,ν) is
a globally negative semidefinite. Therefore the stability of the
equilibrium point is guaranteed. In order to prove the asymp-
totic stability, the Krasovskii-LaSalle’s theorem can be used, let

Ω =

{[
e
ν

]
: V̇(e,ν) = 0

}
=

{[
e
ν

]
=

[
e
0

]
∈ R2n

}
(56)

introducing ν =0 and ν̇ =0 into equation (46) leads to the unique
invariant point e =0. Therefore, we conclude that equilibrium
point is globally asymptotically stable. �

3.2. Nonlinear PD+ Controller

For the case of trajectory tracking problem, we propose to
use a nonlinear PD+ controller with the same feedback gains as
the previous controller.

Based on equation (2), the following kinematic transforma-
tions can be obtained (see [5] for more details):

η̈ = J (η)ν̇ + J̇ (η)ν =⇒ ν̇ = J−(η)[η̈ − J̇ (η)J−(η)η̇]

Applying the previous transformations to the dynamic model
(1), one obtains:

Mη(η) = J−T (η)MJ−(η)
Cη(ν,η) = J−T (η)[C(ν) −MJ−(η)J̇ (η)]J−(η)
Dη(ν,η) = J−T (η)D(ν)J−(η)
gη(η) = J−T (η)g(η)
τη(η) = J−T (η)τ

Consequently, the dynamic model (1) expressed in the earth-
fixed-frame becomes:

Mη(η)η̈ +Cη(ν,η)η̇ +Dη(ν,η)η̇ + gη(η) = J−T (η)τ
(57)

Theorem 2. For the case of the trajectory tracking control, the
nonlinear PD+ controller (NLPD+):

τ = −JT (η)[Mη(η)η̈d +Cη(ν,η)η̇d +Dη(ν,η)η̇d
+gη(η) +Kp(·)e +Kd(·)ė]

(58)
where the matrices Kp(·) and Kd(·) have the following struc-
ture:

Kp(·) =


kp1(·) 0 ... 0

0 kp2(·) ... 0
...

...
. . .

...
0 0 . . . kpn(·)

 > 0 (59)
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Kd(·) =


kd1(·) 0 ... 0

0 kd2(·) ... 0
...

...
. . .

...
0 0 . . . kdn(·)

 > 0 (60)

globally asymptotically stabilizes the system (1) if kp j(·) and
kd j(·) are defined by (38) and (39) respectively.

PROOF. Injecting the control law (58) in equation (57), leads
to the following closed-loop system:

Mη(η)ë = −Cη(ν,η)ė −Dη(ν,η)ė −Kp(·)e −Kd(·)ė
(61)

which can be rewritten as:

d
dt

[
e
ė

]
=

[
ė

−Mη(η)−[[Cη(ν,η) +Dη(ν,η) +Kd(·)]ė +Kp(·)e]

]
(62)

where it can be noticed that the resulting system is autonomous
and the origin is its unique equilibrium point.

The stability analysis can be conducted in the same way
as for the previous controller, then considering the following
Lyapunov function candidate:

V(e, ė) =
1
2
ėTMη(η)ė +

∫ e



ξTKp(ξ)dξ (63)

and according to arguments used in proof of the previous sec-
tion, we conclude that V(e, ė) is also globally positive definite
and radially unbounded.

The time derivative of this Lyapunov function candidate
gives:

V̇(e, ė) = ėTMη(η)ë +
1
2
ėT Ṁη(η)ė + eTKp(·)ė (64)

Now, injecting equation (61) in (64) and assuming that Ṁη =0,
and Cη(ν,η) is skew symmetric, then:

V̇(e, ė) = −ėT [Dη(ν,η) +Kd(·)]ė (65)

Assuming that Dη(ν,η) > 0 and remembering that Kd(·) > 0
and symmetric matrix, we deduce that V̇(e, ė) is globally neg-
ative semidefinite, and therefore we can conclude stability of
the equilibrium point. In order to prove asymptotic stability we
apply the Krasovskii-LaSalle’s theorem. Consider the set Ω
defined as:

