
HAL Id: lirmm-01582185
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01582185

Submitted on 5 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvement of the tolerated raw bit-error rate in
NAND Flash-based SSDs with the help of embedded

statistics
Valentin Gherman, Emna Farjallah, Jean-Marc Armani, Marcelino Seif, Luigi

Dilillo

To cite this version:
Valentin Gherman, Emna Farjallah, Jean-Marc Armani, Marcelino Seif, Luigi Dilillo. Improve-
ment of the tolerated raw bit-error rate in NAND Flash-based SSDs with the help of embedded
statistics. ITC 2017 - 48th International Test Conference, Oct 2017, Fort Worth, United States.
�10.1109/TEST.2017.8242066�. �lirmm-01582185�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01582185
https://hal.archives-ouvertes.fr

 1

Improvement of the Tolerated Raw Bit Error Rate
in NAND Flash-based SSDs with the Help of

Embedded Statistics

Valentin Gherman, Emna Farjallah,
Jean-Marc Armani, Marcelino Seif

CEA, LIST,
Laboratoire Fiabilité et Intégration Capteurs

PC 172, 91191 Gif sur Yvette, France

Luigi Dilillo

LIRMM
UMR 5506, 161 rue Ada

34095 Montpellier Cedex 5, France

Abstract—Solid-state drives (SSDs) based on NAND flash mem-
ories provide an attractive storage solution as they are faster
and less power hungry than traditional hard-disc drives
(HDDs). Aggressive storage density improvements in flash
memories enabled reductions of the cost per gigabit but also
caused reliability degradations. A recent large-scale study re-
vealed that the uncorrectable bit error rates (UBER) in data
center SSDs may fall far below the JEDEC standard recommen-
dations. Here, a technique is proposed to improve the tolerated
raw bit error rate (RBER) based on the observation that (a) a
small SSD ratio may have a much higher RBER than the rest
and (b) the RBER is dominated by the retention error rate. In-
stead of employing stronger but costly error-correcting codes a
statistical approach is used to estimate the remaining retention
time, i.e., the reliable data storage time, of flash memory pages.
This estimation can be performed each time a memory page is
read based on the number of detected retention errors and the
elapsed time since data was programmed. The fact that the esti-
mated remaining retention time is smaller than a maximum
time interval before the next read operation is an indication that
data needs to be refreshed. It is estimated that the tolerated
RBER can be increased by more than a decade over a storage
period of 3 years if the stored data are verified on a monthly
basis and refreshed only if necessary. The proposed technique
has the ability to adapt the average time between refresh opera-
tions to the actual RBER. This enables performance overhead
reductions with factors between 8x and 12x as compared to sys-
tematic refresh schemes.

Keywords—NAND flash; SSD; reliability; adaptability; data
retention; bit error rate; embedded statistics

I. INTRODUCTION
Solid-state drives (SSDs) based on NAND flash memories

offer a low power and high performance storage alternative to
traditional hard-disc drives (HDDs) [13]. The continuous
technology scaling and emergence of flash memories with
multilevel cells (MLC) brought not only cost per gigabit re-
ductions but also reliability degradations. For instance, the cy-
cling endurance of a flash memory, i.e., the cumulative num-
ber of program/erase (P/E) cycles that can be sustained by a
memory cell, is decreased by an order of magnitude each time

the cell storage capacity is enhanced with an additional bit [5]
[13][20]. What is more, a recent large-scale study revealed
that the uncorrectable bit error rate (UBER) of data center
SSDs can significantly exceed the JEDEC standard recom-
mendations. The reported UBER values are between 10-11 and
10-9 [12] while client and enterprise class SSDs are required
to provide an UBER below 10-15 and 10-16, respectively [9].

An efficient approach to improve UBER is to use stronger
error-correcting codes (ECCs). Unfortunately, powerful
ECCs come with important storage and latency overheads. For
instance, the storage overhead of a BCH code increases almost
linearly with the number of correctable errors and also with
the memory page size for a given ratio of bits with correctable
errors [7].

The need for strong ECCs may be reduced by containing
the raw bit error rate (RBER). Besides technological fixes or
solutions based on improved read and write algorithms [1][4]
[13], the RBER can be tempered if the stored data are period-
ically refreshed [2][13][14][17]. A refresh operation can be
executed in-place by injecting only the missing amount of
charge into the floating gates of the flash memory cells or by
relocating the data to a different physical location [2][3]. Re-
location operations may result in significant P/E cycle over-
head especially in the case of read-intensive applications for
which the data relocation frequency may become larger than
the functional update rate [2]. A way to reduce this overhead
is to adapt the relocation rate to the number of P/E cycles en-
dured by each flash memory block [2][3].

