Valentin Gherman

Emna Farjallah

Jean-Marc Armani

Marcelino Seif

Luigi Dilillo

Improvement of the Tolerated Raw Bit Error Rate in NAND Flash-based SSDs with the Help of Embedded Statistics

Keywords: NAND flash, SSD, reliability, adaptability, data retention, bit error rate, embedded statistics

Solid-state drives (SSDs) based on NAND flash memories provide an attractive storage solution as they are faster and less power hungry than traditional hard-disc drives (HDDs). Aggressive storage density improvements in flash memories enabled reductions of the cost per gigabit but also caused reliability degradations. A recent large-scale study revealed that the uncorrectable bit error rates (UBER) in data center SSDs may fall far below the JEDEC standard recommendations. Here, a technique is proposed to improve the tolerated raw bit error rate (RBER) based on the observation that (a) a small SSD ratio may have a much higher RBER than the rest and (b) the RBER is dominated by the retention error rate. Instead of employing stronger but costly error-correcting codes a statistical approach is used to estimate the remaining retention time, i.e., the reliable data storage time, of flash memory pages. This estimation can be performed each time a memory page is read based on the number of detected retention errors and the elapsed time since data was programmed. The fact that the estimated remaining retention time is smaller than a maximum time interval before the next read operation is an indication that data needs to be refreshed. It is estimated that the tolerated RBER can be increased by more than a decade over a storage period of 3 years if the stored data are verified on a monthly basis and refreshed only if necessary. The proposed technique has the ability to adapt the average time between refresh operations to the actual RBER. This enables performance overhead reductions with factors between 8x and 12x as compared to systematic refresh schemes.

I. INTRODUCTION

Solid-state drives (SSDs) based on NAND flash memories offer a low power and high performance storage alternative to traditional hard-disc drives (HDDs) [START_REF] Micheloni | Inside NAND flash memories[END_REF]. The continuous technology scaling and emergence of flash memories with multilevel cells (MLC) brought not only cost per gigabit reductions but also reliability degradations. For instance, the cycling endurance of a flash memory, i.e., the cumulative number of program/erase (P/E) cycles that can be sustained by a memory cell, is decreased by an order of magnitude each time the cell storage capacity is enhanced with an additional bit [START_REF] Chang | Hybrid solid-state disks: combining heterogeneous NAND flash in large SSDs[END_REF] [13] [START_REF] Sundby | Beyond capacity: storage architecture choices for the modern datacenter[END_REF]. What is more, a recent large-scale study revealed that the uncorrectable bit error rate (UBER) of data center SSDs can significantly exceed the JEDEC standard recommendations. The reported UBER values are between 10 -11 and 10 -9 [START_REF] Meza | A large-scale study of flash memory failures in the field[END_REF] while client and enterprise class SSDs are required to provide an UBER below 10 -15 and 10 -16 , respectively [START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF].

An efficient approach to improve UBER is to use stronger error-correcting codes (ECCs). Unfortunately, powerful ECCs come with important storage and latency overheads. For instance, the storage overhead of a BCH code increases almost linearly with the number of correctable errors and also with the memory page size for a given ratio of bits with correctable errors [START_REF] Fujiwara | Code design for dependable systems: theory and practical applications[END_REF].

The need for strong ECCs may be reduced by containing the raw bit error rate (RBER). Besides technological fixes or solutions based on improved read and write algorithms [START_REF] Bertozzi | Performance and reliability analysis of cross-layer optimizations of NAND flash controllers[END_REF][4] [START_REF] Micheloni | Inside NAND flash memories[END_REF], the RBER can be tempered if the stored data are periodically refreshed [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF][13] [START_REF]TN-12-30: NOR flash cycling endurance and data retention introduction[END_REF] [START_REF] Pan | Quasi-nonvolatile SSD: trading flash memory nonvolatility to improve storage system performance for enterprise applications[END_REF]. A refresh operation can be executed in-place by injecting only the missing amount of charge into the floating gates of the flash memory cells or by relocating the data to a different physical location [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF] [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF]. Relocation operations may result in significant P/E cycle overhead especially in the case of read-intensive applications for which the data relocation frequency may become larger than the functional update rate [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF]. A way to reduce this overhead is to adapt the relocation rate to the number of P/E cycles endured by each flash memory block [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF] [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF].

