
HAL Id: lirmm-01580899
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580899v1

Submitted on 3 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preliminary study on predicting version propagation in
three-level component-based architectures

Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier

To cite this version:
Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado, Sylvain Vauttier. Pre-
liminary study on predicting version propagation in three-level component-based architectures. SAT-
ToSE: Seminar on Advanced Techniques and Tools for Software Evolution, Universidad Rey Juan
Carlos, Spain, Jun 2017, Madrid, Spain. 5 p. �lirmm-01580899�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01580899v1
https://hal.archives-ouvertes.fr


Preliminary study on predicting version propagation in three-level
component-based architectures

Alexandre Le Borgne1, David Delahaye2, Marianne Huchard2, Christelle Urtado1, and Sylvain
Vauttier1

1LGI2P / Ecole des Mines d’Alès, Nı̂mes, France {Alexandre.Le-Borgne, Christelle.Urtado,
Sylvain.Vauttier}@mines-ales.fr

2LIRMM / CNRS & Montpellier University, France {David.Delahaye, Marianne.Huchard}@lirmm.fr

Abstract

Keeping a trace of the evolution of software archi-
tectures is an important issue for architects. This
paper is a summary of a submitted paper which
states that the versioning activity does not propose
solutions that fit software architectures, especially
when dealing with co-evolution of different archi-
tecture representations that may be produced dur-
ing the development process. This work is based
on a three-level architecture description language
(ADL) named Dedal, which gives a representa-
tion of architectures at the main stages of a soft-
ware life-cycle. Dedal also performs co-evolution
through change propagation within these repre-
sentations. Another advantage of Dedal is that
it has been formalized and thus provides a for-
mal ground for studying version propagation. We
based our study on substitutability relations that
exist when a component is replaced at any of the
three architecture levels. We aim at predicting
compatibility of versioned artifacts in terms of im-
pact on the different architecture levels.

1 Introduction and context
The versioning activity is one of the main issues of soft-
ware evolution management [ELVDH+05]. Indeed, during
its life-cycle, a software may be subject to many changes.

Copyright c© by the paper’s authors. Copying permitted for private and
academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and Tools for
Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

Developers and software architects deeply need to keep
track of changes that occur on a software all along its
life-cycle, including early development phases like speci-
fication or even post-production activities such as software
maintenance. However, changes may have side-effects that
have to be managed in a very fine-grained manner for keep-
ing track of valid software configurations and collaborative
work makes versioning systems necessary. As a conse-
quence of the growing complexity of software systems, ver-
sioning becomes a very necessary activity for either devel-
opers or users that respectively need to be able to reuse spe-
cific versions of components, packages or libraries [UO98],
and need to maintain up-to-date versions of their applica-
tions. Many version control approaches have been pro-
posed. They can track changes within source code, objects
or models [CW98]. However, little works deal with archi-
tectural versioning issues. Some of those issues are keeping
track of architectural decisions that occur during the whole
life-cycle of the software and also predicting versioned ar-
chitectural artifacts compatibility for reuse purposes and
also for guiding architects and developers.

This work is based on a three-level architecture descrip-
tion language (ADL) named Dedal [ZUV10, MHU+14,
MUV+16] which aims at representing the whole life-cycle
of a software by providing three levels of architecture de-
scriptions. Those levels correspond to the specification, im-
plementation and deployment development stages : (a) the
specification level is composed of abstract component roles
that describe the functionalities of the software, (b) the con-
figuration level is composed of component classes that real-
ize component roles (n to m relation), and (c) the assembly
level is a deployment model composed of all the compo-
nent instances that instantiates the component classes.

The Dedal ADL ensures integrity of its three levels
thanks to two properties: (a) intra-level consistency ensures

1



that all component of an architecture level are connected to
each other, and (b) inter-level coherence guarantees that the
configuration realizes all the roles that are described in the
specification level and that the instances of the assembly in-
stantiate all the component classes that are described in the
configuration. However, a change may break this integrity
that needs to be recovered through a propagation mecha-
nism within and / or between architecture levels. To do so,
Dedal has been formalized [MUV+16] thanks to the B lan-
guage [Abr96] and provides an evolution manager which
makes it possible to automatically calculate an evolution
plan that, if it exists, restores the overall architecture coher-
ence after any of its levels has been subject to change.

Having multiple description levels makes versioning of
component-based architectures at several abstraction levels
necessary. Indeed, when one of the three architecture de-
scription level evolves, it may have serious impacts on the
other levels.

