
HAL Id: lirmm-01580889
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580889v1

Submitted on 3 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Substitutability-Based Version Propagation to Manage
the Evolution of Three-Level Component-Based

Architectures
Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado,

Sylvain Vauttier

To cite this version:
Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado, Sylvain Vauttier.
Substitutability-Based Version Propagation to Manage the Evolution of Three-Level Component-
Based Architectures. SEKE: Software Engineering and Knowledge Engineering, Wyndham Pittsburgh
University Center, Jul 2017, Pittsburgh, PA, United States. pp.18-23, �10.18293/SEKE2017-118�.
�lirmm-01580889�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580889v1
https://hal.archives-ouvertes.fr


Substitutability-Based Version Propagation to Manage the Evolution of
Three-Level Component-Based Architectures

Alexandre Le Borgne1, David Delahaye2, Marianne Huchard2, Christelle Urtado1, and Sylvain Vauttier1

1LGI2P / Ecole des Mines d’Alès, Nı̂mes, France {Alexandre.Le-Borgne, Christelle.Urtado,
Sylvain.Vauttier}@mines-ales.fr

2LIRMM / CNRS & Montpellier University, France {David.Delahaye, Marianne.Huchard}@lirmm.fr

Abstract
An important issue of software architecture evolution is

the capability for architects to keep a trace of the evolu-
tion of their work. This paper states that existing research
on versioning does not cope well with software architec-
tures. Indeed, it does not propose any adapted solutions to
manage the co-evolution of the different architecture rep-
resentations produced during the development process. We
base our work on a three-level architecture description lan-
guage (ADL) named Dedal, which represents architectures
at three abstraction levels. Moreover, Dedal provides a for-
mal base for managing version propagation. It is based on
component substitutability that generalizes Liskov’s substi-
tutability principle. We propose a set of rules to support the
prediction of version compatibility in terms of impact on the
different architecture levels.

Keywords: Component-Based Software Engineering,
Architecture evolution, Architecture versioning, Compo-
nent substitutability, Version propagation.

1 Introduction

One of the main issues of software evolution manage-
ment is the versioning activity [11]. One needs to keep
track of changes in software not only during software pro-
gramming but all along its complete life-cycle, including
early development stages such as specification or post-
deployment phases such as maintenance. Moreover, main-
taining the history of changes is not sufficient. Changes, and
their side-effects, are to be managed in a very fine-grained
manner in order to keep track of valid software configura-
tions. Moreover, collaborative work accentuate the need for
versioning systems.

With the growing complexity of software systems, ver-
sioning becomes a very essential activity either for devel-
opers who need to be able to reuse adequate versions of
components, packages and libraries [20], or for users that
need to maintain up-to-date versions of their applications.

Many version control mechanisms have been proposed
over the past years. They track changes in either source
code, objects or models [8]. However, despite the fact that
software development gives an increasing importance to ap-
proaches based on software architectures [7], little works
cope with architectural versioning issues such as keeping
track of architectural decisions all along the life-cycle of
software but also being capable of predicting compatibil-
ity of versioned architectural artifacts for reuse purpose and
guiding architects and developers.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the background and motivations for this pa-
per. Section 3 develops our contribution: a study on version
propagation prediction based on component substitutability.
Section 4 presents an overview of state-of-the-art work on
the problematic of versioning. Finally, Section 5 concludes
the paper with several perspectives.

2 Background and Motivations

In this section, we present a three-level architecture de-
scription language named Dedal [21, 15], which aims at
supporting the main steps of software development. By
nature, Dedal is an ideal candidate ADL to keep a record
of software evolution during its whole life-cycle using ver-
sions. To do so properly, the impact of versioning a descrip-
tion on other levels is to be taken care of.

DOI reference number: 10.18293/SEKE2017-118



2.1 Dedal: A Three-Level Architecture Descrip-
tion Language

Dedal models architectures at three levels that corre-
spond to the specification, implementation and deployment
stages: (a) The specification level is composed of abstract
component types. These types are called roles and describe
the functionalities of the future software. (b) The config-
uration level is composed of concrete component classes
that realize the roles. The relation between roles and com-
ponent classes is a n to m relation. (c) The assembly level
is a deployment model composed of component instances
that instantiate the configuration. The syntax of Dedal is not
detailed in this paper as the mechanisms that are presented
here rely on general concepts. However, more information
is accessible in one of our team’s previous paper [22].