One limitation of such refresh schemes is that they are based on worst-case scenarios, oblivious to intra-and interdevice variations, which may lead to unnecessary overheads with respect to response latency, dissipated power and P/E cycles. For example, the large-scale study reported in [START_REF] Meza | A large-scale study of flash memory failures in the field[END_REF] unveiled that only a small number of SSDs may contribute to the overall UBER degradation.

Here, a statistical approach is proposed to avoid the utilization of strong ECCs or worst-case refresh frequencies for dealing with a whole population of NAND flash memories or SSDs that may contain some error-prone units. The idea is to exploit the fact that the retention error rate dominates the RBER in NAND flash memories [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF] and take advantage of the read operations of each flash memory page to estimate its remaining reliable data storage time, i.e., retention time. Such an estimation can be done based on the detected number of retention errors and the retention age, i.e., the elapsed time since data was programmed. A valid memory page should be refreshed when the estimated remaining retention time is smaller than the timespan to the next read operation. Such a technique is effective when a maximum time interval is imposed between consecutive read operations of any memory page. For example, the tolerated RBER can be increased by up to 28× over a storage period of 3 years if one makes sure that the stored data are read at least once in a month. The resulting data refresh frequency is not necessarily correlated to the frequency of data read operations since it depends on the actual RBER via the estimated remaining retention time. It is shown that the refresh probability is negligible at RBERs that can be managed by the available ECC alone and starts to increase only at larger RBERs. Compared to systematic refresh schemes able to ensure the same protection level, performance overhead reductions between 8× and 12× have been simulated.

Types of storage errors that may affect NAND flash memories are analyzed in Section II. The proposed refresh scheme based on the estimation of the remaining retention time of flash memory pages is presented in Section III. Simulation results concerning the improvement of the tolerated RBER and the reduction of the refresh frequency are reported in Section IV. A parallel with a state-of-the-art scheme that also relies on the estimation of the remaining retention time is made in Section V. Concluding remarks are drawn in Section VI.

II. TYPICAL STORAGE ERRORS IN NAND FLASH MEMORIES

A flash memory cell consists of a MOS transistor with a floating gate or a charge trap layer embedded in the dielectric between channel and control gate. Data are programmed via the injection/erasure of electric charge into/from the floating gate or the charge trap layer. The threshold voltage distribution created by the injected charge into the floating gate of an MLC flash memory is illustrated in Fig. 1 [START_REF] Micheloni | Inside NAND flash memories[END_REF]. In a NAND flash memory, between 32 and 64 memory cells are connected together to form a string. Thousands of strings are assembled in a storage array called block and few thousands of blocks may be contained in a flash memory chip. In a block, memory cells on the same string are accessed with the help of different word lines. The bits stored in memory cells accessed by the same word line are logically grouped into one or several pages.

A NAND flash memory can be affected by different types of storage errors like retention errors, write errors, also called program-interference or over-programming errors, readdisturb errors and erase errors. Retention errors affect the ability of a memory to keep the stored information over a required period of time. As shown in Fig. 2, retention errors appear due to a drift to the left of the threshold voltage distribution and the resulting crossing of the reference values used during read operations. For retention ages larger than one month, the retention error rate largely dominates the other error rates [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF].

The remaining error types are characterised by a drift to the right of the threshold voltage distribution. Write errors are induced by parasitic capacitance-coupling affecting memory cells on a certain word line subsequent to a program operation on a neighbour word line. Once a memory block is fully programmed, the number of write errors does not increase with the retention age. In NAND flash memories, the write errors have the second largest occurrence rate [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF].

Erase errors are the outcome of an erase operation that fails to reset all cells in a memory block to the erased state [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF]. Upon the occurrence of an erase error an entire block may be marked as bad and discarded [START_REF] Micheloni | Inside NAND flash memories[END_REF]. In the following, we will assume that programmed memory pages are not affected by erase errors.

