
HAL Id: lirmm-01580830
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580830v1

Submitted on 2 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Application of AOC-Posets: Indexing Large
Corpuses for Text Generation Under Constraints
Alain Gutierrez, Michel Chein, Marianne Huchard, Pierre Pompidor

To cite this version:
Alain Gutierrez, Michel Chein, Marianne Huchard, Pierre Pompidor. An Application of AOC-Posets:
Indexing Large Corpuses for Text Generation Under Constraints. ISMIS: International Symposium on
Methodologies for Intelligent Systems, Warsaw University of Technology, Poland, Jun 2017, Warsaw,
Poland. pp.642-652, �10.1007/978-3-319-60438-1_63�. �lirmm-01580830�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580830v1
https://hal.archives-ouvertes.fr

An application of AOC-posets:
Indexing large corpuses

for text generation under constraints?

Alain Gutierrez, Michel Chein, Marianne Huchard, and Pierre Pompidor

LIRMM, CNRS and Montpellier University, France
{Alain.Gutierrez,michel.chein,marianne.huchard,pierre.pompidor}@lirmm.fr

http://www.lirmm.fr

Abstract. In this paper, we describe the different ingredients of the
CogiText tool which can be used for building, editing, and using large
corpuses for text generation under constraints à la Alamo. In Cogi-
Text, AOC-posets are used as indexes that give information about the
shape of the corpuses and that help to efficiently find terms for the text
creation process. We give some figures about their size and the needed
time for computing them and for making a specific text creation.

Keywords: Formal Concept Analysis, AOC-poset, Text Generation with
Constraints, Alamo

1 Introduction

OuLiPo [9] is a literary approach founded in 1960 by Raymond Queneau and
François Le Lionnais that aims to create literary text with constraints in writ-
ing. In 1981, members of OuLiPo created Alamo [1], which is, as indicated
by its name, a Workshop (Atelier in french) of Literature Assisted by Mathe-
matics and Computers (Ordinateurs in french). Several tools were designed to
assist this approach. In this paper, we introduce CogiText, which can be con-
sidered as the continuation of lapal (the last tool for automatic literary text
creation developed within the framework of Alamo). CogiText contains tools
for building, editing, or using large corpuses. For instance, the examples given in
the paper are using corpuses built from DELA [5] for substantives (nouns) and
adjectives, and from Morphalou [7] for verbs. Besides classical attributes (e.g.
gender) associated to each corpus item, phonetics has been obtained with an
original software and can be used for computing metric properties (e.g. syllable
number) or consonance properties (e.g. rhyme). For dealing with the large size
of these corpuses, an original indexing method based on AOC-poset has been
built. Another specificity is the use of a knowledge representation system en-
abling different ways to describe constraints : graphical interface, Datalog rules

? The final publication is available at Springer via http://dx.doi.org//10.1007/978-3-
319-60438-1 63

2 A. Gutierrez et al.

or Beanshell scripts. CogiText = CoGui + Text, where CoGui is a visual tool
for building knowledge bases [4].

Section 2 illustrates and outlines the approach, by showing an example of
writing under constraints. Section 3 defines the corpuses and the phonetics. Pro-
duction schemes are presented in Section 4. The use of AOC-posets for efficient
indexing is detailed in Section 5. Section 6 describes the implementation and
gives figures on the computation time of the AOC-posets and of the text pro-
duction. We conclude in Section 7 with a few prospects of this work.

2 Motivation and outline of the approach

In this section, we illustrate the purpose of CogiText with a simple example.
Let us assume that an author would like to produce a parody of the Jean de
La Fontaine1 fable ”le corbeau et le renard” (”the fox and the crow”). The title
and the first two lines of the original text used to exemplify the approach are
shown in the upper part of Table 1. The design of this parody here is based
on the definition of a production scheme including a production template and a
constraint set. We describe them here in a textual form, but a user interface is
provided to assist the writer (see Section 6).

The central part of Table 1 shows a production template for the parody. In
the production template of the example, several words have been replaced by
expressions referring to variables: here the text of the variable will be used to
replace the initial word. Constraints are properties that the variables appearing
in the production template should satisfy. The bottom part of Table 1 shows
a few constraints for ”the fox and the crow” parody (see Appendix 2 for a
more complete production scheme2). From the production scheme, and corpuses
described in Section 3, CogiText builds text productions as the one shown in
Table 2 (left-hand-side). In productions, the expressions on variables are replaced
by values. Here, the values are the texts of randomly chosen corpus elements that
satisfy the constraints. For example, expression {X1.txt} is replaced by ”barbot”
which is a term found in the DELA lexicon [5], satisfying the constraints: noun,
rhyme in ”Rbo”, 2 syllables, singular, masculine.