In first place, versioning aimed at keeping an hisory
of changes to represent and retrieve past states of a file.
Most of the time, this activity relies on text-based mecha-
nisms [CCL12]. This is the case in version control systems
like Git [TH10] or CVS [Mor96]. However, models and
architectures cannot be versioned as text. Then literature
describes the versioning activity on model as a sequence
of three phases [ABK+09]: (i) the change detection phase
records the delta between the previous version and the new
one either as an history of operations that lead to the new
version or as an history of states [PMR16], (ii) the conflict
detection phase, since parallel changes may be overlap-
ping or contradicting, and (iii) the inconsistency detection
phase which happens when merging concurrent versions of
a model artifact.

Many approaches exist to manage model co-evolution:
(a) inference approaches rely on meta models for deriving
strategies of evolution of models, (b) operator approaches
are based on patterns and defined by a set of predeter-
mined strategies that can handle a step-by-step co-evolu-
tion of meta-models and models, and finally (c) manual ap-
proaches to manually migrate models so they correspond
to an updated meta-model.

Surprisingly, little work deals with versioning architec-
tures. Among those few approaches we can cite some
ADLs such as SOFA [BHP06], Mae [RVDHMRM04] and
xADL [DVDHT05]. However, those ADLs are not suffi-
cient for keeping trace of changes during the whole life-
cycle of a development. Indeed, none of them provides a
representation of the entire life-cycle of a software since
they only provide two abstraction levels. Moreover, the
SOFA 2.0 ADL does not cope with a fine enough grained
typing for predicting version propagation as discussed in
next section.

2 Predicting version propagation
As discussed earlier, Dedal is a three-level ADL, which
implies that changes may occur at any of its architecture
levels. The component substitutability relation between
two functionalities has already been formalized in Dedal.
This concept conditions the impact a change may have on
adjacent architecture descriptions.

Notations.
T1 ≺ T2: T1 is a subtype of T2.
T1 � T2: T1 is a subtype of T2 or equal to T2.
T1 � T2: T1 is a supertype of T2.
T1 � T2: T1 is a supertype of T2 or equal to T2.
T1 ‖ T2: T1 is not comparable to T2.
(T1 � T2) ⇔ ¬(T1 � T2) ⇔ ((T1 � T2) ∨ (T1 ‖ T2)):
T1 is either a subtype of T2 or not comparable to T2.
(T1 � T2) ⇔ ¬(T1 � T2) ⇔ ((T1 ≺ T2) ∨ (T1 ‖ T2)):
T1 is either a supertype of T2 or not comparable to T2.
T2 # T1: T2 replaces T1.

Substitutable functionalities [LBDH+17].
For a provided fprov

new functionality, being substitutable for
a fprov

old functionality means that: (1) fprov
new and fprov

old

have the same name, (2) the return type of fprov
new is equal

to or a subtype of [LW94] the return type of fprov
old and

(3) the input parameters of fprov
old are subtypes of the ones

of fprov
new [ADH+07].

Conversely, for a required freq
new functionality, being substi-

tutable for a freq
old functionality means that: (1) freq

new and
freq
old have the same name, (2) the return type of freq

new is
equal to or a supertype of the return type of freq

old ,and (3) the
input parameters of freq

old are supertypes of the ones of freq
new.

This definition is used to recursively define interface
substitutability and, furthermore, component substitutabil-
ity [ADH+07].

Figure 1 represents the three-level description of a con-
nection as the simplest base-case for illustrating the de-
scribed substitutability mecanisms. The specification is
composed of two component roles (R1 and R2) that are
realized in the configuration by two component classes (re-
spectively C1 and C2), which are instantiated in the assem-
bly by two instances (respectively I1 and I2). A, B, X, Z, Ω

Figure 1: Connecting functionalities within a three-level
component-based architecture

2



Hypothesis on types
B � X � A � Z � Ω � R
Specification level Configuration level Assembly level
Y # A Y # X Y # B

Non-propagation
X � Y � Z B � Y � A Y � X

Propagation
Inter-level Intra-level Inter-level Intra-level Inter-level Intra-level
(Y ‖ X) ∨ (Y ≺ X) (Y ‖ Z) ∨ (Y � Z) (Y � A⇒↑) ∨ (Y � B ⇒↓) Y � Ω Y � X Y � R

(Y ‖ X) ∧ (Y ‖ Z) [(Y � A) ∨ (Y � B)] ∧ (Y � Ω) Y � R

Table 1: Versioning a component at any of the three abstraction levels: Providing a service

and R are return types of f functionality which is expressed
at three levels of abstraction and that is either provided or
required We can notice that there are two possible ways of
propagating versions, by versioning either a provided or a
required service.

