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Abstract—Solid-state drives (SSDs) based on NAND flash mem-
ories provide an attractive storage solution as they are faster 
and less power hungry than traditional hard-disc drives 
(HDDs). Aggressive storage density improvements in flash 
memories enabled reductions of the cost per gigabit but also 
caused reliability degradations. A recent large-scale study re-
vealed that the uncorrectable bit error rates (UBER) in data 
center SSDs may fall far below the JEDEC standard recommen-
dations. Here, a technique is proposed to improve the tolerated 
raw bit error rate (RBER) based on the observation that (a) a 
small SSD ratio may have a much higher RBER than the rest 
and (b) the RBER is dominated by the retention error rate. In-
stead of employing stronger but costly error-correcting codes a 
statistical approach is used to estimate the remaining retention 
time, i.e., the reliable data storage time, of flash memory pages. 
This estimation can be performed each time a memory page is 
read based on the number of detected retention errors and the 
elapsed time since data was programmed. The fact that the esti-
mated remaining retention time is smaller than a maximum 
time interval before the next read operation is an indication that 
data needs to be refreshed. It is estimated that the tolerated 
RBER can be increased by more than a decade over a storage 
period of 3 years if the stored data are verified on a monthly 
basis and refreshed only if necessary. The proposed technique 
has the ability to adapt the average time between refresh opera-
tions to the actual RBER. This enables performance overhead 
reductions with factors between 8x and 12x as compared to sys-
tematic refresh schemes.  

Keywords—NAND flash; SSD; reliability; adaptability; data 
retention; bit error rate; embedded statistics 

I.  INTRODUCTION 
Solid-state drives (SSDs) based on NAND flash memories 

offer a low power and high performance storage alternative to 
traditional hard-disc drives (HDDs) [13]. The continuous 
technology scaling and emergence of flash memories with 
multilevel cells (MLC) brought not only cost per gigabit re-
ductions but also reliability degradations. For instance, the cy-
cling endurance of a flash memory, i.e., the cumulative num-
ber of program/erase (P/E) cycles that can be sustained by a 
memory cell, is decreased by an order of magnitude each time 

the cell storage capacity is enhanced with an additional bit [5] 
[13][20]. What is more, a recent large-scale study revealed 
that the uncorrectable bit error rate (UBER) of data center 
SSDs can significantly exceed the JEDEC standard recom-
mendations. The reported UBER values are between 10-11 and 
10-9 [12] while client and enterprise class SSDs are required 
to provide an UBER below 10-15 and 10-16, respectively [9]. 

An efficient approach to improve UBER is to use stronger 
error-correcting codes (ECCs). Unfortunately, powerful 
ECCs come with important storage and latency overheads. For 
instance, the storage overhead of a BCH code increases almost 
linearly with the number of correctable errors and also with 
the memory page size for a given ratio of bits with correctable 
errors [7]. 

The need for strong ECCs may be reduced by containing 
the raw bit error rate (RBER). Besides technological fixes or 
solutions based on improved read and write algorithms [1][4] 
[13], the RBER can be tempered if the stored data are period-
ically refreshed [2][13][14][17]. A refresh operation can be 
executed in-place by injecting only the missing amount of 
charge into the floating gates of the flash memory cells or by 
relocating the data to a different physical location [2][3]. Re-
location operations may result in significant P/E cycle over-
head especially in the case of read-intensive applications for 
which the data relocation frequency may become larger than 
the functional update rate [2]. A way to reduce this overhead 
is to adapt the relocation rate to the number of P/E cycles en-
dured by each flash memory block [2][3]. 

One limitation of such refresh schemes is that they are 
based on worst-case scenarios, oblivious to intra- and inter-
device variations, which may lead to unnecessary overheads 
with respect to response latency, dissipated power and P/E cy-
cles. For example, the large-scale study reported in [12] un-
veiled that only a small number of SSDs may contribute to the 
overall UBER degradation. 

Here, a statistical approach is proposed to avoid the utili-
zation of strong ECCs or worst-case refresh frequencies for 
dealing with a whole population of NAND flash memories or 

 



SSDs that may contain some error-prone units. The idea is to 
exploit the fact that the retention error rate dominates the 
RBER in NAND flash memories [3] and take advantage of the 
read operations of each flash memory page to estimate its re-
maining reliable data storage time, i.e., retention time. Such 
an estimation can be done based on the detected number of 
retention errors and the retention age, i.e., the elapsed time 
since data was programmed. A valid memory page should be 
refreshed when the estimated remaining retention time is 
smaller than the timespan to the next read operation. 

