
HAL Id: lirmm-01584405
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01584405

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ILP formulation of the degree-constrained minimum
spanning hierarchy problem

Massinissa Merabet, Miklós Molnár, Sylvain Durand

To cite this version:
Massinissa Merabet, Miklós Molnár, Sylvain Durand. ILP formulation of the degree-constrained
minimum spanning hierarchy problem. Journal of Combinatorial Optimization, 2018, 36 (3), pp.789-
811. �10.1007/s10878-017-0159-4�. �lirmm-01584405�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01584405
https://hal.archives-ouvertes.fr


ILP formulation of the Degree-Constrained Minimum Spanning Hierarchy

Problem

Massinissa Merabeta, Miklos Molnarb, Sylvain Durandc

aERIAN, Nanyang Technological University, Singapore
(e-mail: mmerabet@ntu.edu.sg).

bLIRMM, University of Montpellier, France
(e-mail: miklos.molnar@lirmm.fr)

cLIRMM, Montpellier III University, France
(e-mail: sylvain.durand@lirmm.fr)

Abstract

Given a connected edge-weighted graph G and a positive integer B, the Degree Constrained Minimum
Spanning Tree problem (DCMST) consists in �nding a minimum cost spanning tree of G such that the
degree of each vertex in the tree is less than or equal to B. This problem, which has been extensively
studied over the last few decades, has several practical applications, mainly in networks. However, some
applications do not especially impose a subgraph as solution. For this purpose, a more �exible so-called
hierarchy structure has been proposed. Hierarchy, which can be seen as a generalization of trees, is de�ned
as a homomorphism of a tree in a graph. In this paper, we discuss the Degree Constrained Minimum
Spanning Hierarchy (DCMSH) problem which is NP-hard. An Integer Linear Program (ILP) formulation of
this new problem is given. Properties of the solution are analysed, which allows us to add valid inequalities
to the ILP. To evaluate the di�erence of cost between trees and hierarchies, the exact solution of DCMST
and DCMSH problems are compared. It appears that, in sparse random graphs, the average percentage of
improvement of the cost varied from 20% to 36% when the maximal authorized degree of vertices B is equal
to 2, and from 11% to 31% when B is equal to 3. The improvement increases as the graph size increases.

Keywords: Degree-Constrained Spanning Problem, Spanning Hierarchy, Spanning Tree, Integer Linear
Programming, ILP, DCMSH, DCMST.

1. Introduction

Several network design problems can be modeled as �nding a network corresponding to certain connectivity
speci�cations. For instance, the network may require to connect with minimum cost all nodes in a topology
graph (spanning tree problem), a speci�ed subset of the nodes (Steiner tree problem) or interconnect a set of
set of nodes (generalized Steiner forest problem). Finding a minimum spanning tree of a graph is polynomial
[1]. Conversely, �nding a spanning tree whose nodes do not exceed a given degree with minimum total edge
length is NP-hard [2] and known as the Degree Constrained Minimum Spanning Tree (DCMST) problem.
The DCMST problem has many practical applications. For example, to support broadcasts in optical net-
works where branching nodes (nodes with degree strictly greater than 2) should be equipped with optical
splitters, which split the light signal into several copies. To model the limited node splitting capacity, it is
necessary to upper bound vertex degrees in the topology graph. So the splitting capacity is represented by a
degree constraint. The DCMST problem also arises in many other areas such as in the design of integrated
circuits, energy networks, transportation, logistics, sewage networks and plumbing for maximum network
reliability [3].

Most of the existing research on degree-constrained spanning problems is based on spanning trees or k-
connected spanning subgraphs. In some applications, however, the solution does not need to correspond to
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a subgraph. For instance, special optical routes as light-trails can return several times to a switch/link [4].
Further, the degree constraint does not always express the fact that the vertex has a global "budget" to
connect neighbouring vertices. This budget approach can be found in [5]. Indeed, the degree constraint can
also express the fact that the vertex can perform a given action (a branching) for each of its visit only for
a limited number of neighbour vertices. In our paper we suppose that the degree bound expresses this later
limited capacity of the vertex for each visit. Moreover, we assume that the limit is the same constant value,
valid for all vertices in the graph.

A �exible structure to solve constrained spanning problems is proposed in [6]. In contrast with trees, this
structure (called a hierarchy) is not a subgraph but rather a homomorphism of a tree in a graph. As we
will show in this paper, the advantages of the hierarchy concept for solving degree constrained spanning
problems are obvious. Even if there is no spanning tree satisfying the degree constraints (which correspond
to a limited capacity of a vertex), the coverage is always possible with a hierarchy. Moreover, the spanning
hierarchy always achieves the best solution. In fact, a spanning tree is a special hierarchy.

Note that for some strongly NP-hard problems, there exist relaxations which allow to span vertices more
than once. Indeed, in [7], Christo�des et al. relax the Capacitated Vehicle Routing Problem (CVRP) by
introducing the notion of �q-route�. A q-routeis a walk that starts at the depot vertex, traverses a sequence
of client vertices with total demand at most C, and returns to the depot. Some clients may be visited
more than once. Minimum cost q-routes can be found in pseudo-polynomial time by dynamic programming
and that allows to obtain a decisive information about the optimal solution since the set of valid CVRP
routes is strictly contained in the set of q-routes. A similar approach is achieved on the Capacitated Min-
imum Spanning Tree problem (CMST) in [8], where Uchoa et al. introduce the concept of �q-arbs�, an
arborescence-like structure directed from the root, having degree 1 at the root and with total demand at
most C, but allowing some vertices (and even arcs) to appear more than once. The Travelling Salesman
Problem (TSP) is also usually relaxed to the shortest Complete Circuit Problem (CCP), i.e. the shortest cir-
cuit going through each vertex at least once [9, 10]. The interest of the relaxed problem is to compute lower
bounds for the original one, and it can also be considered as a basis of empirically successful heuristics for
computing upper bounds and sophisticated reduction techniques, culminating in an exact algorithm which
achieves impressive empirical results. Although a hierarchy can be seen as a relaxation (generalization) of
tree, it has a real practical interest and it is not only a �tool� to solve the constrained spanning tree problems.