One limitation of such refresh schemes is that they are
based on worst-case scenarios, oblivious to intra- and inter-
device variations, which may lead to unnecessary overheads
with respect to response latency, dissipated power and P/E cy-
cles. For example, the large-scale study reported in [12] un-
veiled that only a small number of SSDs may contribute to the
overall UBER degradation.

Here, a statistical approach is proposed to avoid the utili-
zation of strong ECCs or worst-case refresh frequencies for
dealing with a whole population of NAND flash memories or

SSDs that may contain some error-prone units. The idea is to
exploit the fact that the retention error rate dominates the
RBER in NAND flash memories [3] and take advantage of the
read operations of each flash memory page to estimate its re-
maining reliable data storage time, i.e., retention time. Such
an estimation can be done based on the detected number of
retention errors and the retention age, i.e., the elapsed time
since data was programmed. A valid memory page should be
refreshed when the estimated remaining retention time is
smaller than the timespan to the next read operation.

Such a technique is effective when a maximum time inter-
val is imposed between consecutive read operations of any
memory page. For example, the tolerated RBER can be in-
creased by up to 28× over a storage period of 3 years if one
makes sure that the stored data are read at least once in a
month. The resulting data refresh frequency is not necessarily
correlated to the frequency of data read operations since it de-
pends on the actual RBER via the estimated remaining reten-
tion time. It is shown that the refresh probability is negligible
at RBERs that can be managed by the available ECC alone
and starts to increase only at larger RBERs. Compared to sys-
tematic refresh schemes able to ensure the same protection
level, performance overhead reductions between 8× and 12×
have been simulated.

Types of storage errors that may affect NAND flash mem-
ories are analyzed in Section II. The proposed refresh scheme
based on the estimation of the remaining retention time of
flash memory pages is presented in Section III. Simulation re-
sults concerning the improvement of the tolerated RBER and
the reduction of the refresh frequency are reported in Section
IV. A parallel with a state-of-the-art scheme that also relies on
the estimation of the remaining retention time is made in Sec-
tion V. Concluding remarks are drawn in Section VI.

II. TYPICAL STORAGE ERRORS IN NAND FLASH MEMORIES
A flash memory cell consists of a MOS transistor with a

floating gate or a charge trap layer embedded in the dielectric
between channel and control gate. Data are programmed via
the injection/erasure of electric charge into/from the floating
gate or the charge trap layer. The threshold voltage distribu-
tion created by the injected charge into the floating gate of an
MLC flash memory is illustrated in Fig. 1 [13]. In a NAND
flash memory, between 32 and 64 memory cells are connected
together to form a string. Thousands of strings are assembled
in a storage array called block and few thousands of blocks
may be contained in a flash memory chip. In a block, memory
cells on the same string are accessed with the help of different
word lines. The bits stored in memory cells accessed by the
same word line are logically grouped into one or several
pages.

A NAND flash memory can be affected by different types
of storage errors like retention errors, write errors, also called
program-interference or over-programming errors, read-
disturb errors and erase errors. Retention errors affect the abil-
ity of a memory to keep the stored information over a required
period of time. As shown in Fig. 2, retention errors appear due
to a drift to the left of the threshold voltage distribution and

the resulting crossing of the reference values used during read
operations. For retention ages larger than one month, the re-
tention error rate largely dominates the other error rates [3].

The remaining error types are characterised by a drift to
the right of the threshold voltage distribution. Write errors
are induced by parasitic capacitance-coupling affecting
memory cells on a certain word line subsequent to a program
operation on a neighbour word line. Once a memory block is
fully programmed, the number of write errors does not in-
crease with the retention age. In NAND flash memories, the
write errors have the second largest occurrence rate [3].

Erase errors are the outcome of an erase operation that fails
to reset all cells in a memory block to the erased state [3].
Upon the occurrence of an erase error an entire block may be
marked as bad and discarded [13]. In the following, we will
assume that programmed memory pages are not affected by
erase errors.

A read-disturb error occurs when the content of a memory
cell is corrupted due to repeated read operations of cells on the
same string. In the following, read-disturb errors will be ne-
glected due to their very small rate [3].

Retention errors will be considered as the only errors
whose rate may increase with the retention age once a memory
bloc has been programmed. It will be assumed that the reten-
tion RBER (), i.e., the probability that a vulnerable
bit is affected by a retention error, is given by the following
expression:

 (1)

where is the retention age. The parameter may vary
from one SDD or flash memory to another [12][15], between
the pages of the same memory block [3] and with the number
of P/E cycles endured by a memory block [2][3]. This law is
in agreement with the results reported in [15] and it has the
properties of a cumulative distribution function, i.e.,

 and .

Retention errors can be easily distinguished from other er-
ror types. Typically, each read operation is followed by an er-
ror correction step during which the erroneous bits are identi-
fied with the help of an ECC. The error-correcting process al-
lows to infer the polarity of each error, i.e., the difference

Fig. 1 Threshold voltage distribution and example of logical state

encoding for a 2-bit MLC flash memory.