Such a technique is effective when a maximum time inter-
val is imposed between consecutive read operations of any 
memory page. For example, the tolerated RBER can be in-
creased by up to 28× over a storage period of 3 years if one 
makes sure that the stored data are read at least once in a 
month. The resulting data refresh frequency is not necessarily 
correlated to the frequency of data read operations since it de-
pends on the actual RBER via the estimated remaining reten-
tion time. It is shown that the refresh probability is negligible 
at RBERs that can be managed by the available ECC alone 
and starts to increase only at larger RBERs. Compared to sys-
tematic refresh schemes able to ensure the same protection 
level, performance overhead reductions between 8× and 12× 
have been simulated. 

Types of storage errors that may affect NAND flash mem-
ories are analyzed in Section II. The proposed refresh scheme 
based on the estimation of the remaining retention time of 
flash memory pages is presented in Section III. Simulation re-
sults concerning the improvement of the tolerated RBER and 
the reduction of the refresh frequency are reported in Section 
IV. A parallel with a state-of-the-art scheme that also relies on 
the estimation of the remaining retention time is made in Sec-
tion V. Concluding remarks are drawn in Section VI. 

II.  TYPICAL STORAGE ERRORS IN NAND FLASH MEMORIES 
A flash memory cell consists of a MOS transistor with a 

floating gate or a charge trap layer embedded in the dielectric 
between channel and control gate. Data are programmed via 
the injection/erasure of electric charge into/from the floating 
gate or the charge trap layer. The threshold voltage distribu-
tion created by the injected charge into the floating gate of an 
MLC flash memory is illustrated in Fig. 1 [13]. In a NAND 
flash memory, between 32 and 64 memory cells are connected 
together to form a string. Thousands of strings are assembled 
in a storage array called block and few thousands of blocks 
may be contained in a flash memory chip. In a block, memory 
cells on the same string are accessed with the help of different 
word lines. The bits stored in memory cells accessed by the 
same word line are logically grouped into one or several 
pages. 

A NAND flash memory can be affected by different types 
of storage errors like retention errors, write errors, also called 
program-interference or over-programming errors, read- 
disturb errors and erase errors. Retention errors affect the abil-
ity of a memory to keep the stored information over a required 
period of time. As shown in Fig. 2, retention errors appear due 
to a drift to the left of the threshold voltage distribution and 

the resulting crossing of the reference values used during read 
operations. For retention ages larger than one month, the re-
tention error rate largely dominates the other error rates [3].  

The remaining error types are characterised by a drift to  
the right of the threshold voltage distribution. Write errors 
are induced by parasitic capacitance-coupling affecting 
memory cells on a certain word line subsequent to a program 
operation on a neighbour word line. Once a memory block is 
fully programmed, the number of write errors does not in-
crease with the retention age. In NAND flash memories, the 
write errors have the second largest occurrence rate [3].  

Erase errors are the outcome of an erase operation that fails 
to reset all cells in a memory block to the erased state [3]. 
Upon the occurrence of an erase error an entire block may be 
marked as bad and discarded [13]. In the following, we will 
assume that programmed memory pages are not affected by 
erase errors. 

A read-disturb error occurs when the content of a memory 
cell is corrupted due to repeated read operations of cells on the 
same string. In the following, read-disturb errors will be ne-
glected due to their very small rate [3]. 

Retention errors will be considered as the only errors 
whose rate may increase with the retention age once a memory 
bloc has been programmed. It will be assumed that the reten-
tion RBER ( ), i.e., the probability that a vulnerable 
bit is affected by a retention error, is given by the following 
expression: 

   (1) 

where  is the retention age. The parameter  may vary 
from one SDD or flash memory to another [12][15], between 
the pages of the same memory block [3] and with the number 
of P/E cycles endured by a memory block [2][3]. This law is 
in agreement with the results reported in [15] and it has the 
properties of a cumulative distribution function, i.e., 

 and .  