In our study, we investigate the degree constrained minimum spanning hierarchy (DCMSH) problem. This
NP-hard problem involves �nding a minimum spanning hierarchy in a graph such that the degree of each
vertex in the hierarchy is less than or equal to a given integer B. The DCMSH problem is in APX while the
DCMST is not [11]. We proposed an approximation o�ering a guarantee of B

B−1 in [12]. The DCMSH is
increasingly studied in the literature [13]. In our study, we are focus on the exact resolution of this problem.
The �rst Integer Linear Program (ILP) formulation of this problem is given. This ILP formulation of the
DCMSH is not trivial since the hierarchy structure is more complex than trees. Indeed, a hierarchy can
return several times to a vertex and the usual cut on �ow based approach can not be applied. Properties
of the solution are analysed, which allows us to add valid inequalities to the ILP and strongly reduce the
combinatory of this problem. This allows the DCMSH problem to be competitive regarding the DCMST
one in term of both time resolution and the size of the solved instances. To evaluate the di�erence of cost
between trees and hierarchies, the exact solutions of DCMST and DCMSH problems are compared for a
concrete case (NSF network) as well as in random graphs.

The rest of the paper is organized as follows. First, a concise related work is given in Section 2. Then, the
degree constrained minimum spanning hierarchy problem is formulated in Section 3. Some useful properties
of the optimal solution are proved in Section 4. In Section 5, ILP formulation is developed to compute the
optimal hierarchy. Computational results are done in Section 6 to compare optimal hierarchies and optimal
trees. Finally the paper is concluded in Section 7.
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2. Previous works

The Degree-Constrained Minimum Spanning Tree (DCMST) problem was �rstly introduced and investigated
in [2] (it is also brie�y mentioned in [14]).

De�nition 2.1. Let G = (VG, EG) be an undirected connected, edge-weighted graph such that VG is the set
of vertices and EG the set of edges. Let C : EG → B∗+ be a function which associates a strictly positive
real cost C(e) to each edge e ∈ EG and B a positive integer. The DCMST problem consists of �nding a
minimum cost spanning tree of G such that the degree of each vertex in the tree is less than or equal to B.

This problem is NP-hard. Solving the DCMST problem with the degree bound B equal to two is equivalent
to solving the minimum Hamiltonian path problem. Moreover, by reducing the DCMST problem to an
equivalent symmetric traveling salesman problem (TSP), Garey and Johnson [15] proved that this problem
is NP-hard for any �xed constant 2 ≤ B ≤ |V − 1|. Ravi showed that approximating the DCMST problem
within a constant factor of the cost of the optimal tree is NP-hard [11]. In unweighted graphs, Furer and
Raghavachari [16] gave an elegant algorithm that returns a spanning tree in which the degree of each vertex
is at most B + 1, or returns a witness certifying that the degree bounds are infeasible. Goemans proved
in [17] that this result can be generalized to weighted graphs. In polynomial time, we can �nd a spanning
tree of maximum degree at most B + 1 whose cost is no more than the cost of a minimum cost tree with
maximum degree at most B. Note that these results are formulated in the case where the degree bound
is homogeneous. When the degree bounds depend on the vertices, Goemans proved that one can �nd in
polynomial time a spanning tree of maximum degree at most B + 2 whose cost is no more than the cost of
a minimum cost tree with maximum degree at most B. The best result was presented by Singh and Lau in
[18]. Their algorithm computes a spanning tree of minimum cost which violates the degree upper-bounds
by at most one. Since it is not possible to obtain any approximation algorithm for the original problem,
insisting on the satisfaction of all the degree upper bounds, this result is the best possible.

The DCMST problem may not always have a feasible solution (in some cases there is no spanning tree which
meets the degree constraint). For instance, with B = 2, the DCMST problem can be solved if and only
if the graph G has a Hamiltonian path. The instance G on the left of Figure 1 cannot be spanned by a
tree with degree bound B = 3 because all spanning trees of G may have the degree of vertex b or e equal
to 4. More generally, whatever the value of the degree constraint B, there are instances for which there
is no solution. Indeed, whatever the value of the degree constraint B, we can consider a star with B+1 leaves.

The reality of some routing technologies in networks explicitly imposes neither a tree nor a subgraph as
solution. In some cases, cycles may be present in the subgraph used for routing. To solve the routing in
the case of optical networks with any splitter, Maher and Deogun [19] proposed to �nd a trail that starts
from the source and visits all destination nodes. This trail corresponds to a walk visiting vertices several
times. Molnar [6] introduced a more �exible so-called hierarchy structure, which can correspond to the
minimum cost connected spanning structure. The degree constrained minimum spanning hierarchy problem
is formulated using this structure in the following.

3. Problem formulation

3.1. Hierarchies

A hierarchy is not necessary a subgraph. It is a graph related structure obtained by a homomorphism of a
tree in a graph. Remember that in graphs, a homomorphism can be de�ned as follows.

De�nition 3.1. Let Q = (W,F ) and G = (V,E) be two (undirected) graphs. An application h : V → W
mapping a vertex in V to each vertex in W is a homomorphism if the mapping preserves the adjacency:
(u, v) ∈ F implies (h(u), h(v)) ∈ E [20].
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De�nition 3.2. If Q is a connected graph which has no vertex with degree greater than two, then (Q, h,G)
de�nes a walk in G. If h is also injective, then the walk is an elementary walk (a path) in G. If several
vertices in W correspond to the same vertex in V then (Q, h,G) gives a non-elementary walk in G.

De�nition 3.3. If Q is a connected graph without a cycle (a tree) then the triple (Q, h,G) de�nes a hierarchy
in G. Furthermore, if all vertices of G are spanned by Q then the hierarchy H is called spanning hierarchy.

Figure 1 shows an example of a hierarchy. Each vertex of the tree Q is associated with a vertex of the
graph G. In reverse direction, some vertices of G are mapped to several vertices in Q. A vertex in Q can
be labelled by the vertex in G with which it is associated. To distinguish occurrences related to the same
vertex v in G, we use the labels v1, v2, ..., vk if needed.