Vth

“11” “10” “00” “01”
VREF1 VREF2 VREF3

Erased
state

Programmed
states

 2

Fig. 2 Threshold voltage distribution of the logical states in a 2-bit MLC

flash memory affected by (a) retention errors, (b) erase errors and
(c) write and read-disturb errors. There is always at least 1 bit value
which is not vulnerable to an arbitrary error type.

between the corrected and the initial values of the erroneous
bit. The error polarity allows to identify the error type if one
assumes that errors can only result from threshold voltage
transitions between neighbouring states. Table I gives the re-
tention error fingerprints for the MLC considered in Fig. 2.
For flash memories with 1 bit per cell (SLC), the retention er-
ror fingerprint is given by the first line in Table I.

TABLE I. RETENTION ERROR FINGERPRINTS FOR THE MLC FLASH
MEMORY CELL CONSIDERED IN FIG. 2.

Bits in the
same cell

Read
value

Corrected
 value

Value of the
companion bit

First bit 1 0 -

Second bit 1 0 1

Second bit 0 1 0

III. EMBEDDED STATISTICS TO IMPROVE THE TOLERATED
RBER IN NAND FLASH MEMORIES

Here, an approach is proposed to deal with RBER varia-
tions beyond the error protection provided by the ECC of a
NAND flash memory. The main idea is to take advantage of
each read operation of a flash memory page to estimate the
parameter λ in (1) and the remaining retention time τ of the
stored data. The remaining retention time τ refers to the stor-
age time that is still left before the UBER target is exceeded
[9]. Assuming a maximum time period between two
consecutive read operations of any page, the read data has to
be refreshed if < . The necessary check operations as-
sociated to a read operation are formalized below.

Algorithm 1: Oracle based on embedded statistics

Require: An accessed flash memory page protected by an ECC with
known error correction strength

Require: NVUL, the initial number of bits vulnerable to retention
errors

Require: εRET, the number of already existing retention errors

Require: ε¬RET, the number of already existing non-retention errors

Require: TREAD, the maximum time interval before the next read op-
eration

1 Calculate the retention age tAGE of the accessed page

2

Get the remaining retention time τ as a function of tAGE, NVUL,
εRET and ε¬RET such that the UBER target is still preserved

3 if τ(tAGE, NVUL, εRET, ε¬RET) < TREAD then

4 Refresh the accessed page

5 end

The parameter can be calculated with the help of the
ECC decoder. For example, the decoding scheme of a BCH
ECC is usually concluded by the execution of a so-called
Chien algorithm that looks for a potential error in each bit po-
sition [7]. When an error location is found, a simple check of
the conditions in Table I allows to identify a retention error
and increment a retention error counter. Similarly, one can
count the number of non-retention errors .

A maximum time interval between consecutive
read operations can be imposed via periodic scrubbing [16].
As it will be seen later, a relatively large , i.e., few
months, allows to significantly improve the tolerated RBER.
It has been reported that the average response time of an SSD
is insignificantly degraded if the refresh operations can be in-
terrupted with sufficiently high granularity [17]. Here, the per-
formance overhead of the scrubbing operations is expected to
be even lower since not all read/check operations have to be
followed by a refresh operation. In order to avoid redundant
verifications of frequently accessed pages, one bit of metadata
may be reserved for each page to indicate whether the page
has already been read/checked due to a functional request dur-
ing the current scrubbing period.

Vth

“11” “10” “00” “01”
VREF1 VREF2 VREF3

Erased
state

Programmed
states

(a)

Vth

“11” “10” “00” “01”
VREF1 VREF2 VREF3

Erased
state

Programmed
states

(b)

Vth

“11” “10” “00” “01”
VREF1 VREF2 VREF3

Erased
state

Programmed
states

(c)

 3

The retention age can be calculated as the difference
between a timestamp associated to the page being accessed
and the current state of the timer used to provide timestamps
[6]. A single timestamp may be used to characterize the pro-
graming time of all pages in a flash memory block [13]. The
resulting storage overhead of the timestamp table is signifi-
cantly smaller than in the case of other metadata structures
such as the remapping table of the

 [19].

The remaining retention time used in Algorithm I can be
computed off-line for all possible parameter combinations.
This is achieved via a statistical estimation of the parameter
as explained in Annex I. The estimated allows to predict

 at the end of any future storage period t and can
be selected as the maximum value of t for which
still complies with the JEDEC standard [9]. Based on the as-
sumption that only the retention errors may accumulate in
time, can be computed with the expression below
[15].

 (2)

where:

• N is the total number of bits in a flash memory page,

• M is the maximum number of errors that can be corrected
with the available ECC,

• NVUL is the initial number of bits vulnerable to retention
errors,

• and are the numbers of bits affected by re-
tention and non-retention errors,

• M represents the maximum number of
additional errors that can still be corrected with the avail-
able ECC,

• represents the number of bits which are
still vulnerable to retention errors.