Retention errors can be easily distinguished from other er-
ror types. Typically, each read operation is followed by an er-
ror correction step during which the erroneous bits are identi-
fied with the help of an ECC. The error-correcting process al-
lows to infer the polarity of each error, i.e., the difference   

 
Fig. 1  Threshold voltage distribution and example of logical state 

encoding for a 2-bit MLC flash memory. 
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Fig. 2  Threshold voltage distribution of the logical states in a 2-bit MLC 

flash memory affected by (a) retention errors, (b) erase errors and 
(c) write and read-disturb errors. There is always at least 1 bit value 
which is not vulnerable to an arbitrary error type. 

between the corrected and the initial values of the erroneous 
bit. The error polarity allows to identify the error type if one 
assumes that errors can only result from threshold voltage 
transitions between neighbouring states. Table I gives the re-
tention error fingerprints for the MLC considered in Fig. 2. 
For flash memories with 1 bit per cell (SLC), the retention er-
ror fingerprint is given by the first line in Table I. 

TABLE I.  RETENTION ERROR FINGERPRINTS FOR THE MLC FLASH 
MEMORY CELL CONSIDERED IN FIG. 2. 

Bits in the 
same cell 

Read 
value 

Corrected 
 value 

Value of the 
companion bit  

First bit 1 0 - 

Second bit 1 0 1 

Second bit 0 1 0 

III.  EMBEDDED STATISTICS TO IMPROVE THE TOLERATED 
RBER IN NAND FLASH MEMORIES  

Here, an approach is proposed to deal with RBER varia-
tions beyond the error protection provided by the ECC of a 
NAND flash memory. The main idea is to take advantage of 
each read operation of a flash memory page to estimate the 
parameter λ in (1) and the remaining retention time τ of the 
stored data. The remaining retention time τ refers to the stor-
age time that is still left before the UBER target is exceeded 
[9]. Assuming a maximum time period  between two 
consecutive read operations of any page, the read data has to 
be refreshed if  < . The necessary check operations as-
sociated to a read operation are formalized below.  

Algorithm 1: Oracle based on embedded statistics  

Require: An accessed flash memory page protected by an ECC with 
known error correction strength 

Require: NVUL, the initial number of bits vulnerable to retention
errors             

Require: εRET, the number of already existing retention errors  

Require: ε¬RET, the number of already existing non-retention errors

Require: TREAD, the maximum time interval before the next read op-
eration 

1 Calculate the retention age tAGE of the accessed page 

2 
 

Get the remaining retention time τ  as a function of tAGE, NVUL, 
εRET and ε¬RET such that the UBER target is still preserved  

3 if τ(tAGE, NVUL, εRET, ε¬RET) < TREAD then 

4 Refresh the accessed page 

5 end 

The parameter can be calculated with the help of the 
ECC decoder. For example, the decoding scheme of a BCH 
ECC is usually concluded by the execution of a so-called 
Chien algorithm that looks for a potential error in each bit po-
sition [7]. When an error location is found, a simple check of 
the conditions in Table I allows to identify a retention error 
and increment a retention error counter. Similarly, one can 
count the number of non-retention errors . 

A maximum time interval  between consecutive 
read operations can be imposed via periodic scrubbing [16]. 
As it will be seen later, a relatively large , i.e., few 
months, allows to significantly improve the tolerated RBER. 
It has been reported that the average response time of an SSD 
is insignificantly degraded if the refresh operations can be in-
terrupted with sufficiently high granularity [17]. Here, the per-
formance overhead of the scrubbing operations is expected to 
be even lower since not all read/check operations have to be 
followed by a refresh operation. In order to avoid redundant 
verifications of frequently accessed pages, one bit of metadata 
may be reserved for each page to indicate whether the page 
has already been read/checked due to a functional request dur-
ing the current scrubbing period.  
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The retention age  can be calculated as the difference 
between a timestamp associated to the page being accessed 
and the current state of the timer used to provide timestamps 
[6]. A single timestamp may be used to characterize the pro-
graming time of all pages in a flash memory block [13]. The 
resulting storage overhead of the timestamp table is signifi-
cantly smaller than in the case of other metadata structures 
such as the remapping table of the 

 [19].  

The remaining retention time  used in Algorithm I can be 
computed off-line for all possible parameter combinations. 
This is achieved via a statistical estimation of the parameter  
as explained in Annex I. The estimated  allows to predict 

 at the end of any future storage period t and  can 
be selected as the maximum value of t for which  
still complies with the JEDEC standard [9]. Based on the as-
sumption that only the retention errors may accumulate in 
time,  can be computed with the expression below 
[15]. 