If the application h is injective, then the hierarchy corresponds to a tree in G. Using the analogy with
elementary and non-elementary walks, a hierarchy without vertex repetition is a tree and a hierarchy that
contains several occurrences of some vertices can be considered as a "non-elementary tree".
The degree of a vertex occurrence in a hierarchy has been de�ned in [21]:

De�nition 3.4. Let u be a vertex in Q such that the mapping associates v ∈ VG (h(u) = v) to this vertex
in the hierarchy. The degree dH(vi) of the vertex occurrence vi in H is dH(vi) = dQ(u).

We extend the de�nition of the function C to associate a cost to each edge belonging to Q. The cost of a
hierarchy corresponds to cost sum of the edges belonging to Q.

3.2. Degree Constrained Minimum Spanning Hierarchy problem

When the degree constraint is an instantaneous capacity constraint and the spanning structure can re-
turn vertices several times, the spanning problem can be reformulated using hierarchies [21]. The degree
constrained minimum spanning hierarchy problem is de�ned as follows.

De�nition 3.5. The DCMSH problem consists of �nding a minimum cost spanning hierarchy of G such
that the degree of each vertex occurrence in the hierarchy is less than or equal to B. (The cost of a hierarchy
H = (Q, h,G) is the sum of the costs of the edges used in H: C(H) =

∑
e′∈Q

C(e), where e ∈ E where e ∈ E

is the edge associated with e′ in Q).

a

b

c

d f

e

g k

G

b1

c1 a1

b2

f1 d1

e1

k1 g1

Qh

Figure 1: Mapping of vertices for a hierarchy

Figure 1 illustrates how a hierarchy can satisfy the degree constraints. In all connected spanning trees of
G, at least one of the vertices b or e have a degree equal to 4. However, the maximum degree of vertices
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in H(Q, h,G) is equal to 3 because the vertex b can be visited twice. This case illustrates that there is no
feasible spanning tree of G for the degree bounded spanning problem with B = 3 but there is at least one
feasible spanning hierarchy of G.

Lemme 3.1. For any degree bound B > 2 , the DCMSH problem always has a solution.

Proof. A traversal is a particular spanning hierarchy, in which the degree of each vertex occurrence is at
most 2. Since a connected graph always has traversals, there are always hierarchies spanning the graph and
respecting any degree constraint B > 2.

The problem of the degree constrained minimum spanning hierarchy is NP-hard as it is demonstrated in the
following.

Lemme 3.2. If among all the Minimum Spanning Trees (MST) of a graph G there exists one satisfying the
degree constraint, it is an optimal solution for the DCMSH problem and all the optimal solutions are trees
in G.

Proof. Obvious. The minimum cost spanning structure to connect all the vertices without any constraint
is the MST, which is connected and does not contain any redundancy. So if one of the MSTs, for instance
a tree T ∗ respects the degree constraint, it is optimal for the spanning problem and also for the DCMSH
problem.
Now suppose that an optimal hierarchy H = (T, h,G) exists and it is not a tree in G. Because the MST T ∗

is an optimal solution of our problem, the cost c(H) of the optimal hierarchy must be the same as the cost
c(T ∗) of the MST solution. Trivially, the cost of a hierarchy is greater than or equal to the cost of its image
in G: c(I) 6 c(H), where I is the image (the subgraph generated by H in G). If H is not a tree, it contains
at least a cycle in G (a duplicated edge can also be considered as a cycle). I covers the vertex set V . Two
possibilities can arise.

� I is a tree and its cost is lower bounded by the cost of the MST: c(T ∗) ≤ c(I). In this case, there is
at least one duplicated edge in H (remember that H is not a simple tree) and c(I) < c(H). Finally:
c(T ∗) < c(H) and consequently H can not be optimal.

� I is not a tree. By eliminating some redundancies with non-zero length, a tree T ′ spanning V is
obtained. Trivially, c(T ′) < c(I) and c(I) < c(H). Finally: c(T ∗) 6 c(T ′) < c(H).

Theorem 3.3. The problem DCMSH is NP-hard whatever B ≥ 2.

Proof. without loss of generality let us propose that c(e) = 1,∀e ∈ EG. Let G′ = (V ′G, E
′
G) be the graph

obtained connecting B − 2 new vertices of degree 1 to each vertex v ∈ VG (Figure 2). We then have
|V ′G| = |VG|+ |VG| · (B− 2) = (B− 1) · |VG|. Every spanning tree of G′ has a cost equal to (B− 1) · |VG| − 1.
There is a spanning hierarchy of the graph G′ for which every vertex respects the degree bound B and of
cost (B − 1) · |VG| − 1 if the graph G is Hamiltonian.

Assume that there is a spanning hierarchy H of G′ of cost (B − 1) · |VG| − 1. Given its cost, the hierarchy
H is necessary a tree. Indeed, if there was at least one duplicated edge in H then the cost of H would be at
least equal to (B − 1) · |VG|. If one gets from H the (B − 2) · |VG| vertices of V ′G \ VG, we therefore obtain
a connected subgraph in which all vertices have a degree less than or equal to two, which is a Hamiltonian
path of G.

Reciprocally, by linking B − 2 leaves to each vertex of a Hamiltonian path of G, we get a tree that respects
the degree bound B and which is, by considering the lemma 3.2, an optimal solution for DCMSH problem
in G′.
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(a) Graphe G (b) Graphe G′

Figure 2: Reduction of DCMSH problem to Hamiltonian problem (B = 7)

4. Properties of degree bounded hierarchies

In order to e�ciently construct the optimal hierarchy, it is important to study its relevant properties. In
this section, we present an upper bound of the vertex occurrences and edge occurrences in the DCMSH
(Theorems 4.5 and 4.6 respectively). These properties are directly used in our ILP to compute the solution.

Notations. For any graph G = (VG, EG), we denote by λm(G) the number of vertices of degree m in G.
Let H = (QH , hH , G) be a hierarchy in G, we denote by θ(v) the set of occurrences of v in H. An optimal
hierarchy for the problem DCMSH in G is denoted by H∗ = (QH∗ , hH∗ , G). At �rst, we study the number
of leaves in an arbitrary tree T .