A read-disturb error occurs when the content of a memory cell is corrupted due to repeated read operations of cells on the same string. In the following, read-disturb errors will be neglected due to their very small rate [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF]. Retention errors will be considered as the only errors whose rate may increase with the retention age once a memory bloc has been programmed. It will be assumed that the retention RBER (), i.e., the probability that a vulnerable bit is affected by a retention error, is given by the following expression:

(1) where is the retention age. The parameter may vary from one SDD or flash memory to another [START_REF] Meza | A large-scale study of flash memory failures in the field[END_REF] [START_REF] Mielke | Bit error rate in NAND flash memories[END_REF], between the pages of the same memory block [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF] and with the number of P/E cycles endured by a memory block [2][3]. This law is in agreement with the results reported in [START_REF] Mielke | Bit error rate in NAND flash memories[END_REF] and it has the properties of a cumulative distribution function, i.e., and .

Retention errors can be easily distinguished from other error types. Typically, each read operation is followed by an error correction step during which the erroneous bits are identified with the help of an ECC. The error-correcting process allows to infer the polarity of each error, i.e., the difference There is always at least 1 bit value which is not vulnerable to an arbitrary error type.

between the corrected and the initial values of the erroneous bit. The error polarity allows to identify the error type if one assumes that errors can only result from threshold voltage transitions between neighbouring states. Table I gives the retention error fingerprints for the MLC considered in Fig. 2.

For flash memories with 1 bit per cell (SLC), the retention error fingerprint is given by the first line in Table I.

Bits in the same cell

Read value

Corrected value

Value of the companion bit

First bit 1 0 -Second bit 1 0 1

Second bit 0 1 0

III. EMBEDDED STATISTICS TO IMPROVE THE TOLERATED RBER IN NAND FLASH MEMORIES

Here, an approach is proposed to deal with RBER variations beyond the error protection provided by the ECC of a NAND flash memory. The main idea is to take advantage of each read operation of a flash memory page to estimate the parameter λ in (1) and the remaining retention time τ of the stored data. The remaining retention time τ refers to the storage time that is still left before the UBER target is exceeded [START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF]. Assuming a maximum time period between two consecutive read operations of any page, the read data has to be refreshed if <

. The necessary check operations associated to a read operation are formalized below. The parameter can be calculated with the help of the ECC decoder. For example, the decoding scheme of a BCH ECC is usually concluded by the execution of a so-called Chien algorithm that looks for a potential error in each bit position [START_REF] Fujiwara | Code design for dependable systems: theory and practical applications[END_REF]. When an error location is found, a simple check of the conditions in Table I allows to identify a retention error and increment a retention error counter. Similarly, one can count the number of non-retention errors .

A maximum time interval between consecutive read operations can be imposed via periodic scrubbing [START_REF] Mukherjee | Cache scrubbing in microprocessors: myth or necessity?[END_REF]. As it will be seen later, a relatively large , i.e., few months, allows to significantly improve the tolerated RBER. It has been reported that the average response time of an SSD is insignificantly degraded if the refresh operations can be interrupted with sufficiently high granularity [START_REF] Pan | Quasi-nonvolatile SSD: trading flash memory nonvolatility to improve storage system performance for enterprise applications[END_REF]. Here, the performance overhead of the scrubbing operations is expected to be even lower since not all read/check operations have to be followed by a refresh operation. In order to avoid redundant verifications of frequently accessed pages, one bit of metadata may be reserved for each page to indicate whether the page has already been read/checked due to a functional request during the current scrubbing period.

V th "11" "10" "00" "01"

V REF1 V REF2 V REF3

Erased state

Programmed states (a)

V th "11" "10" "00" "01"

V REF1 V REF2 V REF3 Erased state Programmed states (b)
V th "11" "10" "00" "01"

V REF1 V REF2 V REF3 Erased state Programmed states (c)
The retention age can be calculated as the difference between a timestamp associated to the page being accessed and the current state of the timer used to provide timestamps [START_REF] Carlo | FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND flash memories[END_REF]. A single timestamp may be used to characterize the programing time of all pages in a flash memory block [START_REF] Micheloni | Inside NAND flash memories[END_REF]. The resulting storage overhead of the timestamp table is significantly smaller than in the case of other metadata structures such as the remapping table of the [START_REF] Seif | Refresh frequency reduction of data stored in SSDs based on A-timer and timestamps[END_REF].