     (2) 

where: 

• N is the total number of bits in a flash memory page, 

• M is the maximum number of errors that can be corrected 
with the available ECC, 

• NVUL is the initial number of bits vulnerable to retention 
errors,             

•  and  are the numbers of bits affected by re-
tention and non-retention errors, 

• M  represents the maximum number of 
additional errors that can still be corrected with the avail-
able ECC, 

•  represents the number of bits which are 
still vulnerable to retention errors. 

N and M are a priori known parameters. -  could 
be calculated if one saves  as metadata for each flash 
memory page [11]. Fortunately, this is not necessary as it will 
be explained in the following. 

Fig. 3 illustrates examples of the remaining retention time 
as a function of at several retention ages  for a 

flash memory page with 8Kb bits vulnerable to retention er-
rors. The remaining retention time is calculated with a resolu-
tion of 1 month and a confidence level (CL) of 90%. The max-
imum value on the Y-axis corresponds to a target retention 
time of 3 years [18]. It can be observed that the remaining re-
tention time τ  decreases rapidly with the number of retention 
errors and increases with the retention age . 

The good news is that  has a weak monotonic depend-
ence on the number of vulnerable bits  as illustrated in 
Fig. 4. For example, assuming that  is one month, the if 
condition in Algorithm 1 gives different outcomes for 

 and  only if  is equal to 26. The mono-
tonic dependence of  on  is the result of the fact that 

 increases monotonically with  [13][15] and 
also with  for a relatively large . This means 
that a smaller  provides a margin to increase  
without compromising the upper limit of . According 
to (1), a larger  enables a larger  for a given . The 
situation depicted in Fig. 4 corresponds to the maximum con-
sidered retention age which gives (a) the largest remaining re-
tention times for a certain  as illustrated in Fig. 3 and, im-
plicitly, (b) the largest differences between remaining reten-
tion times for different  values. 

Since  decreases very slowly 
with , a conservative implementation of Algorithm 1 is 
to always use the value of τ  that corresponds to the maximum 
possible value of  for any possible combination of the pa-
rameters ,  and . This observation allows to 
greatly reduce the storage overhead of keeping the values of  
and avoid the overhead of calculating and storing  for 
each flash memory page. 

 
Fig. 3  Estimated remaining retention time as a function of the number of 

retention errors for several retention ages and a confidence level of 
90%. The estimation is made with a granularity of 1 month for a 
16Kb flash memory page and 8Kb bits vulnerable to retention 
errors. The considered ECC is able to correct up to 40 errors per 
page. The imposed upper UBER limit is 1016 [9]. 

 
Fig. 4  Estimated remaining retention time at a maximum retention age of 

36 months as a function of the number of retention errors and 
number of vulnerable bits. The other parameters are similar to those 
considered in Fig. 3. The inset presents a zoom of the region where 
the remaining retention time becomes 1 month.  
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The storage overhead can be further reduced by taking ad-
vantage of the fact that decreases with 

. Consequently, one only needs to store the largest  
value for which  is still larger than a preselected  value. 
In such a case, the line 3 in Algorithm 1 may be implemented 
as the comparison of the maximum tolerated  to the meas-
ured . The resulting storage cost measured in bits can be 
expressed as follows: 

  (3) 

where: 

•  is the maximum required retention time, 

•  is the maximum time interval between two con-
secutive read/check operations of any flash memory 
page,  

• M is the maximum number of errors that can be corrected 
with the available ECC, 

•  is the maximum allowed number of bits af-
fected by non-retention errors in a flash memory page, 

•  represents the ceiling function. 

The value of  can be selected to be much 
smaller than M due to the fact that the number of retention 
errors at large retention ages is expected to be orders of mag-
nitude greater than the number of non-retention errors [3]. 
Pages with a number of non-retention errors higher than 

 can be discarded by declaring their block as bad. 
Another possibility is to use these pages to store hot data, i.e., 
data with a high update frequency and a small storage time in 
order to reduce the number of potential retention errors. 

According to (3), the resulting storage cost amounts to a 
few hundreds of bits for typical values of the involved param-
eters. For example, if one considers M=10, =1, 

 equal to 3 years and  equal to 1 month, the result-
ing storage overhead is 288 bits. This is negligible compared 
to the overhead of the FTL remapping table whose size is 
measured in megabytes [19]. 