Ω =

{[
e
ė

]
: V̇(e, ė) = 0

}
=

{[
e
ė

]
=

[
e
0

]
∈ R2n

}
(66)

Introducing ė =0 and ë =0 into equation (61), we deduce that
the unique invariant set is defined by e =0. As a consequence
we conclude that equilibrium point is globally asymptotically
stable. Notices that in case of ηd constant, the nonlinear PD+
controller degenerates to the nonlinear PD controller presented
in the previous section.�

Now, before to implementing the proposed control strate-
gies it is important to know the behavior of the thrusters of the
robot, consequently a serie of experiments were conducted to
obtain the relationship describing the force generated by thrusters
in terms of the supply voltage, as ilustrated in Figure 6. In some
works we can notice that the curve describing the behavior of
the thrusters is aproximately square, for instance in [1], [6] and
[14]. In our case the thrusters of the vehicle have a good behav-
ior, which can help us in the experimental tests.

Figure 6: Evolution of the generated force F(N) by thrusters versus the supply
voltage U(V)

4. REAL-TIME EXPERIMENTAL RESULTS

Eventhough in this paper the stability analysis of the result-
ing closed-loop system with the proposed control strategy is ad-
dressed for the 6 degrees of freedom, the experimental results
show only the behavior of two degrees of freedom, namely the
yaw rotation and the depth traslation along the z axis. Since in
a lots of applications we need the vehicle to be close to θ = 0
(pitch) and φ = 0 (roll), which is possible thanks to the de-
sign of the vehicle, therefore we have decided to control only
the yaw motion. In the case of traslation motions we can con-
trol only the depth of the vehicle since it lacks a DVL or other
sensor to estimate the positions X and Y.

The experimental setup consists of a small swimming pool
with a capacity of 3000 litters where the maximal depth is 1.2
m. From an experimental point of view, the main control goal
is the validation of the nonlinear PD and nonlinear PD+ con-
trollers with variable saturation for depth and yaw tracking, in
the same time. The idea is also to show the effectiveness of the
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proposed control solution against possible changes in the buoy-
ancy and damping parameters that may occur during the exper-
iments. The experimental results proposed hereafter have been
conducted through the implementation of the proposed con-
trollers on the of L2ROV underwater vehicle, you can watch the
real-time experiments in: www.youtube.com/watch?v=SZZm4
He2-CA&feature=youtu.be.

4.1. Proposed experimental scenarios

From theorem 3.2 we can notice that the nonlinear PD+
controller degenerate to a nonlinear PD controller when the de-
sired trajectory is constant. Then, trajectory tracking control
can be seen as an extension of set-point control. Moreover,
from theorem 3.1, it can be concluded that the nonlinear PD+
controller becomes a PD+ controller when µp j = µd j = 1. As
a consequence, we consider implementing the nonlinear PD+
controller with the parameters’ values summarized in Table 2,
and the desired depth and yaw trajectories depicted in Figure 7
and Figure 8, respectively.

Table 2: Testing cases for the nonlinear PD+ controller

NLPD+ controller Depth Yaw
Case 1 µp3 = µd3 = 1 µp6 = µd6 = 1
Case 2 µp3, µd3 ∈ [0, 1] µp6, µd6 ∈ [0, 1]

Finally, in order to test the robustness of the proposed con-
trol schemes, the following scenarios are proposed for the pre-
vious cases:

• SCENARIO 1 : Nominal Case
The main goal of this scenario is to tune the controller
gains in order to get the best trajectory tracking perfor-
mance. The gains are kept unchanged for the scenario 2.

• SCENARIO 2: Robustness towards uncertainties
The objective of this scenario is to test the robustness
of the proposed controllers when vehicle’s parameters
(damping and buoyancy) are changed.