The remaining retention time used in Algorithm I can be computed off-line for all possible parameter combinations. This is achieved via a statistical estimation of the parameter as explained in Annex I. The estimated allows to predict at the end of any future storage period t and can be selected as the maximum value of t for which still complies with the JEDEC standard [START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF]. Based on the assumption that only the retention errors may accumulate in time, can be computed with the expression below [START_REF] Mielke | Bit error rate in NAND flash memories[END_REF]. [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF] where:

• N is the total number of bits in a flash memory page,

• M is the maximum number of errors that can be corrected with the available ECC,

• NVUL is the initial number of bits vulnerable to retention errors,

• and are the numbers of bits affected by retention and non-retention errors,

• M represents the maximum number of additional errors that can still be corrected with the available ECC,

• represents the number of bits which are still vulnerable to retention errors.

N and M are a priori known parameters.

could be calculated if one saves as metadata for each flash memory page [START_REF] Lee | A 32Gb MLC NAND-flash memory with Vth-enduranceenhancing schemes in 32nm CMOS[END_REF]. Fortunately, this is not necessary as it will be explained in the following. The good news is that has a weak monotonic dependence on the number of vulnerable bits as illustrated in Fig. 4. For example, assuming that is one month, the if condition in Algorithm 1 gives different outcomes for and only if is equal to 26. The monotonic dependence of on is the result of the fact that increases monotonically with [START_REF] Micheloni | Inside NAND flash memories[END_REF][15] and also with for a relatively large . This means that a smaller provides a margin to increase without compromising the upper limit of . According to (1), a larger enables a larger for a given . The situation depicted in Fig. 4 corresponds to the maximum considered retention age which gives (a) the largest remaining retention times for a certain as illustrated in Fig. 3 and, implicitly, (b) the largest differences between remaining retention times for different values.

Since decreases very slowly with , a conservative implementation of Algorithm 1 is to always use the value of τ that corresponds to the maximum possible value of for any possible combination of the parameters , and . This observation allows to greatly reduce the storage overhead of keeping the values of and avoid the overhead of calculating and storing for each flash memory page. The storage overhead can be further reduced by taking advantage of the fact that decreases with . Consequently, one only needs to store the largest value for which is still larger than a preselected value. In such a case, the line 3 in Algorithm 1 may be implemented as the comparison of the maximum tolerated to the measured . The resulting storage cost measured in bits can be expressed as follows:

(3) where:

• is the maximum required retention time,

• is the maximum time interval between two consecutive read/check operations of any flash memory page,

• M is the maximum number of errors that can be corrected with the available ECC,

• is the maximum allowed number of bits affected by non-retention errors in a flash memory page,

•

represents the ceiling function.

The value of can be selected to be much smaller than M due to the fact that the number of retention errors at large retention ages is expected to be orders of magnitude greater than the number of non-retention errors [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF]. Pages with a number of non-retention errors higher than can be discarded by declaring their block as bad. Another possibility is to use these pages to store hot data, i.e., data with a high update frequency and a small storage time in order to reduce the number of potential retention errors.

According to (3), the resulting storage cost amounts to a few hundreds of bits for typical values of the involved parameters. For example, if one considers M=10, =1, equal to 3 years and equal to 1 month, the resulting storage overhead is 288 bits. This is negligible compared to the overhead of the FTL remapping table whose size is measured in megabytes [START_REF] Seif | Refresh frequency reduction of data stored in SSDs based on A-timer and timestamps[END_REF].

Observation

Since the statistical method proposed in Annex I is rather pessimistic, the retention RBER values estimated for storage periods of at least 1 month are rather important. Consequently, over such periods, ECCs with a relatively low error-correcting strength are unable to ensure JEDEC compliant UBER values [START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF]. In order to prevent systematical refreshed operations after each period, we imposed that, in the absence of retention errors, the estimated remaining retention time τ is at least equal to the retention age. The same constraint was imposed in the case when the number of retention errors is equal to 1 and the available ECC is able to correct at least 10 errors per page.