Observation 
Since the statistical method proposed in Annex I is rather 

pessimistic, the retention RBER values estimated for storage 
periods of at least 1 month are rather important. Consequently, 
over such periods, ECCs with a relatively low error-correcting 
strength are unable to ensure JEDEC compliant UBER values 
[9]. In order to prevent systematical refreshed operations after 
each  period, we imposed that, in the absence of reten-
tion errors, the estimated remaining retention time τ is at least 
equal to the retention age. The same constraint was imposed 
in the case when the number of retention errors is equal to 1 
and the available ECC is able to correct at least 10 errors per 
page.   

IV. SIMULATION RESULTS 
In order to assess the effectiveness of the proposed statis-

tical approach we first evaluated the extent to which the reten-
tion error rate  may be increased with respect to data 
that is not refreshed without compromising the recommended 
upper limit of UBER. The obtained results are reported in Ta-
ble II for ECCs able to correct up to 40 random single-bit 
errors per flash memory page. It was considered that each 
page could be affected by at most one non-retention error 

. The tolerated  values are compliant 
with the requirement to keep UBER below 10-16 [9]. UBER 
calculation details are given in Annex II. 

As illustrated in Table II, the tolerated  is in-
creased by (a) the reduction of , i.e., the maximum time 
interval between two successive read/check operations of any 
flash memory page, and (b) the reduction of the number of bits 
vulnerable to retention errors . The latter impact can be 
explained by the fact that  increases with both  

 and  which means that a smaller  value 
makes room to increase the maximum tolerated . 

When  is equal to 1 month, the obtained improve-
ment factors are between 19× and 28×. Better results should 
be expected for lower  values. Moreover, the maximum 
tolerated  values and resulting improvement factors 
are pessimistic as check operations triggered by functional 
read operations are not taken into account. 

With an ECC able to correct up to 40 errors per page, the 
improvement factor grows with the number of vulnerable bits 

. For the other considered ECC strengths, the number of 
vulnerable bits does not have a sensible influence on the im-
provement factor. This may be explained by the fact that the 
maximum tolerated  is increased by the reduction of 

 also in the absence of data refresh operations. 

A  equal to 1 month may have a larger impact on the 
tolerated  than the triplication of the number of cor-
rectable errors. This can be observed by comparing the 
1 month line for 10 correctable errors with the no check line 
for 30 correctable errors. A  equal to 6 months allows to 
tolerate a larger  than a duplication of the number of 
correctable errors. This can be noticed by comparing the 
6 months line for 20 correctable errors with the no check line 
for 40 correctable errors. For BCH codes, the extension of the 
number of correctable errors from 20 to 40 may augment the 
storage overhead by 75%. This impact becomes 180% when 
the number of correctable errors is changed from 10 to 30. 

The impact of the page size is not considered since, ac-
cording to (2), it affects UBER only as a scaling factor. The 
page size may influence the maximum number of non- 
retention errors that has to be considered. 

The results reported here are calculated by neglecting sys- 
tem downtimes and they can only be expected for systems 
with power outages much shorter than the imposed check pe-
riod . This is true for enterprise class SSDs with limited 
outage periods, i.e., maximum few hours per year [20]. When 
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longer outage periods are expected, one has to consider the 
maximum downtime  and modify the if condition 
in Algorithm 1 such that a data refresh operation is initiated if 

. The worst-case scenario happens 
when the time period between the scrubbing campaigns be-
comes  instead of . In such a case, 
the benefit brought by the proposed approach can be calcu-
lated by considering an imposed check period equal to 

 For instance, if both  and 
 are 1 month, the improvements obtained with 

our approach are given by the lines with the label 2 months in 
Table II. The case when  is equal to 3 months cor-
responds to a JEDEC requirement for enterprise class SSDs 
[9]. In Table II, the 4 months lines give worst-case improve-
ment factors between 4.9× and 7.5× for a JEDEC compliant 
enterprise class SSDs in which data are checked every month. 

The reported improvements of the tolerated   
require a number of refresh operations that may be greatly 
reduced as compared to a conventional scheme with system-
atic refresh operations [2][3]. Fig. 5 shows the probability of 
refresh operations induced by the execution of Algorithm 1 
over a storage period of 3 years. The refresh probability starts 
to rise near the largest  value that can be managed 
by the available ECC without refresh operations and continues 
to progressively increase with . The smallest check 
period provides the lowest refresh probability as the stored 
data should survive a shorter period of time before the next 
check operation. This proves the inherent ability of the pro-
posed approach to adapt its refresh frequency to the actual 

. Due to this adaptability, the impact of the P/E cy-
cles on  does not have to be explicitly taken into ac-
count as opposed to a systematic refresh scheme [2][3].