In Dedal, two properties guaranty the integrity of the
three levels: (a) Intra-level consistency guarantees that all
components are properly connected to each other. (b) In-
ter-level coherence guarantees that the configuration real-
izes all the roles that are defined in the specification and all
the component classes from the configuration are instanti-
ated in the assembly. However, those properties may be vio-
lated after changes and need to be recovered through a prop-
agation mechanism within and / or between architecture lev-
els. One of the major contributions of Dedal is its evolution
manager which maintains the three architecture description
levels coherent with one another. Dedal has been formal-
ized [15] thanks to the B language [1]. This makes it possi-
ble to automatically calculate an evolution plan that, when it
exists, restores the overall architecture coherence after any
of its levels has been subject to change.

2.2 Motivation

Having multiple description levels makes versioning of
component-based architectures at several abstraction lev-
els necessary. Indeed, when one of the three architecture-
description level evolves, it may have serious impacts on
the other levels.

This issue has been discussed in a position paper [14]
which uses a three-level versioning graph inspired from
Conradi’s taxonomy [8]. Authors differentiate two version
types and also propose three strategies in order to manage
three-level architecture versioning.

Version types are as follows: (a) Revisions are intended
to replace their predecessor. This means that a revision
should preferably be able to substitute to its previous ver-
sion. A revision aims at improving an existing artifact.
(b) Variants may coexist with other versions. A variant
aims at adding new functionalities to an existing artifact.

Figure 1 illustrates versioning relations between three-
level architecture descriptions. First of all, this example
represents two versioning branches and gives an overview

of how related description levels may be affected by single-
level-versioning. The first three-level architecture version
of this example is the A.1.0 version. Then we create two
different versions that will fork the versioning graph into
two branches. A.1.1 is a revision derivated from the assem-
bly level revision itself. A.2.0 creates a new branch by cre-
ating a variant in specification level. Finally, either a variant
or a revision of a single level may affect the other levels of
the architecture. This is what it is shown in A.1.2 that prop-
agates the revision of its configuration level Config.1.1 to
Assembly.1.2 and A.2.0 where the variant of the specifica-
tion level is propagated to the configuration and then to the
assembly level.

A very interesting use of variant and revision concepts
could be to predict the impact of changes in terms of
retro-compatibility of versionned entities (e.g., architec-
tures, components etc.). Indeed, four types of derivation are
identified: (i) Compatible revision, which means that the
new revision does not raise compatibility issues (e.g., bug
fixes, refactoring) and does not imply to propagate changes.
(ii) Incompatible revision, which means that the new revi-
sion raises compatibility issues (e.g., new technology) and
implies change propagation. (iii) Compatible variant pro-
vides an alternative version that does not imply to propagate
any change in the architecture. (iv) Incompatible variant
provides an alternative version that will require to propagate
changes in the architecture.

Next section presents a study on version propagation in
order to identify scenarios dealing with predicting the im-
pact component substitution may have at any architecture
level.

Figure 1. Versioning Architectures



3 Predicting Version Propagation

This section discusses a typology of the architecture evo-
lutions managed by Dedal that aims at bringing semantics
to versioning concepts of Dedal.

3.1 Typology of Architecture Evolution

The component substitutability relation has already been
formalized in Dedal. This concept embodies the impact a
change may have on architecture descriptions. This is the
reason why this section introduces a typology of architec-
ture evolution based on substitutable artifacts replacements
instead of listing every single change operation on archi-
tecture artifacts. The aim of such a typology is to be able
to identify which change is compatible or not with existing
architectures.

Several change operations are relevant: (a) Adding new
artifacts. (b) Removing artifacts. (c) Replacing artifacts
with other that may be or not substitutable with the previous
ones.

At architecture description level, a component may be
replaced: (a) by a component that is substitutable for the
replaced component. (b) by a component that is not substi-
tutable for the replaced component.