The approach is outlined in Figure 1: (1) the writer chooses corpuses among
CogiText corpuses or builds his own corpuses (each term being equipped with
attributes, key/value pairs, used in production schemes); (2) the writer types the
production template and the constraints, that have to comply with the selected
corpuses; (3) the system extracts the relevant key/value pairs on corpus elements
(like gender=" masculine", or rhyme3="Rbo") from the production scheme; (4)
these key/value pairs are used to build indexes (with an AOC-poset structure)
on corpuses; (5) corpus elements and values are randomly selected through the
AOC-poset; (6) the production is built by filling the expressions with the chosen
element values; (7) the production is returned to the user.

1 Jean de la Fontaine is a famous French fabulist of the 17th century.
2 Appendix 1 and Appendix 2 are available at: http://www.lirmm.fr/~huchard/

Documents/Papiers/appendix12.pdf

CogiText 3

Table 1. Constraints inspired by the Jean de La Fontaine fable ”Le corbeau et le
renard”. rhyme3 (resp. rhyme2) stands for rhymes with 3 (resp. 2) phonemes.

First lines of the original text (French) Translation (English)

Le corbeau et le renard. The crow and the fox.
Mâıtre Corbeau, Mister Crow,

sur un arbre perché, perched on a tree,
Tenait en son bec un fromage. was holding in his beak a cheese.

Production template (french) Production template (transposed)

Le {X1.txt} et le {X2.txt}. The {X1.txt} and the {X2.txt}.
Mâıtre {X1.txt}, Mister {X1.txt},

sur un {X3.txt} {X4.txt} {X4.txt} on a {X3.txt},
Tenait en son {X5.txt} un {X6.txt} was holding in its {X5.txt} a {X6.txt}.

Constraint set (french) Constraint set (transposed)
X1=element(corpusNoun); X1=element(corpusNoun);

X1.rhyme3=”Rbo”; X1.rhyme2=”oW”;
X1.nbsyl=2; X1.nbsyl=1;

X1.gender=” masculine”; X1.gender=” neuter”;
X1.number=” singular”; X1.number=” singular”;
X2=element(corpusNoun); X2=element(corpusNoun);

X2.rhyme3=”naR”; X2.rhyme1=”oX”;
X2.nbsyl=3; X2.nbsyl=1;

X3.gender=X4.gender; X3.gender=X4.gender;
X3.number=X4.number; ... X3.number=X4.number; ...

3 Corpuses and phonetic information

The approach requires significant linguistic resources to serve its purpose: cor-
puses that include a large set of terms with attributes, especially phonetics in
our example since it concerns poetry.

CogiText corpuses. CogiText is designed to work with any text corpus or
lexicon, provided it is equipped with the structure that follows (examples of
this paragraph are translated in English). A corpus is a set of elements. A
corpus element is a set of (key, value) pairs. For example, an element can
be elem1= (txt,"home"), (rhyme2,"oM"), (gender," neutral"), (nbsyl,

3), (syn, ["residence", "house"]). A key is simply a string, as txt (for
”text”), rhyme2, gender, nbsyl (for ”number of syllables”), syn (for ”syn-
onyms”). For example, for elem1, ”home” is the value of key txt, 3 is the value
of nbsyl. The possible types of values are primitive types (string, integer, float,
boolean) or arrays of these primitive types. Strings may include several words,
lines, spaces or punctuation marks. Thus, if in our example the CogiText cor-
puses are lexicons, in other applications they can be corpuses in the usual lin-
guistic meaning. A corpus schema is a structure for a corpus. It is composed of a
set of (key, type) pairs. For the previous example, the corpus schema contains

4 A. Gutierrez et al.

Table 2. Text productions for ”Le corbeau et le renard”. The french text is auto-
matically produced by CogiText. The english text is manually composed using the
rhyming dictionary Rhymer [10] for making the technique understandable by english-
speaking readers.

Production (french) Production (transposed)

Le barbot et le fouinard. The woe and the vox.
Maitre barbot, Mister woe,

sur un marbre torché, lurched on a knee,
Tenait en son bec un dommage Holds in his creek a sneeze.