4.2. Scenario 1: Nominal Case

Given the characteristics of the control proposed in case
1, the gains of the control have been tuned in two steps. The
first one is based on the Integral of Squared Time multiplied by
Squared Error (ISTSE) presented in [21]. In the second step
the gains have been manually adjusted to get best results. The
obtained parameters are summarized in Table 3.

The control parameters for the case 2 are given in Table 4,
they are obtained by a heuristic method based on the following
steps:

Figure 7: Evolution versus time of the desired trajectory for depth motions.

Figure 8: Evolution versus time of the desired trajectory for yaw motion.

• First dp j is chosen, taking into account that the interval
[−dp j,dp j] is the linear region of the proposed controller.

• Considering bd j = 0 and µp j = 0; bp j is increased until
the closed-loop system oscillates.

• dd j is chosen bigger than dp j, and µd j = 0.

• Then bd j is increased until the system oscillations de-
crease.

• Finally, µp j and µd j are adjusted to improve the system
behavior, considering µp j < µd j.

Table 3: Parameters of the controller for case 1

Depth bp3 = 70 dp3 = ∞ µp3 = 1
bd3 = 5 dd3 = ∞ µd3 = 1

Yaw bp6 = 11 dp6 = ∞ µp6 = 1
bd6 = 1.5 dd6 = ∞ µd6 = 1

Figure 10−(a) shows the obtained results for trajectory track-
ing in depth, the corresponding tracking error, and the control
input for the controller defined in Case 1. Figure 10−(b) shows
the evolution of the tracking in yaw, the corresponding tracking
error, and the control input produced by the thrusters.

Figure 11−(a) depicts the experimental results for trajec-
tory tracking in depth, the corresponding tracking error, and the
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Table 4: Parameters of the controller for case 2

Depth bp3 = 20 dp3 = 0.05 µp3 = 0.1
bd3 = 13 dd3 = 0.25 µd3 = 0.2

Yaw bp6 = 4 dp6 = 5.72 µp6 = 0.09
bd6 = 5 dd6 = 14.32 µd6 = 0.2

control input for the controller defined in Case 2. Figure 11−(b)
shows the evolution of the tracking in yaw, the corresponding
tracking error and the yaw control input. Moreover, we can ob-
serve that the yaw motion converges to the desired trajectory in
less than 1.5 seconds.

In order to evaluate the tracking performance of the pro-
posed controllers, let us compute the Root Mean Square Error
(RMSE) for z and ψ. In addition, the integral of control inputs
(the applied force and torque) are computed to estimated the
energy consumption used in each case, that is:

INT =
∫ t2

t1
| τ(t) | dt (67)

where t1 = 2 seconds, since in this time for both cases the sys-
tem’s states are close to their desired values, and t2 = 30 sec-
onds.

Table 5: Evaluation Criteria for scenario 1

RMS Ez(m) INTz RMS Eψ(deg) INTψ
Case 1 0.0087 4657 0.04 507.2
Case 2 0.0044 4913 0.03 647.6

From the results of Table 5, we observe that the RMS Ez and
RMS Eψ of case 2 are smaller than in case 1. It can be observed
that steady-state errors z and ψ are approximately 0.8 mm and
0.04 deg for the case 1, while for the case 2 are approximately
0.4 mm and 0.03 deg respectively. Moreover, notice that the
quotients between INTz and INTψ from case 1 and 2 are:

4913
4657 = 1.0550 647.6

507.02 = 1.27 (68)

This means that energy consumption for trajectory tracking in
depth, using the controller defined in Case 2, is 1.055 times
the energy consumption using the controller defined in Case 1.
While energy consumption for trajectory tracking in heading,
using the controller defined in Case 2, is 1.27 times the energy
consumption using the controller defined in Case 1.

4.3. Scenario 2: Robustness Test

The main goal of this scenario is to test the robustness of the
proposed controllers towards uncertainties in the parameters of

the model. During the real-time experiments, we have added
two 200g buoyant floats (as illustrated in Figure 9), increasing
the buoyancy of 330%, and a large (45cm x 10cm) rigid plas-
tic sheet (as illustrated in Figure 9), increasing the rotational
damping along z axis of about 90%.