TABLE II.       IMPROVEMENT OF THE MAXIMUM RETENTION RBER THAT CAN BE TOLERATED IN A 16KB FLASH MEMORY PAGE. 
THE REPORTED RBER FIGURES CORRESPOND TO A TARGET RETENTION TIME OF 36 MONTHS. 
THE REMAINIG RETENTION TIME τ USED IN ALGORITHM 1 WAS CALCULATED WITH A CONFIDENCE LEVEL OF 90%. 

Number of 
correctable 

errors 

Check 
period 
(TREAD) 

Maximum tolerated RBERRET with UBER  10-16 Improvement factor with respect to no refresh 

NVUL=16Kb NVUL=8KbNVUL=4Kb NVUL=2Kb NVUL=1Kb NVUL=16Kb NVUL=8Kb NVUL=4Kb NVUL=2Kb NVUL=1Kb

40 

1 month 1.53×10-2 2.56×10-2 5.10×10-2 9.83×10-2 1.87×10-1 24.4 20.3 20.2 19.5 18.3 

2 months 7.70×10-3 1.29×10-2 2.58×10-2 5.04×10-2 9.81×10-2 12.3 10.2 10.2 10.0 9.6 

3 months 5.14×10-3 8.61×10-3 1.73×10-2 3.39×10-2 6.65×10-2 8.2 6.8 6.9 6.7 6.5 

4 months 3.86×10-3 6.47×10-3 1.30×10-2 2.56×10-2 5.04×10-2 6.1 5.1 5.2 5.1 4.9 

6 months 2.61×10-3 4.42×10-3 8.87×10-3 1.74×10-2 3.54×10-2 4.2 3.5 3.5 3.4 3.5 

no check 6.28×10-4 1.26×10-3 2.52×10-3 5.05×10-3 1.02×10-2 - - - - - 

30 

1 month 9.69×10-3 1.94×10-2 3.87×10-2 7.71×10-2 1.52×10-1 26.9 26.9 26.9 26.7 26.1 

2 months 4.86×10-3 9.73×10-3 1.95×10-2 3.93×10-2 7.93×10-2 13.5 13.5 13.5 13.6 13.6 

3 months 3.24×10-3 6.50×10-3 1.31×10-2 2.64×10-2 5.36×10-2 9.0 9.0 9.1 9.1 9.1 

4 months 2.44×10-3 4.89×10-3 9.83×10-3 1.99×10-2 4.05×10-2 6.8 6.8 6.8 6.9 7.0 

6 months 1.71×10-3 3.43×10-3 6.87×10-3 1.38×10-2 2.80×10-2 4.8 4.8 4.8 4.8 4.8 

no check 3.60×10-4 7.20×10-4 1.44×10-3 2.89×10-3 5.82×10-3 - - - - - 

20 

1 month 4.10×10-3 8.20×10-3 1.64×10-2 3.28×10-2 6.54×10-2 28.1 28.0 27.8 27.8 27.7 

2 months 2.05×10-3 4.11×10-3 8.23×10-3 1.65×10-2 3.32×10-2 14.0 14.0 14.0 14.0 14.1 

3 months 1.40×10-3 2.80×10-3 5.60×10-3 1.12×10-2 2.26×10-2 9.6 9.6 9.6 9.5 9.6 

4 months 1.09×10-3 2.17×10-3 4.35×10-3 8.72×10-3 1.75×10-2 7.5 7.4 7.4 7.4 7.4 

6 months 7.83×10-4 1.57×10-3 3.14×10-3 6.29×10-3 1.26×10-2 5.4 5.4 5.4 5.3 5.3 

no check 1.46×10-4 2.93×10-4 5.86×10-4 1.18×10-3 2.36×10-3 - - - - - 

10 

1 month 3.73×10-4 7.47×10-4 1.49×10-3 2.99×10-3 5.99×10-3 19.7 19.8 19.7 19.8 19.8 

2 months 1.91×10-4 3.83×10-4 7.66×10-4 1.53×10-3 3.07×10-3 10.1 10.2 10.1 10.1 10.1 