IV. SIMULATION RESULTS

In order to assess the effectiveness of the proposed statistical approach we first evaluated the extent to which the retention error rate may be increased with respect to data that is not refreshed without compromising the recommended upper limit of UBER. The obtained results are reported in Table II for ECCs able to correct up to 40 random single-bit errors per flash memory page. It was considered that each page could be affected by at most one non-retention error . The tolerated values are compliant with the requirement to keep UBER below 10 -16 [START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF]. UBER calculation details are given in Annex II.

As illustrated in Table II, the tolerated is increased by (a) the reduction of , i.e., the maximum time interval between two successive read/check operations of any flash memory page, and (b) the reduction of the number of bits vulnerable to retention errors . The latter impact can be explained by the fact that increases with both and which means that a smaller value makes room to increase the maximum tolerated .

When is equal to 1 month, the obtained improvement factors are between 19× and 28×. Better results should be expected for lower values. Moreover, the maximum tolerated values and resulting improvement factors are pessimistic as check operations triggered by functional read operations are not taken into account.

With an ECC able to correct up to 40 errors per page, the improvement factor grows with the number of vulnerable bits . For the other considered ECC strengths, the number of vulnerable bits does not have a sensible influence on the improvement factor. This may be explained by the fact that the maximum tolerated is increased by the reduction of also in the absence of data refresh operations.

A equal to 1 month may have a larger impact on the tolerated than the triplication of the number of correctable errors. This can be observed by comparing the 1 month line for 10 correctable errors with the no check line for 30 correctable errors. A equal to 6 months allows to tolerate a larger than a duplication of the number of correctable errors. This can be noticed by comparing the 6 months line for 20 correctable errors with the no check line for 40 correctable errors. For BCH codes, the extension of the number of correctable errors from 20 to 40 may augment the storage overhead by 75%. This impact becomes 180% when the number of correctable errors is changed from 10 to 30.

The impact of the page size is not considered since, according to (2), it affects UBER only as a scaling factor. The page size may influence the maximum number of nonretention errors that has to be considered.

The results reported here are calculated by neglecting system downtimes and they can only be expected for systems with power outages much shorter than the imposed check period . This is true for enterprise class SSDs with limited outage periods, i.e., maximum few hours per year [START_REF] Sundby | Beyond capacity: storage architecture choices for the modern datacenter[END_REF]. When longer outage periods are expected, one has to consider the maximum downtime and modify the if condition in Algorithm 1 such that a data refresh operation is initiated if . The worst-case scenario happens when the time period between the scrubbing campaigns becomes instead of . In such a case, the benefit brought by the proposed approach can be calculated by considering an imposed check period equal to For instance, if both and are 1 month, the improvements obtained with our approach are given by the lines with the label 2 months in Table II. The case when is equal to 3 months corresponds to a JEDEC requirement for enterprise class SSDs [START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF]. In Table II, the 4 months lines give worst-case improvement factors between 4.9× and 7.5× for a JEDEC compliant enterprise class SSDs in which data are checked every month.

The reported improvements of the tolerated require a number of refresh operations that may be greatly reduced as compared to a conventional scheme with systematic refresh operations [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF] [START_REF] Cai | Error analysis and retention-aware error management for nand flash memory[END_REF]. Fig. 5 shows the probability of refresh operations induced by the execution of Algorithm 1 over a storage period of 3 years. The refresh probability starts to rise near the largest value that can be managed by the available ECC without refresh operations and continues to progressively increase with . The smallest check period provides the lowest refresh probability as the stored data should survive a shorter period of time before the next check operation. This proves the inherent ability of the proposed approach to adapt its refresh frequency to the actual . Due to this adaptability, the impact of the P/E cycles on does not have to be explicitly taken into account as opposed to a systematic refresh scheme [START_REF] Cai | Flash correct-and-refresh: retention-aware error management for increased flash memory lifetime[END_REF][3]. 3 months 5.14×10 -3 8.61×10 -3 1.73×10 -2 3.39×10 -2 6.65×10 -2 8.2 6.8 6.9 6.7 6.5 4 months 3.86×10 -3 6.47×10 -3 1.30×10 -2 2.56×10 -2 5.04×10 -2 6.1