Besides in a component-based architecture, several kinds
of artifacts are subject to change: (a) components them-
selves, this is the most coarse-grained change, (b) a finer–
grained change regards the interfaces of a component, (c) fi-
nally, the finest-grained change is performed on signatures.

When studying architecture versioning in a Dedal devel-
opment, the initial level of change is especially relevant. In-
deed, a very important aspect of having a three-level ADL is
to be able to perform co-evolution of those levels according
to the origin of the perturbation. This is discussed in next
section.

3.2 Change Impact Analysis

As mentioned in the beginning of this paper, Dedal is
a three-level ADL, which means that an initial change may
occur at any of its architecture levels. This study is based on
substitution of provided / required functionality signature.
The notion of type is derived from Liskov et al. [13].

Notations. In order to avoid any kind of ambiguities, the
used notation is described here.
T1 ≺ T2: T1 is a subtype of T2.
T1 � T2: T1 is a subtype of T2 or equal to T2.
T1 � T2: T1 is a supertype of T2.
T1 � T2: T1 is a supertype of T2 or equal to T2.
T1 ‖ T2: T1 is not comparable to T2.
(T1 � T2)⇔ ¬(T1 � T2)⇔ ((T1 � T2) ∨ (T1 ‖ T2)): T1

is either a supertype of T2 or not comparable to T2.

Figure 2. Base-Case: Functionality Connec-
tion Within a Three-Level Component-Based
Architecture

(T1 � T2)⇔ ¬(T1 � T2)⇔ ((T1 ≺ T2) ∨ (T1 ‖ T2)): T1

is either a subtype of T2 or not comparable to T2.
T2 # T1: T2 replaces T1.

Functionality substitutable for another. For a provided
functionality spnew, being substitutable for another func-
tionality spold means that (1) the return type of spnew is
equal or subtype [13] of the return type of spold and (2) that
the input parameters of spold are subtypes of the ones of
spnew [3]. Conversely, for a required functionality srnew,
being substitutable for another functionality srold means
that (1) the return type of srnew is equal or a supertype of
the return type of srold,and (2) that the input parameters of
srold are supertypes of the ones of srnew.

Figure 2 is a base case that represents a specification
composed of two component roles R1 and R2 that are re-
alized respectively by the component classes C1 and C2,
which are in turn instantiated by respectively I1 and I2.

3.2.1 Versioning at Specification Level

Table 1a summarizes what effect, replacing R1 by its new
version R

′

1 which provides a functionality f() : Y , may
have on the configuration. Several outcomes are observable:

• The version is not propagated. This happens when
the new version of the role still is compatible with
other roles within specification, and the component
class that realized the replaced role still is a subtype
of the new role. The condition of non-propagation is
summarized by X � Y � Z for any replacement type.
Y can either be substitutable for A or not.
• The version is propagated. This happens when infor-

mation is lost during the replacement operation. Ac-
cording to the information that is lost, propagation
may take different aspects: (i) Inter-level propaga-
tion, which occurs if Y is a subtype of X or if they are
not comparable. (ii) Intra-level propagation, which
is the result of breaking connections within the spec-
ification. This is possible if Y is a supertype of Z or



Hypothesis on types
B � X � A � Z � Ω � R
Y # A

Non-propagation
X � Y � Z

Propagation
Inter-level Intra-level
(Y ‖ X) (Y ‖ Z)
∨(Y ≺ X) ∨(Y � Z)

(Y ‖ X) ∧ (Y ‖ Z)

(a) Specification Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # X

Non-propagation
B � Y � A

Propagation
Inter-level Intra-level
(Y � A⇒↑) Y � Ω
∨(Y � B ⇒↓)
[(Y � A) ∨ (Y � B)] ∧ (Y � Ω)

(b) Configuration Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # B

Non-propagation
Y � X

Propagation
Inter-level Intra-level
Y � X Y � R

Y � R

(c) Assembly Level

Table 1. Replacing Components: Providing a Functionality

if they are not comparable. (iii) Inter and intra-level
propagation, this is a combination of both propaga-
tion conditions. However the only reachable condition
is that Y is not comparable neither to X nor Z.