N and M are a priori known parameters. - could
be calculated if one saves as metadata for each flash
memory page [11]. Fortunately, this is not necessary as it will
be explained in the following.

Fig. 3 illustrates examples of the remaining retention time
as a function of at several retention ages for a

flash memory page with 8Kb bits vulnerable to retention er-
rors. The remaining retention time is calculated with a resolu-
tion of 1 month and a confidence level (CL) of 90%. The max-
imum value on the Y-axis corresponds to a target retention
time of 3 years [18]. It can be observed that the remaining re-
tention time τ decreases rapidly with the number of retention
errors and increases with the retention age .

The good news is that has a weak monotonic depend-
ence on the number of vulnerable bits as illustrated in
Fig. 4. For example, assuming that is one month, the if
condition in Algorithm 1 gives different outcomes for

 and only if is equal to 26. The mono-
tonic dependence of on is the result of the fact that

 increases monotonically with [13][15] and
also with for a relatively large . This means
that a smaller provides a margin to increase
without compromising the upper limit of . According
to (1), a larger enables a larger for a given . The
situation depicted in Fig. 4 corresponds to the maximum con-
sidered retention age which gives (a) the largest remaining re-
tention times for a certain as illustrated in Fig. 3 and, im-
plicitly, (b) the largest differences between remaining reten-
tion times for different values.

Since decreases very slowly
with , a conservative implementation of Algorithm 1 is
to always use the value of τ that corresponds to the maximum
possible value of for any possible combination of the pa-
rameters , and . This observation allows to
greatly reduce the storage overhead of keeping the values of
and avoid the overhead of calculating and storing for
each flash memory page.

Fig. 3 Estimated remaining retention time as a function of the number of

retention errors for several retention ages and a confidence level of
90%. The estimation is made with a granularity of 1 month for a
16Kb flash memory page and 8Kb bits vulnerable to retention
errors. The considered ECC is able to correct up to 40 errors per
page. The imposed upper UBER limit is 1016 [9].

Fig. 4 Estimated remaining retention time at a maximum retention age of

36 months as a function of the number of retention errors and
number of vulnerable bits. The other parameters are similar to those
considered in Fig. 3. The inset presents a zoom of the region where
the remaining retention time becomes 1 month.

 4

The storage overhead can be further reduced by taking ad-
vantage of the fact that decreases with

. Consequently, one only needs to store the largest
value for which is still larger than a preselected value.
In such a case, the line 3 in Algorithm 1 may be implemented
as the comparison of the maximum tolerated to the meas-
ured . The resulting storage cost measured in bits can be
expressed as follows:

 (3)

where:

• is the maximum required retention time,

• is the maximum time interval between two con-
secutive read/check operations of any flash memory
page,

• M is the maximum number of errors that can be corrected
with the available ECC,

• is the maximum allowed number of bits af-
fected by non-retention errors in a flash memory page,

• represents the ceiling function.

The value of can be selected to be much
smaller than M due to the fact that the number of retention
errors at large retention ages is expected to be orders of mag-
nitude greater than the number of non-retention errors [3].
Pages with a number of non-retention errors higher than

 can be discarded by declaring their block as bad.
Another possibility is to use these pages to store hot data, i.e.,
data with a high update frequency and a small storage time in
order to reduce the number of potential retention errors.

According to (3), the resulting storage cost amounts to a
few hundreds of bits for typical values of the involved param-
eters. For example, if one considers M=10, =1,

 equal to 3 years and equal to 1 month, the result-
ing storage overhead is 288 bits. This is negligible compared
to the overhead of the FTL remapping table whose size is
measured in megabytes [19].

Observation
Since the statistical method proposed in Annex I is rather

pessimistic, the retention RBER values estimated for storage
periods of at least 1 month are rather important. Consequently,
over such periods, ECCs with a relatively low error-correcting
strength are unable to ensure JEDEC compliant UBER values
[9]. In order to prevent systematical refreshed operations after
each period, we imposed that, in the absence of reten-
tion errors, the estimated remaining retention time τ is at least
equal to the retention age. The same constraint was imposed
in the case when the number of retention errors is equal to 1
and the available ECC is able to correct at least 10 errors per
page.

IV. SIMULATION RESULTS
In order to assess the effectiveness of the proposed statis-

tical approach we first evaluated the extent to which the reten-
tion error rate may be increased with respect to data
that is not refreshed without compromising the recommended
upper limit of UBER. The obtained results are reported in Ta-
ble II for ECCs able to correct up to 40 random single-bit
errors per flash memory page. It was considered that each
page could be affected by at most one non-retention error

. The tolerated values are compliant
with the requirement to keep UBER below 10-16 [9]. UBER
calculation details are given in Annex II.