Proposition 4.1. For any tree T = (VT , ET ) with |VT | ≥ 2, λm(T ) ≥ α⇒ λ1(T ) > α ∗ (m− 2) + 2.

Proof. By induction.

1. The base case: The proposition is trivially true for α = 0 and |VT | ≥ 2 since any tree with at least 2
vertices has at least 2 leaves.

2. Suppose that the proposition is true for any α′ < α. Let T = (VT , ET ) be a tree with λm(T ) = α. Let
v ∈ VT be a vertex such that dT (v) = m with {s1, s2, s3, ..., sm} ∈ VT its neighbours. We denote by
F = (T1, ..., Tm) the forest obtained by deleting v from T and adding a vertex s′i and an edge {si, s′i}
to each connected component Ci. Let αi be the number of vertices of degree m of each connected
component Ci.

λ1(T ) =

m∑
i

λ1(Ti)−m

>

m∑
i

(αi ∗ (m− 2) + 2)−m

>

m∑
i

(αi) ∗ (m− 2) +m

> (α− 1) ∗ (m− 2) +m ( because α− 1 =

m∑
i

(αi) )

> α ∗ (m− 2) + 2

Proposition 4.2. For any optimal hierarchy H∗ = (QH∗ , hH∗ , G) for the DCMSH problem : ∀v ∈ VG,
|θ(v)|∑
i=1

dH∗(v
i) > B ∗ (|θ(v)| − 1) + 1.
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Proof. Proceed by contradiction. Suppose that there is an optimal hierarchy H∗ = (QH∗ , hH∗ , G) and a

vertex v ∈ VG such that
|θ(v)|∑
i=1

dH∗(v
i) ≤ B ∗ (|θ(v)| − 1) + 1. In this case, the number of edges that can

be added to the |θ(v)| occurrences without exceeding the degree constraint is less than or equal to B − 1.
We direct the hierarchy H∗. For this, we choose an arbitrary root r /∈ θ(v) and we direct H∗ from r to the
leaves. We can remove one occurrence vi of v and link at most B − 1 successors of vi to the |θ(v)| − 1 other
occurrences of v without exceeding the degree constraint B. When we remove the orientation of arcs, we
obtain a feasible hierarchy H ′ with a cost strictly lower than H∗ (H ′ has at least one less edge than H∗).
This is absurd.

Proposition 4.3. There is an optimal hierarchy H∗ = (QH∗ , hH∗ , G) for the DCMSH problem such that
for all v ∈ VG with dG(v) > B and |θ(v)| > 1, there are at least |θ(v)| − 1 occurrences of v with degree equal
to B in H∗.

Proof. We prove that it is possible to transform any optimal hierarchy H∗ for the DCMSH problem into
an optimal hierarchy H∗∗ which respects the conditions of the proposition. Let H∗ = (QH∗ , hH∗ , G) be an
optimal hierarchy for the DCMSH, and let vi be an arbitrary occurrence of the vertex v. the proposition
4.2 implies that :

B ∗ (|θ(v)| − 1) + 1 <

|θ(v)|∑
j=1,j 6=i

dH∗(v
j) + dH∗(v

i)

B ∗ (|θ(v)| − 1)−
|θ(v)|∑
j=1,j 6=i

dH∗(v
j) < dH∗∗(v

i)− 1

≤ dH∗(vi)− 2

Choose an arbitrary root r /∈ θ(v). Direct H∗ from r to the leaves. Since H∗ is optimal, vi cannot be a
leaf (otherwise it could be deleted, which would decrease the cost), thus dH∗(v

i) ≥ 2. We can disconnect

B ∗ (|θ(v)| − 1) −
|θ(v)|∑
j=1,j 6=i

dH∗(v
j) successors of vi and connect them to the other occurrences of v without

exceeding the degree constraint. The hierarchy H∗ thus obtained satis�es the conditions of the proposition
and has the same cost as the optimal hierarchy H∗∗.

Theorem 4.4. For any optimal hierarchy H∗ = (QH∗ , hH∗ , G) with B > 2 and for any vertex v ∈ VG, the
number of occurrences of v in H∗ is less than or equal to |VG|−2

B−2 .

Proof. Arguing by contradiction. Suppose that in the optimal hierarchy H∗ = (QH∗ , hH∗ , G) there is a

vertex v ∈ VG for which the number of its occurrences is strictly greater than |VG|−2
B−2 . By following the same

reasoning as in the proof of proposition 4.3, H∗ can be transformed into a hierarchy H∗∗ = (QH∗∗ , hH∗∗ , G)
containing the same vertex occurrences but such that there is at least |θ(v) − 1| occurrences of v with a
degree equal to B. We have :

λB(H∗∗) ≥ |θ(v)| − 1

>
|VG| − 2

B − 2
− 1

≥ |VG| − 2

B − 2

7



Using proposition 4.1, we obtain:

λ1(H∗∗) ≥ (
|VG| − 2

B − 2
) ∗ (B − 2) + 2

≥ |VG|

Which is absurd.

Theorem 4.5. In any optimal hierarchy H∗ = (QH∗ , hH∗ , G) for the DCMSH problem with B > 2 :

|VQ| < |VG|−2
B−2 + |VG| − 1.

Proof. Let H∗ = (QH∗ , hH∗ , G) be an optimal hierarchy for the DCMSH problem. By following the same
reasoning as in the proof of proposition 4.3, H∗ can be transformed into a hierarchy H∗∗ = (QH∗∗ , hH∗∗ , G)
containing the same vertex occurrences but such that there is at least |θ(v) − 1| occurrences of v with a
degree equal to B. So :

λB(H∗∗) >
∑
v∈VG

(|θ(v)| − 1) + 1

>
∑
v∈VG

|θ(v)| − |VG|+ 1

|VG| > λ1(H∗∗) > (
∑
v∈VG

|θ(v)| − |VG|+ 1)(B − 2) + 2

|VG| − 2

B − 2
>

∑
v∈VG

|θ(v)| − |VG|+ 1

|VG| − 2

B − 2
+ |VG| − 1 >

∑
v∈VG

|θ(v)|

The following theorem gives an upper bound for the usage of any edge in the well known minimum Hamil-
tonian walk problem.