3.2.2 Versioning at Configuration Level

Table 1b summarizes what effect, replacing C1 by a third
component class C ′

1, which provides a functionality f() :
Y , may have on specification or/and assembly. Then several
outcomes are observable:

• The version is not propagated. The condition of non-
propagation is summarized by B � Y � A for any
type of replacement. Y can either be substitutable to X
or not. (Y � A) ensures C ′

1 realizes R1 and (Y � B)
ensures I1 can be used as an instance of C3.
• The version is propagated. As configuration is the

intermediate architecture level, then change may be
propagated: (i) To the specification (↑) if Y is not a
subtype of A. (ii) To the assembly (↓) if Y is not
a supertype of B. (iii) Within the configuration if
Y is not a subtype of Ω. This condition also im-
plies at least a propagation to the specification since
(A ≺ Ω) ` (Y � Ω) ⇒ (Y � A) (iv) In every
directions with any combination of the previously ex-
pressed conditions. The change may be propagated in
one, two or three directions at a time.

3.2.3 Versioning at Assembly Level

Table 1c is a summary of the impact that replacing I1 by a
third component instance I ′1, which provides a functionality
f() : Y , may have on the configuration. Two cases are
possible:

• The version is not propagated. The condition of non-
propagation is expressed by Y � X for any type of
replacement (substitutable or not-substitutable). This
condition ensures that I ′1 instantiates C1 and is com-
patible with I2.

• The version is propagated. As previously, there ex-
ist several ways to propagate change: (i) Inter-level
propagation if Y is not a subtype of X . (ii) In-
tra-level propagation if Y is not a subtype of R. This
is also a sufficient condition for an inter-level propaga-
tion.

Tables 2a, 2b and 2c summarize symetric change im-
pact analysis that corresponds to required functionality re-
placement at the three architecture levels (R2, C2 and I2
are replaced by a component that requires a functionality
f() : Y ).

3.2.4 Generalization

1 to n replacement. The only cases that have yet been
discussed are 1 to 1 replacement operations. However, this
is sufficient to describe the propagation problem. Indeed,
when a single role is realized by n component classes, then
we can see those component classes as only one single com-
posite component class that realizes a role. This is exactly
the same situation when a single component realizes n com-
ponent roles: we can see those component roles as a single
one that exposes the interfaces which describe the n roles.

Multiple connections. A component interface may
be connected to several interfaces in an architecture. A
solution to generalize to such cases is to separately study
each connection.

Thus the result of this study is as follows: substitutabil-
ity is a good criterion for predicting impact on intra-level
consistency. However a more detailed approach is needed
for studying impact on inter-level coherence as it has been
presented in the previously discussed tables.

4 Related Work

Initially, the versioning activity aimed at representing
and retrieving the past states of a file during its evolu-
tion [10]. Versioning most often relies on text-based mech-



Hypothesis on types
B � X � A � Z � Ω � R
Y # Z

Non-propagation
A � Y � Ω

Propagation
Inter-level Intra-level
Y � Ω Y � A

(Y ‖ Ω) ∧ (Y ‖ A)

(a) Specification Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # Ω

Non-propagation
Z � Y � R

Propagation
Inter-level Intra-level
(Y � Z ⇒↑) ∨ (Y � R⇒↓) Y � X

[(Y � Z) ∨ (Y � R)] ∧ (Y � X)

(b) Configuration Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # R

Non-propagation
Y � Ω

Propagation
Inter-level Intra-level
Y � Ω Y � B

(Y � Ω) ∧ (Y � B)

(c) Assembly Level

Table 2. Replacing Components: Requiring a Functionality

anisms [5] as in version control systems like Git [19] or
CVS [16]. However, models cannot be versioned as text.

4.1 Previous Work

In previous papers, Dedal has been introduced as an
ADL for automatically managing evolution among multi-
level component-based software architectures [15]. As
changes may occur at any of the three architecture-levels
of Dedal, the ADL has been formalized with the B lan-
guage [1] to calculate evolution plans. An evolution plan
aims at recovering consistence within architectural levels
and coherence between those levels after a perturbation of
any of the architecture levels. Also, the versioning activ-
ity has been considered in Dedal through a position paper,
which presents a three-level versioning graph for managing
Dedal architecture versioning [14].