As illustrated in Table II, the tolerated is in-
creased by (a) the reduction of , i.e., the maximum time
interval between two successive read/check operations of any
flash memory page, and (b) the reduction of the number of bits
vulnerable to retention errors . The latter impact can be
explained by the fact that increases with both

 and which means that a smaller value
makes room to increase the maximum tolerated .

When is equal to 1 month, the obtained improve-
ment factors are between 19× and 28×. Better results should
be expected for lower values. Moreover, the maximum
tolerated values and resulting improvement factors
are pessimistic as check operations triggered by functional
read operations are not taken into account.

With an ECC able to correct up to 40 errors per page, the
improvement factor grows with the number of vulnerable bits

. For the other considered ECC strengths, the number of
vulnerable bits does not have a sensible influence on the im-
provement factor. This may be explained by the fact that the
maximum tolerated is increased by the reduction of

 also in the absence of data refresh operations.

A equal to 1 month may have a larger impact on the
tolerated than the triplication of the number of cor-
rectable errors. This can be observed by comparing the
1 month line for 10 correctable errors with the no check line
for 30 correctable errors. A equal to 6 months allows to
tolerate a larger than a duplication of the number of
correctable errors. This can be noticed by comparing the
6 months line for 20 correctable errors with the no check line
for 40 correctable errors. For BCH codes, the extension of the
number of correctable errors from 20 to 40 may augment the
storage overhead by 75%. This impact becomes 180% when
the number of correctable errors is changed from 10 to 30.

The impact of the page size is not considered since, ac-
cording to (2), it affects UBER only as a scaling factor. The
page size may influence the maximum number of non-
retention errors that has to be considered.

The results reported here are calculated by neglecting sys-
tem downtimes and they can only be expected for systems
with power outages much shorter than the imposed check pe-
riod . This is true for enterprise class SSDs with limited
outage periods, i.e., maximum few hours per year [20]. When

 5

longer outage periods are expected, one has to consider the
maximum downtime and modify the if condition
in Algorithm 1 such that a data refresh operation is initiated if

. The worst-case scenario happens
when the time period between the scrubbing campaigns be-
comes instead of . In such a case,
the benefit brought by the proposed approach can be calcu-
lated by considering an imposed check period equal to

 For instance, if both and
 are 1 month, the improvements obtained with

our approach are given by the lines with the label 2 months in
Table II. The case when is equal to 3 months cor-
responds to a JEDEC requirement for enterprise class SSDs
[9]. In Table II, the 4 months lines give worst-case improve-
ment factors between 4.9× and 7.5× for a JEDEC compliant
enterprise class SSDs in which data are checked every month.

The reported improvements of the tolerated
require a number of refresh operations that may be greatly
reduced as compared to a conventional scheme with system-
atic refresh operations [2][3]. Fig. 5 shows the probability of
refresh operations induced by the execution of Algorithm 1
over a storage period of 3 years. The refresh probability starts
to rise near the largest value that can be managed
by the available ECC without refresh operations and continues
to progressively increase with . The smallest check
period provides the lowest refresh probability as the stored
data should survive a shorter period of time before the next
check operation. This proves the inherent ability of the pro-
posed approach to adapt its refresh frequency to the actual

. Due to this adaptability, the impact of the P/E cy-
cles on does not have to be explicitly taken into ac-
count as opposed to a systematic refresh scheme [2][3].

TABLE II. IMPROVEMENT OF THE MAXIMUM RETENTION RBER THAT CAN BE TOLERATED IN A 16KB FLASH MEMORY PAGE.
THE REPORTED RBER FIGURES CORRESPOND TO A TARGET RETENTION TIME OF 36 MONTHS.
THE REMAINIG RETENTION TIME τ USED IN ALGORITHM 1 WAS CALCULATED WITH A CONFIDENCE LEVEL OF 90%.

Number of
correctable

errors

Check
period
(TREAD)

Maximum tolerated RBERRET with UBER 10-16 Improvement factor with respect to no refresh

NVUL=16Kb NVUL=8KbNVUL=4Kb NVUL=2Kb NVUL=1Kb NVUL=16Kb NVUL=8Kb NVUL=4Kb NVUL=2Kb NVUL=1Kb

40

1 month 1.53×10-2 2.56×10-2 5.10×10-2 9.83×10-2 1.87×10-1 24.4 20.3 20.2 19.5 18.3

2 months 7.70×10-3 1.29×10-2 2.58×10-2 5.04×10-2 9.81×10-2 12.3 10.2 10.2 10.0 9.6