Theorem 4.6. In an optimal hierarchy for the DCMSH problem with B = 2, the number of occurrences of
any edge is bounded by 2.

Proof. Let H∗ = (QH∗ , hH∗ , G) be an optimal hierarchy for a DCMSH with B = 2. We suppose that there
is an edge {a, b} with at least 3 occurrences in H. Since B = 2, H∗ is a walk in G. Let us orient H∗ from
one extremity (randomly chosen) to the other. Let (a1, b1), (a2, b2), and (a3, b3) be the 3 �rst occurrences of
the arc (a, b) in this directed walk. We suppose without loose of generality that the edge {a1, b1} is directed
from a1 to b1. Four cases are possible :

1. The arcs (a1, b1), (a2, b2), and (a3, b3) are all oriented from ai to bi. The oriented walk can be described
by W1(a1, b1)W2(a2, b2)W3(a3, b3)W4, where Wi are directed potentially empty sub-walks.
Let H ′ = W1(a1, b1)W2W3W4 where W3 is the directed walk W3 oriented in the opposite way.

2. The arcs (a1, b1) and (a2, b2) are oriented from a2 to b2 and (a3, b3) is oriented from b3 to a3. The
oriented walk can be described by W1(a1, b1)W2(a2, b2)W3(b3, a3)W4. Let H

′ = W1(a1, b1)W3W2W4.

3. The arcs (a1, b1), (a3, b3) and (a2, b2) are oriented from bi to ai. The oriented walk can be described
by W1(a1, b1)W2(b2, a2)W3(a3, b3)W4. Let H

′ = W1W3(a1, b1)W2W4.

4. The arcs (a2, b2) and (a3, b3) are oriented from ai to bi and (a1, b1) is oriented from b1 to a1. The
oriented walk can be described by W1(a1, b1)W2(b2, a2)W3(a3, b3)W4. Let H

′ = W1(b1, a1)W2W3W4.
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In the four cases, we can build a spanning walk H ′ with a strictly smaller weight than H∗. This contradicts
the optimality of H∗.

5. Exact solution of the DCMSH problem

As proved in [2], it is NP-hard to �nd a degree constrained spanning tree. Many integer linear programs
(ILP) have been proposed using di�erent models [22, 2]. In [23], the ILP method was successfully applied
to search a light-hierarchy structure with optimal cost for all optical multicast routing problems.
In this section, we propose the computation of the DCMSH in two steps: at �rst, we give the �ow based ILP
formulation of an equivalent DCMSH in a corresponding multi-graph problem and we compute the optimal
�ow. Based on this optimal �ow, we construct thereafter an optimal hierarchy of the DCMSH problem in the
original graph. As well as being optimal for the DCMSH problem, the hierarchy also respects Proposition
4.3.
In our model, the connectivity is preserved by �ow formulation. Thus, the initial graph has to be transformed
to a symmetric directed multi-graph. We propose to duplicate each edge using arcs in both directions (Figure
4). The number of duplications is bounded regarding Theorem 4.6 if B is equal to 2 and by Theorem 4.4
otherwise. As it is mentioned in Section 2, a hierarchy can be considered as a "non-elementary tree". A
�ow belonging to a hierarchy can transit more than once between two adjacent vertices in G. In order to
properly compute the �ow, each of its passage must be done on a distinct arc occurrence of the initial edge.
If the �ow transits on n occurrences related to an edge, then this edge must appear n times in the �nal
"non-elementary tree". Thus, we introduce a directed multi-graph Gk corresponding to the graph G such
that each edge of G is replaced by k arcs in both directions in Gk (k represents the number of duplications
of each arc). Then, we formulate an Integer Linear Program (ILP) whose variables corresponding to the
vertices and the arcs of the multi-graph and which computes a minimum cost �ow in Gk with respect of
the degree constraint. This ILP contains valid inequalities corresponding to the properties of the DCMSH.
The computed �ow induces several optimal hierarchies in Gk. Finally, from the set of solutions obtained in
Gk, using a polynomial transformation, an optimal solution for the DCMSH respecting the proprieties of
the proposition 4.3 is achieved (we proved that such a solution always exists).
Figure 3 shows the three necessary steps to achieve the exact resolution of the DCMSH problem.

The input

graph G

the multi-graph

Gk = (VGk , EGk )

Degree constrained �ow

xi
(m,n) and f i

(m,n)

optimal Hierarchy of

the DCMSH problem

polynomial

transfomation

Resolution

of the ILP

Polynomial

Transformation

Figure 3: Exact resolution schema of DCMSH problem

5.1. The �rst step : Construction of the k-graph

Let G = (VG, EG) be a connected weighted graph, we construct a directed multi-graph Gk = (VGk
, EGk

)
such that VGk

= VG and EGk
contains k arcs in each direction corresponding to each edge of EG. The

number of duplications of each edge is bounded by the result of Theorem 4.6 if B is equal to 2 and by the
result of Theorem 4.5 otherwise (Figure 4). Each arc has the same cost than the corresponding edge in G.
The interest of this formulation is that a �ow which uses an arc only once and respects the degree constraint
can be formulated in the multi-graph.

9



a b c d

(a) Graph G

a b c d

(b) Input instance of our ILP with B = 2 obtained by the modi�cation
of G

Figure 4: The construction of the k-graph Gk from the graph G

5.2. Second step : Formulation of the ILP

Our model is based on a �ow formulation. To ensure the connectivity, one unit of �ow is sent from a source
chosen arbitrarily to each of the |VGk

| − 1 other vertices of Gk. The �ow can pass more than once between
two adjacent vertices u and v, but every passage of the �ow must be done on a distinct occurrence of an arc
linking u and v. If the �ow transits on n arc occurrences then the n occurrences of the corresponding edge
in G must appear in the hierarchy. This model allows to respect the degree constraint. Indeed, each vertex
receiving a �ow coming from a distinct predecessor is allowed to have at most B − 1 successors. Thus, the
number of successors of each vertex can at most be equal to the number of its predecessors multiplied by
B − 1.
In the following the linear program computing the optimal �ow respecting the degree constraints is presented.

