A Characterization of Infinite LSP Words
Abstract
G. Fici proved that a finite word has a minimal suffix automaton if and only if all its left special factors occur as prefixes. He called LSP all finite and infinite words having this latter property. We characterize here infinite LSP words in terms of $S$-adicity. More precisely we provide a finite set of morphisms $S$ and an automaton ${\cal A}$ such that an infinite word is LSP if and only if it is $S$-adic and all its directive words are recognizable by ${\cal A}$.