4.2 Versioning Models

A model versioning process is composed of three
steps [2]: (a) The change detection phase. Two types
of approaches are identifiable for change detection [17]:
(i) State-based detection only considers the final state of the
modified versions. (ii) Operation-based detection relies on
the model editor for keeping track of all the operations ap-
plied on the original version that lead to the final version.
(b) The conflict detection phase. Conflicts may arise in
case of parallel changes that are potentially overlapping or
contradicting. For instance, several architects can modify
a single version of a single model artifact simultaneously.
(c) The inconsistency detection phase. Inconsistencies
may happen while merging concurrent versions of a model
artifact.

Models typically are entities linked to one another. Ver-
sioning one entity may thus have an impact on others.
This makes co-evolution an interesting field of research.
Research on model versioning has brought various ap-
proaches for managing co-evolution [17]: (a) Inference ap-
proaches [6] rely on meta-model comparison to generate
a strategy for evolving models to conform to an updated
meta-model. (b) Operator approaches [12] are based on

patterns and are characterized by a set of predetermined
strategies that can handle a step-by-step co-evolution of
meta-models and models. (c) Manual approaches migrate
models manually so they correspond to an updated meta–
model.

Evolution in Dedal typically relies on inference mecha-
nisms. The existing work on model co-evolution only copes
with a top-down (meta-model to model) approach that cor-
responds to an historic use of meta-models in model-driven
engineering (MDE). Indeed as a meta-model describes rules
a model must respect in order to conform to it, there is no
real need to adopt a bottom-up approach in MDE processes
to evolve meta-models. Yet, multi-direction co-evolution
is needed because an architect may need, for technical rea-
sons, to adapt an implementation in such a way that it will
not conform to the specification anymore. In such a case,
change must be propagated from the implementation to the
specification. This co-evolution need is well illustrated in
Mokni et al. [15].

4.3 Versioning Architectures

Some existing work deals with versioning architectures.
The few approaches that are presented here propose only
basic mechanisms for architectural versioning that do not
take into account the entire life-cyle of the software.

SOFA [4] does not completely support the whole life-
cycle of software since it only provides two abstraction lev-
els (configuration and non-descriptive assembly). More-
over, the finest-grained type SOFA takes into account is the
interface type which is not enough to predict version prop-
agation.

Mae [18] is based on xADL 2.0 [9] that provides two ab-
straction levels by distinguishing design-time and run-time.
They thus do not take into account the whole life-cycle of
software. The finest-grained type xADL 2.0 takes care of is
the interface type and so it does not deal with input param-
eters, which is not enough for predicting version propaga-
tion. Mae enhances xADL 2.0 interfaces by adding inter-
face elements that correspond to signatures and their input
parameters but still does not cope with the entire software
life-cycle.



5 Conclusion and Future Work

This paper introduces a study on version propagation,
based on substitutability principles that have been formal-
ized in Dedal. Through this study we could identify com-
ponent substitution scenarios at any architecture-level that
do not imply propagation of changes. As a consequence,
we could also identify different propagation conditions
within and / or between architecture levels. Then this study
brings the capability of predicting the impact of new artifact
versions (e.g., architecture, component) by knowing their
types. As a result of this study we could determine that
component substitution is not a fine-grained enough crite-
rion for predicting propagation on adjacent architecture lev-
els, so we need to deal with parameter types into signatures.
However, this is a sufficient criterion to predict propagation
within an architecture level.

In future work, it will be essential to handle propaga-
tion problematics when adding or removing versioned arti-
facts in architectures in order to exhaustively predict version
propagation.

References

[1] J.-R. Abrial. The B Book - Assigning Programs to Meanings.
Cambridge University Press, Aug. 1996.

[2] K. Altmanninger, P. Brosch, G. Kappel, P. Langer, M. Seidl,
K. Wieland, and M. Wimmer. Why model versioning re-
search is needed!? an experience report. In Proceedings of
the MoDSE-MCCM Workshop@ MoDELS, volume 9, 2009.