Fig. 1. Outline of the approach

(txt,string), (rhyme2,string), (gender,string), (nbsyl,integer),

(syn,array of string). A corpus element e complies with a corpus schema S
if every (key, value) pair (k,v) is such that: if k appears in S, then it appears
in at most one pair of e, and v is a value of its associated type in S (a corpus
element does not necessarily contain all the keys of the schema). Several schemas
can be associated with a given corpus. A corpus mapping associates a computed
value with a corpus element. The mappings that return the values associated
with a key are predefined. For example, e.txt is the mapping which associates
to an element e the value associated with its key txt, e.g. elem1.txt="home".
The null value is returned when the corpus element does not own this key.
Other mappings can be defined by the user, in a dedicated language. For exam-
ple, one can develop a mapping cutReturn6 that returns, for elements whose
text has at least 6 characters, the string obtained by splitting the text into two
parts and reversing these parts; e.g. if e.txt = ”congratulate” e.cutReturn6 =

"tulatecongra".

CogiText 5

At this point CogiText contains three corpuses built from the french lex-
icons DELA (for nouns and adjectives) and Morphalou (for verbs). They are
equipped with corpus schemas. DELA contains 102 073 lemmas, giving 683
824 inflected forms (including plural forms for example), and Morphalou in-
troduces 8790 verb lemmas. An example of a DELA entry for a lemma is
[précepteur, 1.N36(Hum)], where ”précepteur” is the canonical form, ”1” is
the lexical level, N36 is a morphological code which allows to calculate the dif-
ferent inflected forms, and ”Hum” indicates that it applies to a human. An en-
try for an inflected form is: [préceptrice,précepteur. N36(Hum):fs], where
”préceptrice” is the inflected form, ”précepteur” is the canonical form, ”fs” is
the gender and the number (feminine, singular). Such information will appear in
two corpus elements: p1 = (txt, "précepteur"), (gender, " masculine"),

(nbsyl, 3), ... and p2 = (txt, "préceptrice"), (gender, " feminine"),

(nbsyl, 3), The same principle applies to other categories. Details about
the CogiText corpuses built from DELA and Morphalou are shown in Ap-
pendix 1.

Phonetic and syllable information. Phonetic syllabification of french words plays
an important role in applications dealing with literary texts. The resources are
composed of 641 handmade phonetic rules which come from the lexicon Descartes
analysis [8] and a handmade lexicon of 1399 lemmas which have exceptional
phonetics due to their exogenous origin. The tool has a few limitations, including:
recognizing between the different forms of weak/mute ”e” in french language is
difficult; some ambiguous cases that would require a syntactic analysis are not
considered; the pronounced liaison between the words is hard to know; and of
course, the prosody is absent. Nevertheless 98.5% of the words are correctly
pronounced. We illustrate our method on the verbal form ”accéléraient” (as in
”they accelerated” in English). The analysis is achieved in four steps:

– match with the longest phonetic suffix: ent| (matching with a verbal

form) => . (”e” is mute in ”ent”, thus this is not considered as a phoneme)
– match with the longest phonetic prefix: |acc => ak-s+

– find intercalated phonemes: é => e, l => l+, é => e, r => r+, ai => E

– produce the final result: ak-s+|e|l+|e|r+|E|. => ak se le rE

4 Production scheme

A production scheme is composed of a production template and constraints.
A simple production template is a sequence of strings and expressions of the

form {corpus variable.corpus mapping}. A corpus variable is an identifier
which represents an unknown corpus element. Each corpus variable refers to a
specific corpus, for example a variable may refer to the common noun corpus
while another refers to the verb corpus. For example, production pattern ”Le
{X1.txt} et le {X2.txt}.” is a sequence composed of string ”Le”, expression
”{X1.txt}”, string ” et le ”, expression {X2.txt}, and string ”.”. The fact

6 A. Gutierrez et al.

that variable X1 refers to the common noun corpus is the first constraint as
noted in the constraint part of Table 1.