Network parameters:

Γ−(m) : The set of vertices which has an outgoing arc leading to node m.

Γ+
(m) : The set of vertices which can be reached from m.

C(m,n) : The cost of the arc from node m to node n. All duplications of this arc have the same cost

and C(m,n) = C(n,m).

β : Global upper bound on the number of duplications of each arc (Theorem 4.6 if B = 2 and

theorem 4.5 otherwise).

ILP variables:

xi(m,n) : Binary variable. Equal to 1 if the occurrence i of the arc (m,n) is in the output solution,

0 otherwise.

f i(m,n) : Commodity �ow variable. Denotes the quantity of �ow transiting on the occurrence i of the

arc (m,n).

The objective of our problem is to minimize the total cost of arcs belonging to the hierarchy. Hence the
general objective function can be expressed as follows:

Minimize :
∑
m∈V

∑
n∈Γ+

(m)

β∑
i=1

xi(m,n) ∗ C(m,n) (1)

10



This objective function is subject to a set of constraints, which are listed below.

Degree constraints:

∑
n∈Γ+

(s)

β∑
i=1

xi(s,n) ≤ B + (B − 1) ∗
∑

n∈Γ−(s)

β∑
i=1

xi(n,s) (2)

∑
n∈Γ+

(m)

β∑
i=1

xi(m,n) ≤ (B − 1) ∗
∑

n∈Γ−
(m)

β∑
i=1

xi(n,m) ∀m ∈ V \ {s} (3)

Constraints (2) and (3) ensure that for each vertex except the source, the number of authorized successors
is at most equal to the number of predecessors multiplied by the degree constraint B − 1 (each incoming
�ow can be divided into B − 1 outgoing �ows). Concerning the arbitrary source, the number of authorized
successors is equal to the number of predecessors multiplied by the degree constraint minus 1 plus B because
the �rst occurrence of the source can have at most B successors despite the fact that it has no predecessors.

(B − 1) ∗
∑

n∈Γ−
(m)

β∑
i=1

xi(n,m) −
∑

n∈Γ+
(m)

β∑
i=1

xi(m,n) ≤ B − 1 ∀m ∈ V (4)

Constraint (4) ensures that each vertex can have k predecessors if and only if this vertex has at least
B ∗ (k− 1) successors. This allows construction of an optimal hierarchy such that each vertex v has at most
one occurrence with degree strictly smaller than B (Proposition 4.3). This constraint is not indispensable
but reduces the branch-and-bound time by eliminating redundant solutions.∑

n∈Γ−
(m)

x1
(n,m) ≥ 1 ∀m ∈ V \ {s} (5)

Constraint (5) guarantees that each vertex except the source (which certainly has successors) has at least
one predecessor. This ensures that there are no isolated vertices on the output graph (graph generated by
the �ow).

Connectivity constraints:

In order to guarantee the connectivity of the output graph, in our ILP we have introduced some �ow
constraints adapted to the speci�cities of degree constrained hierarchies.

β∑
i=1

∑
n∈Γ+(s)

f i(s,n) =

β∑
i=1

∑
n∈Γ−(s)

f i(n,s) + |V | − 1 (6)

The source, like the other vertices of the input graph, can be duplicated in the optimal hierarchy, but only
the �rst occurrence is really a source from where commodity �ow is emitted. The other duplications are only
relays. For this reason, we permit some occurrences of the "source" vertex to have predecessors. Naturally,
the sum of commodity �ow outgoing from the source minus the �ow incoming to the source is equal to
|V | − 1, which corresponds to the �ow originally emitted from the source.

11



β∑
i=1

∑
n∈Γ−

(m)

f i(n,m) =

β∑
i=1

∑
n∈Γ+

(m)

f i(m,n) + 1 ∀m ∈ V \ {s} (7)

Equation (7) ensures that each vertex except the source consumes one and only one �ow. This constraint
also guarantees that each vertex is reachable from the source s.

f i(n,m) ≥ x
i
(m,n) i ∈ 1..β, ∀m ∈ V (8)

f i(m,n) ≤ (|V | − 1) ∗ xi(m,n) i ∈ 1..β, ∀m ∈ V (9)

Constraints (8) and (9) show that each arc should carry non-zero �ow if it is used in the output graph, and
the value of this �ow should not be beyond the total �ow emitted by the source.

Valid inequalities:

These constraints do not change the solution of our ILP but improve the solving time for our problem.
Indeed, adding these constraints reduces the solving time by 20% to 30% on average.

xi−1
(m,n) ≥ x

i
(m,n) i ∈ 1..β, ∀m ∈ V (10)

Constraint (10) is an asymmetry-breaking constraint. It ensures that the occurrence i of the arc (m,n) can
be selected in the output graph if and only if the occurrence i− 1 of this arc is already selected.∑

m∈V

∑
n∈Γ−

(m)

x1
(n,m) > |V | − 1 ∀m ∈ V (11)

This constraint ensures that the total number of arcs of occurrence 1 is greater than or equal to |V | − 1
(trivially, the number of arcs of index 1 is a lower bound of the number of arcs used).

∑
m∈V

∑
n∈Γ+

(m)

β∑
i=1

xi(m,n) <
|VG| − 2

B − 2
+ |VG| (12)

According to Proposition 4.5, this constraint ensures that the total number of arcs must be less than
|VG|−2
B−2 + |VG|.

Notice that in the case where a vertex has more than B − 1 successors and more than one predecessor,
the successors can be attributed to these occurrences in di�erent ways. In the following, we construct an
optimal hierarchy respecting the proposition 4.3.

5.3. Third step : The construction of an optimal hierarchy

We denote by Gs = (VGs , EGs) the directed graph corresponding to the minimum cost �ow. Since all vertices
are covered VGs = VGk

= VG, EGs contains only the arcs of EGk
traversed by nonzero �ow.