2.1 Versioning a component that provides a service

Table 1 summarizes what effect replacing R1 by its version
R′

1 (at specification level) or C1 by its version C ′
1 or I1 by

I ′1 may have on the different architecture levels. In each
case, the new version provides a service f() : Y . At any of
the abstraction levels, two outcomes are observable:

• The version is not propagated. Conditions of non
propagation are identifiable at the three levels:

(a) At specification level, the version is not propa-
gated if X � Y � Z, Y may either be substi-
tutable to A or not.

(b) At configuration level, the non-propagation
condition is summarized by B � Y � A and
Y can either be substitutable or not to X . More-
over, the realization relation between R1 and C ′

1

is preserved if (Y � A) and the instantiability
of C ′

1 by I1 is ensured by (Y � B).
(c) At assembly level, the version does not need to

be propagated if (Y � X), Y may be substi-
tutable to B or not.

• The version is propagated. This is the case when in-
formation is lost during the version replacement. At
each of the three levels, conditions for propagating
version are as follows:

(a) At specification level, we identify three kinds of
propagation: (i) Inter-level propagation that cor-
responds to a propagation to the configuration
level when Y is a subtype of X or if they are not
comparable. (ii) Intra-level propagation if the
connection is broken in the specification, which
can occur if Y is a supertype of Z. (iii) Inter
and intra-level propagation that corresponds to
the combination of (i) and (ii).

(b) At configuration level, we also identify three
kinds of propagation: (i) Inter-level propagation
that corresponds either to a propagation to the
specification level (↑) when Y is not a subtype
of A or to a propagation to the assembly level (↓)
when Y is not a supertype of B. (ii) Intra-level
propagation occures when Y is not a subtype of
Ω. (iii) Propagation to any directions that cor-
responds to the combination of (i) and (ii).

(c) At assembly level, there are, as previously, sev-
eral ways of propagating versions: (i) Inter-level
propagation when Y is not a subtype of X .
(ii) Intra-level propagation if Y is not a subtype
of R. We can notice that it is a sufficient condi-
tion for an inter-level propagation as well.

2.2 Versioning a component that requires a service

Table 2 summarizes the impact of replacing a component
that requires a service, in each of the three architecture
levels. Then R2, C2 and I2 are replaced by their respec-
tive version R′

2, C ′
2 and I ′2 that requires the f() : Y service.

2.3 Generalization

1 to n replacement.
The only cases that have been discussed are 1 to 1 replace-
ment operations. However, this is sufficient to describe the

Figure 2: Multiple component seen as one composite com-
ponent for 1 to n replacement

3



Hypothesis on types
B � X � A � Z � Ω � R
Specification level Configuration level Assembly level
Y # Z Y # Ω Y # R

Non-propagation
A � Y � Ω Z � Y � R Y � Ω

Propagation
Inter-level Intra-level Inter-level Intra-level Inter-level Intra-level
Y � Ω Y � A (Y � Z ⇒↑) ∨ (Y � R⇒↓) Y � X Y � Ω Y � B

(Y ‖ Ω) ∧ (Y ‖ A) [(Y � Z) ∨ (Y � R)] ∧ (Y � X) (Y � Ω) ∧ (Y � B)

Table 2: Versioning a component at any of the three abstraction levels: Requiring a service

propagation problem. Indeed, when a single role is realized
by n component classes then we can see those component
classes as a single composite component class that realizes
a role. This is exactly the same situation when a single
component realizes n component roles, we can see those
component roles as a single one that exposes the interfaces
which describe the n roles. This is what Figure 2 illustrates.

Multiple connections.
A component interface may be connected to several
interfaces in an architecture. A solution to generalize to
such a case is to separately study each connection.

3 Conclusions and future work

As a result of this study, we found out that component sub-
titutability is a good criteria for predicting the impact of
change on intra-level consistency. However we could also
identify multiple additional criteria for guarantying the in-
tegrity of the three architecture levels that have been dis-
cussed in the previous tables. A consequence of identifying
non-propagation conditions is that we could also identify
conditions for inter-level and / or intra-level version propa-
gation. Thanks to this study, we are now able to predict the
impact that a versioned architectural artifact may have on
its own level as well as on the adjacent levels by only know-
ing its type. An essential work for the future is to predict
version propagation in an exhaustive manner by studying
version propagation when adding or removing versioned
artifacts.

References

[ABK+09] Kerstin Altmanninger, Petra Brosch,
Gerti Kappel, Philip Langer, Martina
Seidl, Konrad Wieland, and Manuel
Wimmer. Why model versioning re-
search is needed!? an experience report.
In Proceedings of the MoDSE-MCCM
Workshop@ MoDELS, volume 9, 2009.