6 months 2.61×10 -3 4.42×10 -3 8.87×10 -3 1.74×10 -2 3.54×10 -2

no check 6.28×10 -4 1.26×10 -3 2.52×10 -3 5.05×10 -3 1.02×10 -2 -----30 1 month 9.69×10 -3 1.94×10 -2 3.87×10 -2 7.71×10 -2 1.52×10 -1 26.9 26.9 26.9 26.7 26.1 2 months 4.86×10 -3 9.73×10 -3 1.95×10 -2 3.93×10 -2 7.93×10 -2 13.5 13.5 13.5 13.6 13.6

3 months 3.24×10 -3 6.50×10 -3 1.31×10 -2 2.64×10 -2 5.36×10 -2 9.0 9.0 9.1 9.1 9.1 4 months 2.44×10 -3 4.89×10 -3 9.83×10 -3 1.99×10 -2 4.05×10 -2 6.8 6.8 6.8 6.9 7.0 6 months 1.71×10 -3 3.43×10 -3 6.87×10 As illustrated in Fig. 6, with the proposed scheme the average time between refresh operations may become significantly larger than the ideal refresh period of a systematic refresh scheme. When the read/check period is 1 month, the number of refresh operations may be reduced up to 3× as compared to the case when data are systematically refreshed, not to speak of the difficulty to infer the ideal refresh frequency at run-time.

The augmentation of the average time between refresh operations enables a reduction of the performance overhead as compared to a conventional scheme with fixed refresh frequency. Assuming a low variation rate of the amount of data that may need refresh operations, i.e. static data characterized by a low functional update frequency, the performance overhead reduction can be calculated as follows: [START_REF] Cai | Data retention in MLC NAND flash memory: characterization, optimization, and recovery[END_REF] where and stand for the latencies of page write and page read operations, represents the fixed refresh frequency of a systematic refresh scheme and and are the frequencies of the check and refresh operations with the proposed method based on embedded statistics (ES). The execution latency of the check operations in Algorithm 1 is considered negligible with respect to and .

Fig. 5 Refresh probability with the proposed scheme over a target storage period of 3 years. We considered flash memory pages with 16Kb bits vulnerable to retention errors and up to 40 correctable errors.

Fig. 6 Average time between refresh operations with the proposed scheme and a systematic refresh scheme with the refresh frequency ideally adapted to the actual RBER. The considered parameters are similar to those considered in Fig. 5. The colored curves stop at the maximum RBER that can be tolerated.

Fig. 7 to Fig. 10 illustrate the reduction of the performance overhead for an MLC NAND flash memory with (i) and [START_REF] Jimenez | Wear Unleveling: Improving NAND Flash Lifetime by Balancing Page Endurance[END_REF] and (ii) a that allows to tolerate the maximum retention RBER that can be guaranteed with the proposed scheme. Maximum overhead reductions between 8.5× and 12× are obtained for retention RBER values that can be handled by the available ECC alone. Even better results can be obtained for larger ratios. On the other hand, the performance overhead may become larger than in systematic refresh schemes near the maximum tolerated retention RBER as approaches and fails to compensate for the fact that is larger than .

When up to 10 errors per page can be corrected, the performance overhead reductions are smaller and the curve shapes are different as illustrated in Fig. 10. At this error correction strength, refresh operations are almost systematically required due to the pessimistic tendency of the statistical approach in Annex I. Only some refresh operations are avoided due to the heuristics explained in the observation at the end of Section III. This is also the reason for the smaller improvement factors reported in Table II when the number of correctable errors per flash memory page is equal to 10.

For flash memories and SSDs populations where only a small number of units are error-prone [START_REF] Meza | A large-scale study of flash memory failures in the field[END_REF], the average performance overhead reduction is expected to approach the values near the vertical dashed lines in Fig. 7 to Fig. 10.

V. COMPARISON TO STATE-OF-THE-ART

A similar approach was presented in [START_REF] Carlo | FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND flash memories[END_REF]. The purpose was to improve the response latency of NAND flash memories by adapting the ECC strength to the actual RBER experienced by each memory page. The ECC strength is selected based on the number of errors occurred during a certain time window. The number of retention errors is estimated based on a precomputed RBER and subtracted from the actual number of errors to infer the number of write errors. The parameters of the RBER model are not adapted to the actual error rates measured in field. During the page read operations no distinction is made between the different error types. Consequently, the precomputed RBER model needs to take into account the number of endured P/E cycles. This is not the case with our solution which only assumes that the number of endured P/E cycles affects the parameter λ of the RBERRET distribution but not the distribution law. Our method is able to adapt to the variations of the parameter λ.