Proposition 5.1. The graph Gs corresponds to the image of the directed DCMSH H∗k in Gk.

Proof. Without loss of generality, let us suppose that there is only one DCMSH. Trivially, the image covers
VG. One can prove that EGs correspond to the arcs in the image of the DCMSH. Let us suppose that there
are an arc e ∈ EGk

such that e has not a correspondence in the optimum. By deleting e, a new graph G′s is
obtained such that c(G′s) < c(Gs). It is in contradiction with the fact that the computed �ow is of minimum
cost. Moreover, the deletion of e can implicate the non preservation of the �ow.
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Our third step construct the DCMSH from its image. Notice that in some cases, several DCMSH with the
same cost can be built.
In order to construct a directed DCMSH H∗k in Gk, it is necessary to distinguish between the di�erent vertex
duplications. This is possible thanks to the properties of the ILP. indeed, the constraints 2 and 3 ensure
that each vertex u with p predecessors is allowed to have at most p · (B − 1) successors. Thus, the vertex
u can be duplicated p times and link each duplication to one predecessor among the p existing ones and to
B − 1 successors among the p · (B − 1) existing ones. Note that the p − 1 �rst duplications of a vertex u
have (B − 1) successors and the last duplication has at least one, and at most (B − 1) (Proposition 4.3).
Thus, all the vertices of the optimal hierarchy respect the degree bound B. This hierarchy is also connected
as the ILP ensure the reception by each vertex of the �ow sending from the source.

Figure 5 shows an example for the construction of a directed DCMSH in Gk with B = 3. The vertex u
of the graph Gk has 4 predecessors, therefore, it is duplicated 4 times in the optimal hierarchy Hk. the 3
�rst duplications have B − 1 successors, and the last one has only one. The successors can be arbitrary
attributed to the occurrences of u.

For each vertex u ∈ VGs , we denote by d
−
Gs

(u) =
∑

v∈VGs

β∑
i=1

xi(v,u) the number of predecessors and by d
+
Gs

(u) =

∑
u∈VGs

β∑
i=1

xi(u,v) the number of successors. The construction of the optimal solution H∗ from the graph Gs

is as follows :

1. Each vertex m ∈ VGs
− {s}, is duplicated d−Gs

(u) times in H∗k . The vertex considered as the source in

the ILP is duplicated d−Gs
(s) + 1 times as the �rst occurrence has no predecessor.

2. A Breadth First Search from the source s to the leaves is done. To each vertex u of Gs corresponds
d−Gs

(u) vertices in H∗k . Let Γ+
Gs

(u) be the set of successors of u in Gs, we construct Γ+
H∗k

(u) the set of

successors of u1, u2, ..., ud
−
Gs

(u) in H∗k such that if there are p edges between u and a successors of u
then the vertices v1, v2, ...vp are added to Γ+

H∗k
(u). We divided the set Γ+

H∗k
(u) in d−Gs

(u) − 1 disjoint

sub-sets of size B−1 and one last not empty sub-set of size at most B−1. We link each occurrence of
u in H∗k to all the elements (vertices) of a distinct sub-set. Thus, each vertex of the optimal hierarchy
H∗k has at most B − 1 successors and only one predecessor. The degree constraint is then satis�ed for
all the vertices.

u

g fh eij d

b ca

s

(a) The graph Gs

u4 u1u2u3

g1 e1h1 d1j1

b1 c1a1

s1

f1
i1

(b) Directed DCMSH H∗k in Gk

u4 u1u2u3

g1 e1h1 d1j1

b1 c1a1

s1

f1
i1

(c) DCMSH H∗ in G

Figure 5: Construction of the optimal hierarchy for the DCMSH problem with B = 3 from the graph Gs

Proposition 5.2. The directed DCMSH H∗k in Gk corresponds to the DCMSH H∗ in G.
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Proof. The directed graph Gk is constructed by the duplication of the edges of G. Each arc in Gk has
the same length as the corresponding edge in G. Remember that Gk = (Tk, h

∗, Gk). Let T be the tree
obtained from Tk by deleting the orientation of its arcs. Since VG = VGk

, the mapping h∗ de�nes a hierarchy
(T, h∗, G). This hierarchy is a DCMSH H∗ in G and C(H∗k) = C(H∗).
Let us suppose that H∗ is not a minimal hierarchy respecting the degree constraint but an other hierarchy
H ′ = (T ′, h′, G) is the minimum. Let T ′k an arborescence obtained from T ′ by the orientation of the arcs
from an arbitrary chosen vertex. Using the mapping h′ a directed hierarchy H ′k = (T ′k, h

′, Gk) is obtained
in Gk such that C(H ′k) < C(H∗k), which is in contradiction with the fact that H∗k is minimal.

6. Experimentation

This section aims at illustrating the advantages of the DCMSH compared to the DCMST. Remember that
the DCMSH corresponds to the solution of the problem only when the degree constraint is an instantaneous
capacity constraint.

6.1. Simulation setup

In order to demonstrate the advantage of the proposed hierarchy structure, a set of computations is conducted
to compare it with the spanning tree structure. ILP formulations are implemented in C with the GLPK
package [24] by using the 14−node NSF network which is considered to be a realistic case. Moreover, random
graphs are generated with NetGen [25] to illustrate general cases. Figure 6a shows the modelling of the NSF
network by a weighted graph. The optimal hierarchy in Figure 6c achieves a total edge cost lower than the
optimal spanning tree (Figure 6b).
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(b) Spanning tree T optimal solution of the
DCMST (B = 2) with total edge cost equal
to 68.
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(c) Hierarchy H = (Q, h,G) optimal solution of
the DCMSH (B = 2) with total edge cost equal to
64.

Figure 6: Optimal tree versus optimal hierarchy of the NSF network

We consider six di�erent values for the number of vertices to generate random graphs: |VG| ∈ {20, 30, 40,
50, 60, 70, 80, 90, 100}. We consider a single density value (ratio between the number of edges and the number
of vertices) �xed at 2. Graphs with this density are considered as sparse graphs. We suppose that sparse
graphs are more interesting for real applications (e.g. networks). In order to have a set of signi�cant tests,
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one hundred feasible instances of the DCMST with random edge cost are generated for each value of |VG|.
Then ILP formulations are used to compute the optimal degree constrained spanning tree and the optimal
degree constrained spanning hierarchy with B = 2 and B = 3.