3 months 1.32×10-4 2.64×10-4 5.29×10-4 1.06×10-3 2.12×10-3 7.0 7.0 7.0 7.0 7.0 

4 months 1.02×10-4 2.05×10-4 4.10×10-4 8.21×10-4 1.64×10-3 5.4 5.4 5.4 5.4 5.4 

6 months 7.23×10-5 1.45×10-4 2.90×10-4 5.80×10-4 1.16×10-3 3.8 3.8 3.8 3.8 3.8 

no check 1.89×10-5 3.77×10-5 7.55×10-5 1.51×10-4 3.03×10-4 - - - - - 
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As illustrated in Fig. 6, with the proposed scheme the av-
erage time between refresh operations may become signifi-
cantly larger than the ideal refresh period of a systematic re-
fresh scheme. When the read/check period is 1 month, the 
number of refresh operations may be reduced up to 3× as com-
pared to the case when data are systematically refreshed, not 
to speak of the difficulty to infer the ideal refresh frequency at 
run-time. 

The augmentation of the average time between refresh op-
erations enables a reduction of the performance overhead as 
compared to a conventional scheme with fixed refresh fre-
quency. Assuming a low variation rate of the amount of data 
that may need refresh operations, i.e. static data characterized 
by a low functional update frequency, the performance over-
head reduction can be calculated as follows: 

          (4) 

where  and  stand for the latencies of 
page write and page read operations,  represents 
the fixed refresh frequency of a systematic refresh scheme and 

 and  are the frequencies of the check and 
refresh operations with the proposed method based on embed-
ded statistics (ES). The execution latency of the check opera-
tions in Algorithm 1 is considered negligible with respect 
to  and . 

 
Fig. 5  Refresh probability with the proposed scheme over a target storage 

period of 3 years. We considered flash memory pages with 16Kb 
bits vulnerable to retention errors and up to 40 correctable errors. 

 
Fig. 6  Average time between refresh operations with the proposed 

scheme and a systematic refresh scheme with the refresh frequency 
ideally adapted to the actual RBER. The considered parameters are 
similar to those considered in Fig. 5. The colored curves stop at the 
maximum RBER that can be tolerated.  

Fig. 7 to Fig. 10 illustrate the reduction of the performance 
overhead for an MLC NAND flash memory with (i) 

 and  [10] and (ii) a 
 that allows to tolerate the maximum retention 

RBER that can be guaranteed with the proposed scheme. 
Maximum overhead reductions between 8.5× and 12× are ob-
tained for retention RBER values that can be handled by the 
available ECC alone. Even better results can be obtained for 
larger  ratios. On the other hand, the 
performance overhead may become larger than in systematic 
refresh schemes near the maximum tolerated retention RBER 
as  approaches  and fails to compen-
sate for the fact that  is larger than .  

When up to 10 errors per page can be corrected, the per-
formance overhead reductions are smaller and the curve 
shapes are different as illustrated in Fig. 10. At this error cor-
rection strength, refresh operations are almost systematically 
required due to the pessimistic tendency of the statistical ap-
proach in Annex I. Only some refresh operations are avoided 
due to the heuristics explained in the observation at the end of 
Section III. This is also the reason for the smaller improve-
ment factors reported in Table II when the number of correct-
able errors per flash memory page is equal to 10. 

For flash memories and SSDs populations where only a 
small number of units are error-prone [12], the average per-
formance overhead reduction is expected to approach the val-
ues near the vertical dashed lines in Fig. 7 to Fig. 10. 

 
Fig. 7  Performance overhead reduction with respect to a systematic re-

fresh scheme with fixed refresh frequency that can tolerate the 
same maximum RBER. Similar parameters are considered as in 
Fig. 5. Each curve stops at the maximum tolerated RBER. 

 
Fig. 8  Similar to Fig. 7 but for an ECC able to correct up to 30 errors per 

flash memory page. 
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Fig. 9  Similar to Fig. 7 but for an ECC able to correct up to 20 errors per 

flash memory page. 

 
Fig. 10  Similar to Fig. 7 but for an ECC able to correct up to 10 errors per 

flash memory page. 

V.  COMPARISON TO STATE-OF-THE-ART  
A similar approach was presented in [6]. The purpose was 

to improve the response latency of NAND flash memories by 
adapting the ECC strength to the actual RBER experienced by 
each memory page. The ECC strength is selected based on the 
number of errors occurred during a certain time window. The 
number of retention errors is estimated based on a precom-
puted RBER and subtracted from the actual number of errors 
to infer the number of write errors. The parameters of the 
RBER model are not adapted to the actual error rates meas-
ured in field. During the page read operations no distinction is 
made between the different error types. Consequently, the pre-
computed RBER model needs to take into account the number 
of endured P/E cycles. This is not the case with our solution 
which only assumes that the number of endured P/E cycles 
affects the parameter λ of the RBERRET distribution but not 
the distribution law. Our method is able to adapt to the varia-
tions of the parameter λ. 