The solution proposed here is orthogonal to other techniques used to reduce the number of retention errors based on the utilization of read reference voltages which are aware of (a) the data retention age [START_REF] Cai | Data retention in MLC NAND flash memory: characterization, optimization, and recovery[END_REF] or (b) the number of bits vulnerable to retention errors [START_REF] Lee | A 32Gb MLC NAND-flash memory with Vth-enduranceenhancing schemes in 32nm CMOS[END_REF].

VI. CONCLUSIONS

A statistical approach was proposed to improve the tolerated raw bit error rate (RBER) in NAND flash-based SSDs via an estimation of the remaining retention time. This estimation can be performed each time a flash memory page is read and relies on the number of detected retention errors and the calculated retention age, i.e., the elapsed time since data was programmed. The checked data should be refreshed if the estimated remaining retention time is smaller than a maximum timespan to the next read operation. It was calculated that the tolerated retention error rate can be increased by up to 28× if data are checked on a monthly basis during a storage period of 3 years. Such an improvement may be larger than what can be obtained by triplicating the strength of the available ECC. Even for a check period of 6 months the tolerated RBER improvement can be larger than when the ECC strength is doubled. The proposed method has the ability to adapt the average time between refresh operations to the actual retention RBER. This enabled performance overhead reductions of up to 12× as compared to systematic refresh schemes.

ANNEX I

This Annex presents a possible way to estimate the parameter of the model expressed in [START_REF] Bertozzi | Performance and reliability analysis of cross-layer optimizations of NAND flash controllers[END_REF]. Based on (1), the probability to have retention errors in a flash memory page with vulnerable bits after a storage period is given by the following binomial law:

(5)

The relation above can be seen as a discrete probability distribution of and also as a continuous probability distribution of λ if the following normalization factor is used:

The upper bound of λ, i.e. λCL, can be determined with a certain confidence level (CL) from the following equation: , with .

The values of and can be calculated off-line for different combinations of and . For values which are relatively small compared to , one may use a formalism based on the exponential chi-squared (χ 2) and Poisson distributions. Such a formalism should only be used as an approximation since the error occurrence events do not follow a Poisson process. The approach presented here can be applied to any model especially when it depends on a single parameter besides as is the case with (1).

Fig. 1 Fig. 2

 12 Fig. 1 Threshold voltage distribution and example of logical state encoding for a 2-bit MLC flash memory.V th

Algorithm 1 :

 1 Oracle based on embedded statistics Require: An accessed flash memory page protected by an ECC with known error correction strength Require: NVUL, the initial number of bits vulnerable to retention errors Require: εRET, the number of already existing retention errors Require: ε¬RET, the number of already existing non-retention errors Require: TREAD, the maximum time interval before the next read operation 1 Calculate the retention age tAGE of the accessed page 2 Get the remaining retention time τ as a function of tAGE, NVUL, εRET and ε¬RET such that the UBER target is still preserved 3 if τ(tAGE, NVUL, εRET, ε¬RET) < TREAD then 4 Refresh the accessed page 5 end

Fig. 3

 3 Fig. 3 illustrates examples of the remaining retention time as a function of at several retention ages for a flash memory page with 8Kb bits vulnerable to retention errors. The remaining retention time is calculated with a resolution of 1 month and a confidence level (CL) of 90%. The maximum value on the Y-axis corresponds to a target retention time of 3 years [18]. It can be observed that the remaining retention time τ decreases rapidly with the number of retention errors and increases with the retention age .

Fig. 3 Fig. 4

 34 Fig.3Estimated remaining retention time as a function of the number of retention errors for several retention ages and a confidence level of 90%. The estimation is made with a granularity of 1 month for a 16Kb flash memory page and 8Kb bits vulnerable to retention errors. The considered ECC is able to correct up to 40 errors per page. The imposed upper UBER limit is 10 16[START_REF] Standard | Solid-state drive (SSD) requirements and endurance test method[END_REF].

