
HAL Id: lirmm-01587451
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01587451v1

Submitted on 14 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Encryption Switching Protocols Revisited: Switching
Modulo p

Guilhem Castagnos, Laurent Imbert, Fabien Laguillaumie

To cite this version:
Guilhem Castagnos, Laurent Imbert, Fabien Laguillaumie. Encryption Switching Protocols Revis-
ited: Switching Modulo p. CRYPTO 2017, Aug 2017, Santa Barbara, United States. pp.255-287,
�10.1007/978-3-319-63688-7_9�. �lirmm-01587451�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01587451v1
https://hal.archives-ouvertes.fr

Encryption Switching Protocols Revisited:
Switching modulo p

Guilhem Castagnos1, Laurent Imbert2 and Fabien Laguillaumie2,3

1 IMB UMR 5251, Université de Bordeaux, LFANT/INRIA
2 CNRS, Université Montpellier/CNRS LIRMM

3 Université Claude Bernard Lyon 1, CNRS/ENSL/INRIA/UCBL LIP

(This is an extended version of the paper published at CRYPTO 2017)

Abstract. At CRYPTO 2016, Couteau, Peters and Pointcheval intro-
duced a new primitive called encryption switching protocols, allowing to
switch ciphertexts between two encryption schemes. If such an ESP is
built with two schemes that are respectively additively and multiplica-
tively homomorphic, it naturally gives rise to a secure 2-party compu-
tation protocol. It is thus perfectly suited for evaluating functions, such
as multivariate polynomials, given as arithmetic circuits. Couteau et al.
built an ESP to switch between Elgamal and Paillier encryptions which
do not naturally fit well together. Consequently, they had to design a
clever variant of Elgamal over Z/nZ with a costly shared decryption.
In this paper, we first present a conceptually simple generic construction
for encryption switching protocols. We then give an efficient instantiation
of our generic approach that uses two well-suited protocols, namely a
variant of Elgamal in Z/pZ and the Castagnos-Laguillaumie encryption
which is additively homomorphic over Z/pZ. Among other advantages,
this allows to perform all computations modulo a prime p instead of an
RSA modulus. Overall, our solution leads to significant reductions in the
number of rounds as well as the number of bits exchanged by the parties
during the interactive protocols. We also show how to extend its security
to the malicious setting.

1 Introduction

Through interactive cryptographic protocols, secure multi-party computation
(MPC) allows several parties to compute the image of a pre-agreed function of
their private inputs. At the end of the interaction, anything that a party (or a
sufficiently small coalition of parties) has learned from the protocol could have
been deduced from its public and secret inputs and outputs. In other words,
the adversary’s view can be efficiently forged by a simulator that has only ac-
cess to the data publicly known by the adversary. This important area of re-
search emerged in the 80’s with the works of Yao [46] and Goldreich, Micali
and Wigderson [22]. Formal security notions can be found in [34,4,8]. Initially
considered as a theoretical subject due to overly inefficient protocols, MPC has

nowadays reached a reasonable complexity and has became relevant for practi-
cal purposes [6] especially in the 2-party case [40,33,31]. Several techniques may
be used to design secure multi-party computation. Some recently proposed so-
lutions use or combine tools from oblivious transfer [3,30], secret sharing with
pre-processing [37,16], garbled circuits [31], homomorphic encryption [11,15], and
somewhat or fully homomorphic encryption [5,2].

In [10], Couteau, Peters and Pointcheval formalized an innovative technique
to securely compute functions between two players, thanks to interactive crypto-
graphic protocols called encryption switching protocols (ESP). This mechanism
permits secure 2-party computations against semi-honest adversaries (honest-
but-curious) as well as malicious adversaries, i.e. opponents which might not
follow the specifications of the protocol. Couteau et al.’s proposal relies on a
pair of encryption schemes (Π+, Π×) which are respectively additively and mul-
tiplicatively homomorphic and which share a common message space. Further-
more, there exists switching algorithms to securely convert ciphertexts between
Π+ and Π×. More precisely, there exists a protocol Switch+→× which takes as
input an encryption C+

m of a message m under Π+, and returns a ciphertext C×m
of the same message m under Π×. Symmetrically, there exists a second protocol
Switch×→+ which computes a ciphertext form underΠ+ when given a ciphertext
for m under Π×. The advantage of this construction is that it benefits from the
intrinsic efficiency of multiplicatively homomorphic encryption like Elgamal [18]
or additively homomorphic encryption like Paillier [38]. In [10], Couteau et al.
present a natural construction for secure 2-party computation from any ESP.