The solution proposed here is orthogonal to other tech-
niques used to reduce the number of retention errors based on 
the utilization of read reference voltages which are aware of 
(a) the data retention age [4] or (b) the number of bits vulner-
able to retention errors [11]. 

VI.  CONCLUSIONS 
A statistical approach was proposed to improve the toler-

ated raw bit error rate (RBER) in NAND flash-based SSDs via 
an estimation of the remaining retention time. This estimation 

can be performed each time a flash memory page is read and 
relies on the number of detected retention errors and the cal-
culated retention age, i.e., the elapsed time since data was pro-
grammed. The checked data should be refreshed if the esti-
mated remaining retention time is smaller than a maximum 
timespan to the next read operation. It was calculated that the 
tolerated retention error rate can be increased by up to 28× if 
data are checked on a monthly basis during a storage period 
of 3 years. Such an improvement may be larger than what can 
be obtained by triplicating the strength of the available ECC. 
Even for a check period of 6 months the tolerated RBER im-
provement can be larger than when the ECC strength is dou-
bled. The proposed method has the ability to adapt the average 
time between refresh operations to the actual retention RBER. 
This enabled performance overhead reductions of up to 12× 
as compared to systematic refresh schemes. 

ANNEX I 
This Annex presents a possible way to estimate the param-

eter  of the  model expressed in (1). Based on (1), 
the probability to have retention errors in a flash memory 
page with  vulnerable bits after a storage period  is 
given by the following binomial law: 

  

                      (5) 

The relation above can be seen as a discrete probability 
distribution of  and also as a continuous probability dis-
tribution of λ if the following normalization factor is used: 

 

The upper bound of λ, i.e. λCL, can be determined with a 
certain confidence level (CL) from the following equation: 

 

, 

with . 

The values of  and  can be calculated off-line for 
different combinations of  and . For  values 
which are relatively small compared to , one may use a 
formalism based on the exponential chi-squared (χ2) and 
Poisson distributions. Such a formalism should only be used 
as an approximation since the error occurrence events do not 
follow a Poisson process. The approach presented here can be 
applied to any model especially when it depends on 
a single parameter besides as is the case with (1). 
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ANNEX II 
This Annex presents a method to compute UBER for flash 

memories with pages that are periodically checked and may 
be refreshed according to Algorithm 1. UBER can be obtained 
by adding the probabilities of the uncorrectable errors that 
may occur in a flash memory page between consecutive check 
operations as follows: 

 

where: 
• N is the total number of bits in a flash memory page, 
•  is the maximum required retention time, 
•  is the time interval between consecutive read/ 

check operations, 
•  represents the contribution to UBER of the un-

correctable errors that may occur during the time interval 
 between the (i-1)th and ith check operations. 

UBER(i) can be calculated with the relation below by mul-
tiplying (i) the occurrence probability of all retention error 
numbers  which can be handled by the available ECC and 
do not impose a page refresh according to Algorithm 1 and (ii) 
the probability that during the subsequent check operation the 
errors cannot be corrected anymore:  

 

 

where: 
•  is calculated with (5) for a given 

parameter λ such that  and 
 if , 

• for i>1,   can be inferred recur-
sively with (7) as shown below, 

• ni-1 is the maximum number of retention errors for which 
the if condition in Algorithm 1 is false and no refresh 
operation needs to executed during the (i-1)th check op-
eration, 

• M is the maximum number of errors that can be corrected 
by the available ECC, 

•  is the number of non-retention errors occurred in 
a flash memory page, 

•  are numbers of retention errors that can 
be tolerated in a flash memory page. 

 

 (7) 

The parameters in (7) have the same meaning as in (5) and 
(6). Each term in (7) represents the probability of a possible 
repartition of  retention errors over the time period before 
the (i-1)th check operation and the time interval between the 
(i-1)th and ith check operations. Similarly to (5), the presence 
of the ni-1 parameter in the upper summation limit indicates 
that not all error occurrence scenarios are possible due to a 
refresh operation that may be triggered during the execution 
of the (i-1)th check operation. 
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