Fig. 7

 7 Fig.7Performance overhead reduction with respect to a systematic refresh scheme with fixed refresh frequency that can tolerate the same maximum RBER. Similar parameters are considered as in Fig.5. Each curve stops at the maximum tolerated RBER.

Fig. 8

 8 Fig. 8 Similar to Fig. 7 but for an ECC able to correct up to 30 errors per flash memory page.

Fig. 9

 9 Fig. 9 Similar to Fig. 7 but for an ECC able to correct up to 20 errors per flash memory page.

Fig. 10

 10 Fig. 10 Similar to Fig. 7 but for an ECC able to correct up to 10 errors per flash memory page.

TABLE I .

 I RETENTION ERROR FINGERPRINTS FOR THE MLC FLASH MEMORY CELL CONSIDERED IN FIG. 2.

TABLE II .

 II IMPROVEMENT OF THE MAXIMUM RETENTION RBERTHAT CAN BE TOLERATED IN A 16KB FLASH MEMORY PAGE. THE REPORTED RBER FIGURES CORRESPOND TO A TARGET RETENTION TIME OF 36 MONTHS. THE REMAINIG RETENTION TIME τ USED IN ALGORITHM 1 WAS CALCULATED WITH A CONFIDENCE LEVEL OF 90%.

	Number of	Check
	correctable	period
	errors	(TREAD)

Maximum tolerated RBERRET with UBER 10 -16 Improvement factor with respect to no refresh

		NVUL=16Kb NVUL=8KbNVUL=4Kb NVUL=2Kb NVUL=1Kb NVUL=16Kb NVUL=8Kb NVUL=4Kb NVUL=2Kb NVUL=1Kb
	1 month	1.53×10 -2 2.56×10 -2 5.10×10 -2 9.83×10 -2	1.87×10 -1	24.4	20.3	20.2	19.5	18.3
	2 months	7.70×10 -3 1.29×10 -2 2.58×10 -2 5.04×10 -2	9.81×10 -2	12.3	10.2	10.2	10.0	9.6
	40							

ANNEX II

This Annex presents a method to compute UBER for flash memories with pages that are periodically checked and may be refreshed according to Algorithm 1. UBER can be obtained by adding the probabilities of the uncorrectable errors that may occur in a flash memory page between consecutive check operations as follows:

where:

• N is the total number of bits in a flash memory page,

• is the maximum required retention time,

is the time interval between consecutive read/ check operations, • represents the contribution to UBER of the uncorrectable errors that may occur during the time interval between the (i-1) th and i th check operations.

UBER(i) can be calculated with the relation below by multiplying (i) the occurrence probability of all retention error numbers which can be handled by the available ECC and do not impose a page refresh according to Algorithm 1 and (ii) the probability that during the subsequent check operation the errors cannot be corrected anymore: where:

• is calculated with (5) for a given parameter λ such that and if , • for i>1, can be inferred recursively with [START_REF] Fujiwara | Code design for dependable systems: theory and practical applications[END_REF] as shown below,

• ni-1 is the maximum number of retention errors for which the if condition in Algorithm 1 is false and no refresh operation needs to executed during the (i-1) th check operation, • M is the maximum number of errors that can be corrected by the available ECC, • is the number of non-retention errors occurred in a flash memory page, • are numbers of retention errors that can be tolerated in a flash memory page. [START_REF] Fujiwara | Code design for dependable systems: theory and practical applications[END_REF] The parameters in [START_REF] Fujiwara | Code design for dependable systems: theory and practical applications[END_REF] have the same meaning as in (5) and [START_REF] Carlo | FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND flash memories[END_REF]. Each term in [START_REF] Fujiwara | Code design for dependable systems: theory and practical applications[END_REF] represents the probability of a possible repartition of retention errors over the time period before the (i-1) th check operation and the time interval between the (i-1) th and i th check operations. Similarly to [START_REF] Chang | Hybrid solid-state disks: combining heterogeneous NAND flash in large SSDs[END_REF], the presence of the ni-1 parameter in the upper summation limit indicates that not all error occurrence scenarios are possible due to a refresh operation that may be triggered during the execution of the (i-1) th check operation.