3 months 5.14×10-3 8.61×10-3 1.73×10-2 3.39×10-2 6.65×10-2 8.2 6.8 6.9 6.7 6.5

4 months 3.86×10-3 6.47×10-3 1.30×10-2 2.56×10-2 5.04×10-2 6.1 5.1 5.2 5.1 4.9

6 months 2.61×10-3 4.42×10-3 8.87×10-3 1.74×10-2 3.54×10-2 4.2 3.5 3.5 3.4 3.5

no check 6.28×10-4 1.26×10-3 2.52×10-3 5.05×10-3 1.02×10-2 - - - - -

30

1 month 9.69×10-3 1.94×10-2 3.87×10-2 7.71×10-2 1.52×10-1 26.9 26.9 26.9 26.7 26.1

2 months 4.86×10-3 9.73×10-3 1.95×10-2 3.93×10-2 7.93×10-2 13.5 13.5 13.5 13.6 13.6

3 months 3.24×10-3 6.50×10-3 1.31×10-2 2.64×10-2 5.36×10-2 9.0 9.0 9.1 9.1 9.1

4 months 2.44×10-3 4.89×10-3 9.83×10-3 1.99×10-2 4.05×10-2 6.8 6.8 6.8 6.9 7.0

6 months 1.71×10-3 3.43×10-3 6.87×10-3 1.38×10-2 2.80×10-2 4.8 4.8 4.8 4.8 4.8

no check 3.60×10-4 7.20×10-4 1.44×10-3 2.89×10-3 5.82×10-3 - - - - -

20

1 month 4.10×10-3 8.20×10-3 1.64×10-2 3.28×10-2 6.54×10-2 28.1 28.0 27.8 27.8 27.7

2 months 2.05×10-3 4.11×10-3 8.23×10-3 1.65×10-2 3.32×10-2 14.0 14.0 14.0 14.0 14.1

3 months 1.40×10-3 2.80×10-3 5.60×10-3 1.12×10-2 2.26×10-2 9.6 9.6 9.6 9.5 9.6

4 months 1.09×10-3 2.17×10-3 4.35×10-3 8.72×10-3 1.75×10-2 7.5 7.4 7.4 7.4 7.4

6 months 7.83×10-4 1.57×10-3 3.14×10-3 6.29×10-3 1.26×10-2 5.4 5.4 5.4 5.3 5.3

no check 1.46×10-4 2.93×10-4 5.86×10-4 1.18×10-3 2.36×10-3 - - - - -

10

1 month 3.73×10-4 7.47×10-4 1.49×10-3 2.99×10-3 5.99×10-3 19.7 19.8 19.7 19.8 19.8

2 months 1.91×10-4 3.83×10-4 7.66×10-4 1.53×10-3 3.07×10-3 10.1 10.2 10.1 10.1 10.1

3 months 1.32×10-4 2.64×10-4 5.29×10-4 1.06×10-3 2.12×10-3 7.0 7.0 7.0 7.0 7.0

4 months 1.02×10-4 2.05×10-4 4.10×10-4 8.21×10-4 1.64×10-3 5.4 5.4 5.4 5.4 5.4

6 months 7.23×10-5 1.45×10-4 2.90×10-4 5.80×10-4 1.16×10-3 3.8 3.8 3.8 3.8 3.8

no check 1.89×10-5 3.77×10-5 7.55×10-5 1.51×10-4 3.03×10-4 - - - - -

 6

As illustrated in Fig. 6, with the proposed scheme the av-
erage time between refresh operations may become signifi-
cantly larger than the ideal refresh period of a systematic re-
fresh scheme. When the read/check period is 1 month, the
number of refresh operations may be reduced up to 3× as com-
pared to the case when data are systematically refreshed, not
to speak of the difficulty to infer the ideal refresh frequency at
run-time.

The augmentation of the average time between refresh op-
erations enables a reduction of the performance overhead as
compared to a conventional scheme with fixed refresh fre-
quency. Assuming a low variation rate of the amount of data
that may need refresh operations, i.e. static data characterized
by a low functional update frequency, the performance over-
head reduction can be calculated as follows:

 (4)

where and stand for the latencies of
page write and page read operations, represents
the fixed refresh frequency of a systematic refresh scheme and

 and are the frequencies of the check and
refresh operations with the proposed method based on embed-
ded statistics (ES). The execution latency of the check opera-
tions in Algorithm 1 is considered negligible with respect
to and .

Fig. 5 Refresh probability with the proposed scheme over a target storage

period of 3 years. We considered flash memory pages with 16Kb
bits vulnerable to retention errors and up to 40 correctable errors.

Fig. 6 Average time between refresh operations with the proposed

scheme and a systematic refresh scheme with the refresh frequency
ideally adapted to the actual RBER. The considered parameters are
similar to those considered in Fig. 5. The colored curves stop at the
maximum RBER that can be tolerated.

Fig. 7 to Fig. 10 illustrate the reduction of the performance
overhead for an MLC NAND flash memory with (i)

 and [10] and (ii) a
 that allows to tolerate the maximum retention

RBER that can be guaranteed with the proposed scheme.
Maximum overhead reductions between 8.5× and 12× are ob-
tained for retention RBER values that can be handled by the
available ECC alone. Even better results can be obtained for
larger ratios. On the other hand, the
performance overhead may become larger than in systematic
refresh schemes near the maximum tolerated retention RBER
as approaches and fails to compen-
sate for the fact that is larger than .