A constraint is a property that variables appearing in a production template
have to satisfy. They can be applied to a single variable as {X1.rhyme3="Rbo"}
or they can apply to several variables as {X1.nbsyl = X2.nbsyl}. A constraint
that applies to a single variable is a unary constraint. A unary constraint defines
a part of the corpus, for example {X1.nbsyl=2} amounts to considering only the
common nouns that have two syllables, acting as a filter and limiting the num-
ber of the corpus elements that have to be considered. The binary constraints
may involve different mappings, such as {X1.nbsyl = X2.nbvowels} and vari-
ables may refer to different corpuses: e.g. X1 may refer to a common noun and
X2 may refer to a verb. We call simple constraints the constraints involving
a relation =, 6=, <, or > between two unary mappings. Complex constraints
can be defined (by programming) as {X1.nbsyl + X2.nbsyl + X3.nbsyl =

12}. The language is rather rich, enabling the use of standard functions that
manipulate strings, as well as any user-defined function. The expression en-
closed in braces {} can be: an expression that can be evaluated as a string, like
{"hello"}, {""+X1.nbsyl+" syllabes"}, {1+8}, {9}, or {"9"}; or the body of
a function that returns a string, like {if(" masculine".equals(X1.gender))

return "Le"; else return "La";}.
These templates and constraints are written using CoGui [4], which is a

knowledge representation language. CoGui provides a graphical language for
building conceptual graph knowledge bases [3] and allows us to define the con-
straints as predicates similar to Datalog rules.

5 Efficient indexing and text production with
AOC-posets

A crucial step for efficiency of CogiText is a rapid access to the corpuses to
find relevant corpus elements to be assigned to the corpus variables. This is
achieved in three main steps: (1) An offline building of AOC-posets associated
with the involved corpuses. These AOC-posets will be used as an index on the
corpuses; (2) A computation of the needed key-value pairs for corpus variables
from the constraints; (3) An assignment of corpus elements to variables using
the AOC-posets of the variable corpus.

Offline building of AOC-posets. For each corpus, a general index is built, which
takes the form of an AOC-poset associated with a formal context K = (O,A,R),
where formal objects O are the corpus elements, formal attributes A are all
the possible key-value pairs according to the corpus schema, and R ⊆ O × A
associates a corpus element to a key-value pair it owns. The concepts built
on top of K are pairs of sets (E, I) such that E ⊆ O and I ⊆ A. E is a
maximal set of formal objects (extent) associated with the maximal set I of
formal attributes (intent) they share [6]. They are organized by inclusion of
their extent in the concept lattice, giving a specialisation order ≤. C1 ≤ C2

CogiText 7

Table 3. Partial formal context for the corpus built upon DELA nouns

Offset (text) × gender number nbsyl nbsyl nbsyl rhyme3 rhyme3 rhyme3 rhyme3 rhyme3 ...
key-value masculine singular 1 2 3 naR Rbo RbR maZ bEk ...

164555 (renard) x x x x ...

348 (fouinard) x x x x ...

110976 (corbeau) x x x x ...

345724 (barbot) x x x x ...

734657 (turbo) x x x x ...

12456 (arbre) x x x x ...

78347 (marbre) x x x x ...

1110723 (bec) x x x x ...

34677 (fromage) x x x x ...

125044 (dommage) x x x x ...

..... ...

if and only if E1 ⊆ E2 and I2 ⊆ I1. C1 is a subconcept of C2 and C2 is a
superconcept of C1. A concept C introduces a formal attribute a (resp. a formal
object o) if C is the highest (resp. lowest) concept in ≤ with a in its intent (resp.
o in its extent). The AOC-poset is the suborder of the concept lattice restricted
to the concepts that introduce at least one formal attribute, or one formal object.
Specialized algorithms for building AOC-posets are presented in [2]. Compared
to the concept lattice, whose concept number can reach 2min(|O|,|A|), the AOC-
poset concept number is limited to |O|+ |A|.

Table 3 shows a part of the formal context for the corpus built upon the
DELA nouns. The shown part of the table focuses on some corpus elements and
key-value pairs useful to illustrate our approach. Figure 2 (left-hand side) shows
a table (restricted to the key-value pairs used in ”Le corbeau et le renard” exam-
ple: e.g. gender=" masculine", number=" singular", nbsyl=1), which allows
a rapid access to the AOC-poset. Figure 2 (central part) shows the AOC-poset
associated with the shown part of the formal context of Table 3. For the whole
corpus, the AOC-poset is of course larger and has a different shape. Offsets are
pointers towards the data files that enable to efficiently access from a concept
extent to corpus data files (links from center to right-hand side of Figure 2).