Figure 9: L2ROV with the added two buoyant floats and a rigid plastic sheet,
which will increase the buoyancy force and damping along z axis.

The obtained experimental results for case 1 are shown in
Figure 12. The tracking performance of the control system for
depth is degraded. Indeed, depth control of the vehicle was not
able to reach the desired trajectory. We can notice that steady-
state error on z and ψ are approximately 11 cm and 0.01 deg,
respectively. For the yaw motion, the vehicle converges to the
desired trajectory in less than 1 second (as noticed in Figure
12−(a) ). The force τz and torque τψ generated by the thrusters
are displayed at the bottom curves of Figure 12.

Figure 13 shows that the performance of the system is less
affected in case 2. Indeed, it can be observed that the steady-
state errors on z and ψ are approximately 6 cm and 0.006 deg,
respectively. The yaw motion is the less affected, since the ve-
hicle converge to the desired trajectory in less than 1 second.
The generated control input (force τz and torque τpsi) are dis-
played in the bottom curves of Figure 13.

Now, the RMSE and the integral of the applied force and
torque for both cases are summarized in Table 6:

Table 6: Evaluation Criteria for scenario 2

RMS Ez(m) INTz RMS Eψ(deg) INTψ
Case 1 0.1106 19356 0.0146 611.19
Case 2 0.0605 19831 0.0060 721.36
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Figure 10: Experimental results of scenario 1 in the case 1: Trajectory tracking of depth and yaw versus time, Error signal of both motions and Evolution of the
control inputs generated by the thrusters.
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Figure 11: Experimental results of scenario 1 in the case 2: Trajectory tracking of depth and yaw versus time, Error signal of both motions and Evolution of the
control inputs generated by the thrusters.
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Figure 12: Experimental results of scenario 2 in the case 1: Trajectory tracking of depth and yaw versus time, Error signal of both motions and Evolution of the
control inputs generated by the thrusters.
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Figure 13: Experimental results of scenario 2 in the case 2: Trajectory tracking of depth and yaw versus time, Error signal of both motions and Evolution of the
control inputs generated by the thrusters.
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According to Table 6 the quotients between INTz and INTψ
from case 1 and 2 are:

19831
19356 = 1.0245 721.36

611.19 = 1.1803 (69)

This means that energy consumption for trajectory tracking
in depth, using the controller defined in Case 2, is 1.05 times
the energy consumption using the controller define in Case 1.
While energy consumption for trajectory tracking in heading,
using the controller defined in Case 2, is 1.27 times the energy
consumption using the controller defined in Case 1. We can ob-
serve that the quotients obtained in this scenario are very similar
as in the previous scenario, see equation (68). Moreover, one
can notice that the closed-loop system with the nonlinear PD+
controller, represented by case 2, is less affected. It can be ob-
served that steady-state errors z and ψ are approximately 11 cm
and 0.01 deg for the case 1, while for the case 2 their values
are approximately 6 cm and 0.006 deg respectively. Moreover,
notice that the chattering is large in the second case than in
the first one. This is due to the stronger compromise between
performance and robustness imposed by the variable saturation
case. Then, we can conclude that the proposed control strategy
demonstrated a good ability to deal with parameters’ uncertain-
ties.

5. CONCLUSION AND FUTURE WORK

In this paper, a nonlinear PD and PD+ controllers have been
proposed for depth and yaw control of underwater vehicles. The
stability analysis for the resulting closed-loop system for both
set-point regulation and trajectory tracking control has been ad-
dressed. The proposed controllers have been implemented for
trajectory tracking in depth and yaw motions with the L2ROV
underwater vehicle. The obtained experimental results demon-
strate the effectiveness and the robustness of the proposed con-
trollers towards uncertainties on the parameters of the system
(damping and buoyancy changes). The future work will consist
in implementing the integral term of the controller in order to
improve the steady-state performance of the closed-loop sys-
tem.
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