6.2. Simulation results

To analyse the results in a meaningful way, it is essential to consider the percentage of infeasible instances
for a given scenario with a speci�ed bound B. Note that any instance necessarily admits a feasible solution
for the DCMSH problem for any B > 2. The proportions of infeasible instances for the DCMST problem
with degree bounds B = 2 and B = 3 are presented in Table 1.

|VG| 20 30 40 50 60 70 80 90 100
B = 2 52.03% 78.81% 89.62% 91.67% 92.05% 94.28% 96.01% 96.89% 98.11%
B = 3 9.20% 33.44% 46.82% 55.12% 60.67% 63.07% 65.41% 66.81% 69.03%

Table 1: Proportion of infeasible instances for DCMST

A feasible graph for DCMST with B = 2 implies that this graph admits a Hamiltonian path. However,
our random graphs are sparse, so the probability of generating a Hamiltonian graph is low. Consequently,
the proportions of infeasible instances for the DCMST problem are high and increase with the graph size.
All the generated random graphs are feasible for the DCMSH. Thus, a �rst advantage of hierarchies over
trees is clear : contrary to the DCMST, whatever the topology of a connected graph G, this graph admits
necessarily a feasible solution for the DCMSH.

B = 2
|VG| 20 30 40 50 60 70 80 90 100

Average cost of DCMST 7487 12706 18985 22536 25195 29026 32380 35926 39148
Average cost of DCMSH 5961 9556 13825 15874 17281 19221 21053 23341 24729

Improvement 20.37% 24.79% 27.18% 29.56% 31.41% 33.78% 34.98% 35.03% 36.83%
B = 3

|VG| 20 30 40 50 60 70 80 90 100
Average cost of DCMST 6477 10623 14327 18101 21358 23269 25905 28504 30197
Average cost of DCMSH 5671 8725 11408 14006 16967 17282 18641 19924 20696

Improvement 11.80% 17.20% 20.37% 22.62% 24.11% 25.73% 28.04% 30.10% 31.60%

Table 2: Average cost of hierarchies versus trees

The numerical cost results are presented in Table 2. Since an optimal tree for DCMST is a feasible solution
for DCMSH, the optimal hierarchy cost is always less or equal to the tree cost (we mentioned the reason).
The average percentage of improvement of the cost varied between 20% and 36% when B = 2 and between
11% and 31% when B = 3. The improvement increases with the graph size. When the graph size is
high, there is a high possibility of duplication of vertices in hierarchies, which increases the probability of
improvement of the cost. But the improvement decreases as B increases. This is because, when B increases,
the probability that the minimum cost spanning tree respects the degree constraint increases. Knowing that
the minimum cost spanning tree (MST) without degree constraint can be considered as a lower bound cost
for both DCMST and DCMSH, it is normal that the average improvement decreases.

The cost improvement with hierarchies is clearer in Figures 7a and 7b, which represent the average costs
of trees and hierarchies for B = 2 and B = 3, respectively. As shown in these �gures, the average hierarchy
cost is lower than tree cost in any situation. In both �gures, the standard deviation is not very meaningful.
Figures 8a and 8b allow more precision to our results. These �gures show, for B = 2 and B = 3, the
number of instances for which there is an improvement included in a speci�c interval concerning each value
of |V |. When B = 2, for |V | ≥ 70, hierarchies obviously improve the cost by more than 30% for more than
50 instances among 100. The improvement increases as the graph size increases. Indeed, for |V | = 90 the
hierarchies improve the cost by more than 40% for 75 instances among 100. When B = 3, the improvement
is less marked. However Figure 8b shows that, for |V | ≥ 70, hierarchies improve the cost by more than
20% for more than 65 instances among 100. Since all generated graphs have a constant ratio between the
number of edges and number of vertices, the number of edges increases with the graph size. The increased
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Figure 7: Optimal spanning tree versus optimal spanning hierarchy
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Figure 8: Number of instances regarding intervals of improvement of the cost by hierarchies

improvement is normal since, the number of possible spanning hierarchies of a graph is greater than the
number of possible spanning trees (because in hierarchies, edges can be used several times).

7. Conclusion and future works

Our experiments show that when the spanning structure should not necessarily be a subgraph (the degree
constraint corresponds to an instantaneous capacity of vertices, the spanning structure can covers vertices
and edges several times), hierarchies give the optimal solution. Besides the fact that for any instance and any
upper bounds B greater than or equal to 2, there always exists a feasible solution for the DCMSH, the cost of
the optimal solution (hierarchy) of the DCMSH problem may be lower than the cost of the optimal solution
(tree) of the DCMST problem. This observation is obvious since trees are special cases of hierarchies, but
these experiments give a more accurate assessment of the cost improvement. We can note that the average
percentage cost improvement varied between 18% and 30% when the maximal authorized degree of vertex
B is equal to 2, and between 8% and 22% when B is equal to 3. The improvement increases as the graph
size increases. Let us give a more precise example. Hierarchies improve the cost by more than 20% for 90
random generated graphs among 100 with size equal to 40. These experimental results provide clear proof
that in a lot of cases spanning hierarchies are good alternatives to spanning trees. Furthermore, in [12] we
proved that The DCMSH problem is in APX while the DCMST is not and we proposed an approximation
o�ering a guarantee of B

B−1 . This ratio is the best possible with a heuristic based only on a minimum
spanning tree. Future work will consist in improving the ratio by relaxing the ILP to �nd a better lower
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bound then a spanning tree and showing that the problem is APX-complete (or to �nd a PTAS). Singh and
Lau proved that one can �nd in polynomial time a spanning tree of maximum degree at most B + 1 whose
cost is no more than the cost of a minimum cost tree with maximum degree at most B [18] (this result is
the best possible assuming that P 6= NP). It could be interesting to �nd such a result for the DCMSH
problem.
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