[Abr96] Jean-Raymond Abrial. The B Book - As-
signing Programs to Meanings. Cam-
bridge University Press, Aug. 1996.

[ADH+07] Gabriela Arévalo, Nicolas Desnos, Mar-
ianne Huchard, Christelle Urtado, and
Sylvain Vauttier. Precalculating compo-
nent interface compatibility using FCA.
In Jean Diatta, Peter Eklund, and Michel
Liquière, editors, Proceedings of the
5th international conference on Con-
cept Lattices and their Applications,
pages 241–252. CEUR Workshop Pro-
ceedings Vol. 331, Montpellier, France,
Oct. 2007.

[BHP06] Tomas Bures, Petr Hnětynka, and
František Plášil. Sofa 2.0: Balancing
advanced features in a hierarchical com-
ponent model. In Software Engineer-
ing Research, Management and Applica-
tions. 4th International Conference on,
pages 40–48. IEEE, 2006.

[CCL12] Antonio Cicchetti, Federico Ciccozzi,
and Thomas Leveque. A solution for
concurrent versioning of metamodels
and models. Journal of Object Technol-
ogy, 11(3):1–32, 2012.

[CW98] Reidar Conradi and Bernhard Westfech-
tel. Version models for software config-
uration management. ACM Computing
Surveys, 30(2):232–282, 1998.

[DVDHT05] Eric M. Dashofy, André Van Der Hoek,
and Richard N. Taylor. A comprehen-
sive approach for the development of
modular software architecture descrip-
tion languages. ACM Transactions on
Software Engineering and Methodology,
14(2):199–245, 2005.

4



[ELVDH+05] Jacky Estublier, David Leblang, André
Van Der Hoek, Reidar Conradi, Geof-
frey Clemm, Walter Tichy, and Darcy
Wiborg-Weber. Impact of software engi-
neering research on the practice of soft-
ware configuration management. ACM
Transactions on Software Engineering
and Methodology, 14(4):383–430, 2005.

[LBDH+17] Alexandre Le Borgne, David Delahaye,
Marianne Huchard, Christelle Urtado,
and Sylvain Vauttier. Substitutability-
Based Version Propagation to Man-
age the Evolution of Three-level
Component-Based Architectures. In
Proceedings of the 29th International
Conference on Software Engineering
& Knowledge Engineering, 2017. (to
appear).

[LW94] Barbara H. Liskov and Jeannette M.
Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming
Languages and Systems (TOPLAS),
16(6):1811–1841, 1994.

[MHU+14] Abderrahman Mokni, Marianne
Huchard, Christelle Urtado, Syl-
vain Vauttier, and Huaxi (Yulin) Zhang.
A three-level formal model for software
architecture evolution. In Proceedings
of the 7th Seminar on Advanced Tech-
niques & Tools for Software Evolution
(SATToSE 2014), L’Aquila, Italy, July
2014.

[Mor96] Tom Morse. CVS. Linux Journal,
1996(21es):3, 1996.

[MUV+16] Abderrahman Mokni, Christelle Urtado,
Sylvain Vauttier, Marianne Huchard,
and Huaxi Yulin Zhang. A formal ap-
proach for managing component-based
architecture evolution. Science of Com-
puter Programming, 127:24–49, 2016.

[PMR16] Richard F. Paige, Nicholas Matragkas,
and Louis M. Rose. Evolving models in
model-driven engineering: State-of-the-
art and future challenges. Journal of Sys-
tems and Software, 111:272 – 280, 2016.

[RVDHMRM04] Roshanak Roshandel, André Van
Der Hoek, Marija Mikic-Rakic, and
Nenad Medvidovic. Mae—a system
model and environment for managing

architectural evolution. ACM Trans-
actions on Software Engineering and
Methodology, 13(2):240–276, 2004.

[TH10] Linus Torvalds and Junio Hamano. Git:
Fast version control system. URL
http://git-scm. com, 2010. last visited:
03.05.2017.

[UO98] Christelle Urtado and Chabane Ous-
salah. Complex entity versioning at two
granularity levels. Information systems,
23(3-4):197–216, 1998.

[ZUV10] Huaxi (Yulin) Zhang, Christelle Urtado,
and Sylvain Vauttier. Architecture-
centric component-based development
needs a three-level ADL. In Muham-
mad Ali Babar and Ian Gorton, ed-
itors, Proceedings of the 4th Euro-
pean Conference on Software Architec-
ture, volume 6285 of LNCS, pages 295–
310, Copenhagen, Denmark, Aug. 2010.
Springer.

5