[3] G. Arévalo, N. Desnos, M. Huchard, C. Urtado, and S. Vaut-
tier. Precalculating component interface compatibility us-
ing FCA. In J. Diatta, P. Eklund, and M. Liquière, editors,
Proceedings of the 5th international conference on Con-
cept Lattices and their Applications, pages 241–252. CEUR
Workshop Proceedings Vol. 331, Montpellier, France, Oct.
2007.

[4] T. Bures, P. Hnětynka, and F. Plášil. Sofa 2.0: Balancing
advanced features in a hierarchical component model. In
Software Engineering Research, Management and Applica-
tions. 4th International Conference on, pages 40–48. IEEE,
2006.

[5] A. Cicchetti, F. Ciccozzi, and T. Leveque. A solution for
concurrent versioning of metamodels and models. Journal
of Object Technology, 11(3):1–32, 2012.

[6] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing
dependent changes in coupled evolution. In Proceedings
of the International Conference on Theory and Practice of
Model Transformations, pages 35–51. Springer, 2009.

[7] P. Clements and M. Shaw. ” The golden age of software
architecture” revisited. IEEE software, 26(4), 2009.

[8] R. Conradi and B. Westfechtel. Version models for soft-
ware configuration management. ACM Computing Surveys,
30(2):232–282, 1998.

[9] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A com-
prehensive approach for the development of modular soft-
ware architecture description languages. ACM Transactions

on Software Engineering and Methodology, 14(2):199–245,
Apr. 2005.

[10] J. Estublier and R. Casallas. Three dimensional versioning.
Software Configuration Management, pages 118–135, 1995.

[11] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi,
G. Clemm, W. Tichy, and D. Wiborg-Weber. Impact of soft-
ware engineering research on the practice of software con-
figuration management. ACM Transactions on Software En-
gineering and Methodology, 14(4):383–430, 2005.

[12] M. Herrmannsdoerfer. Operation-based versioning of meta-
models with COPE. In Proceedings of the 2009 ICSE Work-
shop on Comparison and Versioning of Software Models,
CVSM 2009, pages 49–54, 2009.

[13] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(6):1811–1841, 1994.

[14] A. Mokni, M. Huchard, C. Urtado, , and S. Vauttier. A three-
level versioning model for component-based software archi-
tectures. In Proceedings of the 11th International Confer-
ence on Software Engineering Advances, pages 178 – 183,
Roma, Italy, Aug. 2016.

[15] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and H. Y.
Zhang. A formal approach for managing component-based
architecture evolution. Science of Computer Programming,
127:24–49, 2016.

[16] T. Morse. CVS. Linux Journal, 1996(21es):3, 1996.
[17] R. F. Paige, N. Matragkas, and L. M. Rose. Evolving mod-

els in model-driven engineering: State-of-the-art and future
challenges. Journal of Systems and Software, 111:272 – 280,
2016.

[18] R. Roshandel, A. van der Hoek, M. Mikic-Rakic, and
N. Medvidovic. Mae—a system model and environment
for managing architectural evolution. ACM Transactions
on Software Engineering and Methodology, 13(2):240–276,
2004.

[19] L. Torvalds and J. Hamano. Git: Fast version control system.
URL http://git-scm. com, 2010. last visited: 03.05.2017.

[20] C. Urtado and C. Oussalah. Complex entity versioning at
two granularity levels. Information systems, 23(3-4):197–
216, 1998.

[21] H. Y. Zhang, C. Urtado, and S. Vauttier. Architecture-
centric component-based development needs a three-level
ADL. In M. A. Babar and I. Gorton, editors, Proceedings
of the 4th European Conference on Software Architecture,
volume 6285 of LNCS, pages 295–310, Copenhagen, Den-
mark, Aug. 2010. Springer.

[22] H. Y. Zhang, L. Zhang, C. Urtado, S. Vauttier, and
M. Huchard. A three-level component model in component
based software development. In Proceedings of ACM SIG-
PLAN Notices, volume 48, pages 70–79. ACM, 2012.