When up to 10 errors per page can be corrected, the per-
formance overhead reductions are smaller and the curve
shapes are different as illustrated in Fig. 10. At this error cor-
rection strength, refresh operations are almost systematically
required due to the pessimistic tendency of the statistical ap-
proach in Annex I. Only some refresh operations are avoided
due to the heuristics explained in the observation at the end of
Section III. This is also the reason for the smaller improve-
ment factors reported in Table II when the number of correct-
able errors per flash memory page is equal to 10.

For flash memories and SSDs populations where only a
small number of units are error-prone [12], the average per-
formance overhead reduction is expected to approach the val-
ues near the vertical dashed lines in Fig. 7 to Fig. 10.

Fig. 7 Performance overhead reduction with respect to a systematic re-

fresh scheme with fixed refresh frequency that can tolerate the
same maximum RBER. Similar parameters are considered as in
Fig. 5. Each curve stops at the maximum tolerated RBER.

Fig. 8 Similar to Fig. 7 but for an ECC able to correct up to 30 errors per

flash memory page.

 7

Fig. 9 Similar to Fig. 7 but for an ECC able to correct up to 20 errors per

flash memory page.

Fig. 10 Similar to Fig. 7 but for an ECC able to correct up to 10 errors per

flash memory page.

V. COMPARISON TO STATE-OF-THE-ART
A similar approach was presented in [6]. The purpose was

to improve the response latency of NAND flash memories by
adapting the ECC strength to the actual RBER experienced by
each memory page. The ECC strength is selected based on the
number of errors occurred during a certain time window. The
number of retention errors is estimated based on a precom-
puted RBER and subtracted from the actual number of errors
to infer the number of write errors. The parameters of the
RBER model are not adapted to the actual error rates meas-
ured in field. During the page read operations no distinction is
made between the different error types. Consequently, the pre-
computed RBER model needs to take into account the number
of endured P/E cycles. This is not the case with our solution
which only assumes that the number of endured P/E cycles
affects the parameter λ of the RBERRET distribution but not
the distribution law. Our method is able to adapt to the varia-
tions of the parameter λ.

The solution proposed here is orthogonal to other tech-
niques used to reduce the number of retention errors based on
the utilization of read reference voltages which are aware of
(a) the data retention age [4] or (b) the number of bits vulner-
able to retention errors [11].

VI. CONCLUSIONS
A statistical approach was proposed to improve the toler-

ated raw bit error rate (RBER) in NAND flash-based SSDs via
an estimation of the remaining retention time. This estimation

can be performed each time a flash memory page is read and
relies on the number of detected retention errors and the cal-
culated retention age, i.e., the elapsed time since data was pro-
grammed. The checked data should be refreshed if the esti-
mated remaining retention time is smaller than a maximum
timespan to the next read operation. It was calculated that the
tolerated retention error rate can be increased by up to 28× if
data are checked on a monthly basis during a storage period
of 3 years. Such an improvement may be larger than what can
be obtained by triplicating the strength of the available ECC.
Even for a check period of 6 months the tolerated RBER im-
provement can be larger than when the ECC strength is dou-
bled. The proposed method has the ability to adapt the average
time between refresh operations to the actual retention RBER.
This enabled performance overhead reductions of up to 12×
as compared to systematic refresh schemes.

ANNEX I
This Annex presents a possible way to estimate the param-

eter of the model expressed in (1). Based on (1),
the probability to have retention errors in a flash memory
page with vulnerable bits after a storage period is
given by the following binomial law:

 (5)

The relation above can be seen as a discrete probability
distribution of and also as a continuous probability dis-
tribution of λ if the following normalization factor is used:

The upper bound of λ, i.e. λCL, can be determined with a
certain confidence level (CL) from the following equation:

,

with .

The values of and can be calculated off-line for
different combinations of and . For values
which are relatively small compared to , one may use a
formalism based on the exponential chi-squared (χ2) and
Poisson distributions. Such a formalism should only be used
as an approximation since the error occurrence events do not
follow a Poisson process. The approach presented here can be
applied to any model especially when it depends on
a single parameter besides as is the case with (1).

 8

ANNEX II
This Annex presents a method to compute UBER for flash

memories with pages that are periodically checked and may
be refreshed according to Algorithm 1. UBER can be obtained
by adding the probabilities of the uncorrectable errors that
may occur in a flash memory page between consecutive check
operations as follows:

where:
• N is the total number of bits in a flash memory page,
• is the maximum required retention time,
• is the time interval between consecutive read/

check operations,
• represents the contribution to UBER of the un-

correctable errors that may occur during the time interval
 between the (i-1)th and ith check operations.