Computation of key-value pairs for corpus variables. The second step computes
the key-value pairs for the corpus variables of the production scheme. The
equalities are used to group equal expressions. For example if the constraints
are X1.gender=X2.gender and X1.gender=" masculine", then X1.gender,
X2.gender and " masculine" are grouped. If the group contains a single value,
this value is assigned to the expressions. If the group contains several different
values, the group is inconsistent and no solution can be found. This may happen
if, for example, to the previous constraints we add: X2.gender=" feminine".

A group may only contain expressions (and no fixed value). For example,
a hypothetical group may only contain X3.nbsyl and X4.nbvowels, due to
a given constraint X3.nbsyl = X4.nbvowels and the fact that no other con-
straint gives a value neither to X3, nor to X4. In this case, a value has to be
randomly chosen. Each expression of the group has a set of possible values in
the associated variable corpus, for example X3 could come from the DELA noun
corpus, and X3.nbsyl can take values in {1, 2, ...14}, while X4 could come from
the DELA adjective corpus and X4.nbvowels can take values in {1, 2, ...6}. The

8 A. Gutierrez et al.

Fig. 2. Partial AOC-poset for partial formal context of Table 3. ”I” stands for intent
and is followed by the intent size (number of formal attributes); ”E” stands for extent
and is followed by the extent size (number of formal objects).

intersection of the value sets is computed. For the example, this intersection
is {1, 2, ...14} ∩ {1, 2, ...6} = {1, 2, ...6}. The AOC-posets associated with the
corpuses allow to count how many corpus elements own each value of the in-
tersection. A value is randomly chosen with a weighted sampling based on the
number of relevant corpus element tuples. E.g. for computing this number in
the previous example, to each value x of {1, 2, ...6}, we associate the number of
(noun, adjective) pairs such that the noun has x syllables and the adjective
has x vowels.

Assignment of corpus elements to variables. After the previous step, all expres-
sions relative to a variable have a value. These key-value pairs determine one or
more concepts (the highest concepts containing all these key-value pairs) which
exist if corpus elements exist with these values. For each variable, a corpus ele-
ment is randomly selected in the union of the extents of the concepts that own
all the key-value pairs associated with this variable. In the simplified example
of ”Le corbeau et le renard” parody, for each set of constraints on a variable,
a single concept (introducing the initial word) has the whole set of key-value
pairs of the variable, but this is a specific case. A selection in this case is simple,
e.g. the noun corpus element with text ”barbot” can be randomly chosen in the
extent of the concept introducing ”corbeau” and assigned to X1 of Table 1.

6 Implementation

Implementation framework. CogiText enhances the Cogui environment and
provides a graphical interface for easy typing of production templates and con-
straints (see Figure 3 which shows a graphical window for constraint editing).

CogiText 9

Fig. 3. Graphical description of the variable X1 (called corbeau in the interface)
constraints.

The two corpuses DELA and Morphalou are equipped with corpus schemas as
explained in Section 3 and are encoded in JSON (JavaScript Object Notation)
which is a lightweight data-interchange format, readable by humans and easy
to automatically parse. The corpuses are stored in concatenated JSON files to
ensure an efficient access to corpus elements via integers that serve as pointers.

Size and computation time. Table 4 shows the size and the computation time for
AOC-posets associated with the ”Le corbeau et le renard” parody and the DELA
noun corpus. The AOC-posets are built without filtering, or with a filtering which
consists in keeping the key-value pairs useful for answering to the query and the
corpus elements which have at least one of these key-value pairs.

Several algorithms have been applied, using two different Java implementa-
tions for each of them: one using the Java BitSet data structure and one using
the Java HashSet data structure. For these data and the BitSet implementa-
tion, Ceres is the most efficient, e.g. running within 1 second for the filtered
data (3-phonemes) and within 4 minutes for the whole data (3-phonemes). For
the HashSet implementation, Ceres remains competitive, but in the filtered
cases, Pluton is the best.

The AOC-posets are built offline. For our example, AOC-posets are built for
the DELA noun and adjective corpuses.