UBER(i) can be calculated with the relation below by mul-
tiplying (i) the occurrence probability of all retention error
numbers which can be handled by the available ECC and
do not impose a page refresh according to Algorithm 1 and (ii)
the probability that during the subsequent check operation the
errors cannot be corrected anymore:

where:
• is calculated with (5) for a given

parameter λ such that and
 if ,

• for i>1, can be inferred recur-
sively with (7) as shown below,

• ni-1 is the maximum number of retention errors for which
the if condition in Algorithm 1 is false and no refresh
operation needs to executed during the (i-1)th check op-
eration,

• M is the maximum number of errors that can be corrected
by the available ECC,

• is the number of non-retention errors occurred in
a flash memory page,

• are numbers of retention errors that can
be tolerated in a flash memory page.

 (7)

The parameters in (7) have the same meaning as in (5) and
(6). Each term in (7) represents the probability of a possible
repartition of retention errors over the time period before
the (i-1)th check operation and the time interval between the
(i-1)th and ith check operations. Similarly to (5), the presence
of the ni-1 parameter in the upper summation limit indicates
that not all error occurrence scenarios are possible due to a
refresh operation that may be triggered during the execution
of the (i-1)th check operation.

REFRENCES
[1] D. Bertozzi et al., “Performance and reliability analysis of cross-layer

optimizations of NAND flash controllers,” ACM Transactions on
Embedded Computing Systems, vol. 14, no. 1, Article 7, 2015.

[2] Y. Cai et al., “Flash correct-and-refresh: retention-aware error manage-
ment for increased flash memory lifetime,” IEEE International
Conference on Computer Design, pp. 94–101, 2012.

[3] Y. Cai et al., “Error analysis and retention-aware error management for
nand flash memory,” Intel Technology Journal, Volume 17, Issue 1,
pp. 140–164, 2013.

[4] Y. Cai et al., “Data retention in MLC NAND flash memory:
characterization, optimization, and recovery,” International Sympo-
sium on High Performance Computer Architecture, pp. 551-563, 2015.

[5] L.-P. Chang, “Hybrid solid-state disks: combining heterogeneous
NAND flash in large SSDs,” IEEE Asia and South Pacific Design
Automation Conference, pp. 428–433, 2008.

[6] S. Di Carlo et al. “FLARES: an aging aware algorithm to autonomously
adapt the error correction capability in NAND flash memories,” ACM
Transactions on Architecture and Code Optimization, vol. 11, issue 3,
article no. 26, Oct. 2014.

[7] E. Fujiwara, “Code design for dependable systems: theory and practical
applications,” Wiley-Interscience, pp. 60, 2006, ISBN: 0471756180.

[8] L.M. Grupp, J.D. Davis, and S. Swanson, “The bleak future of NAND
flash memory,” File and Storage Technologies, 2012.

[9] JEDEC Standard, “Solid-state drive (SSD) requirements and
endurance test method,” JESD218A, February 2011.

[10] X. Jimenez, D. Novo, and P. Ienne, “Wear Unleveling: Improving
NAND Flash Lifetime by Balancing Page Endurance,” USENIX
Conference on File and Storage Technologies, pp. 47–59, 2014.

[11] C. Lee et al., “A 32Gb MLC NAND-flash memory with Vth-endurance-
enhancing schemes in 32nm CMOS,” ISSCC, pp. 446–448, 2010.

[12] J. Meza et al., “A large-scale study of flash memory failures in the
field,” ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer System, pp. 177–190, 2015.

[13] R. Micheloni, L. Cripa, and A. Marelli, “Inside NAND flash
memories,” Springer-Verlag, Berlin, 2010.

[14] Micron Technology, “TN-12-30: NOR flash cycling endurance and
data retention introduction,” Technical Note, 2013.

[15] N. Mielke et al., “Bit error rate in NAND flash memories,” IEEE
Annual International Reliability Physics Symposium, pp. 9–19, 2008.

[16] S. Mukherjee et al., "Cache scrubbing in microprocessors: myth or
necessity?," IEEE Dependable Computing, 2004.

[17] Y. Pan et al., “Quasi-nonvolatile SSD: trading flash memory non-
volatility to improve storage system performance for enterprise appli-
cations,” High Performance Computer Architecture, pp. 1–10, 2012.

[18] Sandisk, “WP001 - Flash management/A detailed overview of flash
management techniques,” White Paper, November 2013.

[19] M. Seif et al., "Refresh frequency reduction of data stored in SSDs
based on A-timer and timestamps," IEEE European Test Symposium,
pp. 1–6, 2017.

[20] N. Sundby and D. Taylor, “Beyond capacity: storage architecture
choices for the modern datacenter,” White Paper, IDC Analyze the
Future, Sponsored by: Toshiba, February 2014.

 9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