10 A. Gutierrez et al.

Table 4. Size and computation time of AOC-posets for DELA nouns

key-value pairs for rhyme3+nbsyl+gender+number with filtering

#elements #key-value pairs density building matrix ex. time #concepts

137276 10 0.17 50s 56

Time Ceres (ms) Pluton (ms) Hermes (ms) Ares (ms)

BitSet 1229 2057 3124 26445
HashSet 1327 425 85887 36186

key-value pairs for rhyme2+nbsyl+gender+number with filtering

#elements #key-value pairs density building matrix ex. time #concepts

137413 10 0.17 50s 85

Time Ceres (ms) Pluton (ms) Hermes (ms) Ares (ms)

BitSet 1315 2427 3478 31350
HashSet 1329 388 78500 31671

key-value pairs for rhyme3+nbsyl+gender+number without filtering

#elements #key-value pairs density building matrix ex. time #concepts

160268 4800 8.32E-4 50s 33669

Time Ceres (ms) Pluton (ms) Hermes (ms) Ares (ms)

BitSet 216152 1884040 1422808 4018082
HashSet 138069 400936 580275 3635452

key-value pairs for rhyme2+nbsyl+gender+number without filtering

#elements #key-value pairs density building matrix ex. time #concepts

160268 627 6.32E-3 50s 7999

Time Ceres (ms) Pluton (ms) Hermes (ms) Ares (ms)

BitSet 7839 145148 179065 455852
HashSet 3229 22700 122855 729366

Then the time t for a text production is:

– For a 3-phonemes search (#possibilities: X1:7, X2:27, X3:2, X4:3, X5:1, X6:27)
• with the filtered data: t = 787 ms, including 3 ms needed to traverse

the AOC-posets (for getting the whole concept extents in which a corpus
element is randomly chosen).

• with the non filtered data: t = 1571 ms, including a 37 ms traversal.
– For a 2-phonemes search (#possibilities: X1:37, X2:494, X3:16, X4:27, X5:13 X6:682)
• with the filtered data: t = 761 ms, including a 12 ms traversal.
• with the non filtered data: t = 692 ms, including again a 12 ms traversal.

7 Conclusion

We presented an approach that assists the generation of literary texts with the
support of corpuses equipped with corpus schemas, production schemes (com-
posed of production patterns and constraints) and AOC-posets that provide
information on the corpus structure (e.g. for choosing values for non-valued vari-
able keys) and allow an efficient access for filling the corpus variables and the
production patterns. The results show the benefits of the approach in a realistic

CogiText 11

case. As a future work, we would like to consider more complex constraints, e.g.
inequalities or differences between variable key-values and also constraints ex-
pressed as predicates satisfying a set of datalog+ rules. We also would like to
investigate a process systematically including an on-the-fly generation of AOC-
posets specialized for a specific production scheme.

Acknowledgments. The authors warmly thank Guy Chaty who introduced
them in the ALAMO world.

References

1. ALAMO: Workshop (Atelier in french) of Literature Assisted by Mathematics and
Computers (Ordinateurs in french). http://www.alamo.free.fr/ (1981), [Online;
accessed 01-January-2017]

2. Berry, A., Gutierrez, A., Huchard, M., Napoli, A., Sigayret, A.: Hermes: a simple
and efficient algorithm for building the AOC-poset of a binary relation. Ann. Math.
Artif. Intell. 72(1-2), 45–71 (2014)

3. Chein, M., Mugnier, M.L.: Graph-based Knowledge Representation: Computa-
tional Foundations of Conceptual Graphs. Springer Publishing Company, Incor-
porated, 1 edn. (2008)

4. CoGui: Visual tool for building conceptual graph knowledge bases. http://www.
lirmm.fr/cogui/ (2008), [Online; accessed 01-January-2017]

5. DELA: (dictionnaires/lexicons). LADL (Laboratoire d’Automatique Documen-
taire et Linguistique)- now in Institut Gaspard Monge (IGM). http://infolingu.
univ-mlv.fr/, [Online; accessed 01-January-2017]

6. Ganter, B., Wille, R.: Formal Concept Analysis - mathematical foundations.
Springer (1999)

7. Morphalou: (lexique/lexicon). laboratoire ATILF (Nancy Université - CNRS).
http://www.cnrtl.fr/lexiques/morphalou/LMF-Morphalou.php, [Online; ac-
cessed 01-January-2017]

8. New, B., Pallier, C., Brysbaert, M., Ferrand, L.: Lexique 2 : A New French Lexical
Database. Behavior Research Methods, Instruments, and Computers 36(3), 516–
524 (2004)

9. OuLiPo: Ouvroir de Littérature Potentielle (”workshop of potential literature”).
http://www.oulipo.net/ (1961), [Online; accessed 01-January-2017]

10. Rhymer: Rhyming Dictionary, WriteExpress. http://www.rhymer.com/

RhymingDictionary/, [Online; accessed 01-January-2017]