Applications. Two-party computation is the most important application of an
ESP. In [11], an MPC protocol is built from only an additively homomorphic
encryption scheme which is a natural alternative to an ESP. The round com-
plexity of their protocol is in O(d), where d is the depth of the circuit C to be
evaluated, and if we suppose that the multiplicative gates can be evaluated in
parallel at each level. With an ESP, gathering the additive and multiplicative
gates separately would imply a dramatic improvement. Fortunately, the result
by Valiant, Skyum, Berkowitz and Rackoff from [45, Theorem 3], states that for
any circuit C of size s and degree d computing a polynomial f , there is another
circuit C′ of size O(s3) and depth O(log(s) log(d)) which computes the same
polynomial f . Moreover, Allender, Jiao, Mahajan and Vinay showed that the
circuit C′ is by construction layered (see [1]), in the sense that it is composed of
layers whose gates are all the same and alternatively + and ×. Roughly speak-
ing, C′ is of the form (

∑∏
)O(log(s) log(d)) where

∑
has only additive gates and∏

has only multiplicative gates. In other words, the polynomial f can be written
as a composition of O(log(s) log(d)) polynomials written in a sparse representa-
tion. The ESP allows to treat each

∑
and

∏
independently, so that the number

of switches and therefore the number of rounds is essentially O(log(s) log(d)),
instead of O(d) for [11]. Any enhancement of an ESP will naturally improve any
protocol which requires to evaluate on encrypted data a polynomial given in the

2

form of a sum of monomials. Especially it is well-suited to oblivious evaluation
of multivariate polynomials [36,27,42] or private disjointness testing [47].

Related works. The idea of switching between ciphertexts for different homo-
morphic encryption schemes was first proposed by Gavin and Minier in [20] in
the context of oblivious evaluation of multivariate polynomials. They proposed
to combine a variant of Elgamal over (Z/NZ)∗ (where N is an RSA modulus)
with a Goldwasser-Micali encryption protocol [23]. Unfortunately, as noticed
by Couteau et al. [10], their design contains a serious flaw which renders their
scheme insecure (the public key contains a square root of unity with Jacobi sym-
bol −1, which exposes the factorization of N). Another attempt was proposed
in [44] with a compiler designed to embed homomorphic computation into C
programs to operate on encrypted data. The security of this construction relies
on a very strong assumption since switching between the encryption schemes is
done using a secure device which decrypts and re-encrypts using the secret key.
In [29], Lim, Tople, Saxena and Chang proposed a primitive called switchable
homomorphic encryption implemented using Paillier and Elgamal, in the con-
text of computation on encrypted data. Again, this proposal uses an insecure
version of Elgamal, which does not satisfy the indistinguishability under a chosen
plaintext attack. It is indeed very difficult to design two compatible encryption
schemes from unrelated protocols like Paillier and Elgamal. Couteau et al. man-
aged to tune Elgamal so that it can switch with Paillier, but their construction
remains fairly expensive. In particular, they constructed a variant of Elgamal
over (Z/nZ)∗, where n is an RSA modulus, which is the same as the Paillier
modulus. As Elgamal is secure only in the subgroup Jn of (Z/nZ)∗ of elements
of Jacobi symbol +1, they need a careful encoding of the group (Z/nZ)∗. The
security relies on the DDH assumption in Jn and the quadratic residuosity as-
sumption in (Z/nZ)∗. Because their Elgamal variant does not support a simple
2-party decryption (a Paillier layer has to be added to Elgamal in order to sim-
ulate a threshold decryption), the switching protocols are intricate and specific
to their construction.

Our contributions and overview of our results. In this paper, we first
propose a generic ESP inspired by Couteau et al’s solid basis. Our construction
relies on the existence of an additively homomorphic encryption Π+ and a multi-
plicatively homomorphic encryption Π× which support a 1-round threshold de-
cryption and achieve classical security properties (IND-CPA and zero-knowledge
of the 2-party decryption). Because the message spaces must be compatible, we
suppose thatΠ+ works over a ringR andΠ× over a monoidM withR∩M = R∗
where R∗ is the set of invertible elements of R. A major issue when designing
an ESP is to embed the zero message4 into the message space for Π×, while
preserving the homomorphic and security properties. In Section 4.2, we propose

4 The zero message has to be taken into account since it can arise easily by homomor-
phically subtracting two equivalent ciphertexts of the same message.

3

a generic technique to do so, inspired by the approach employed in [10]. Con-
trary to their construction, our switching protocols over R∗ (i.e. without the
zero-message) are symmetrical, i.e. both Switch+→× and Switch×→+ follow the
same elementary description given in Figure 3. This is possible for two reasons:
first because we suppose that both Π+ and Π+ admit a single round 2-party
decryption, and second because they both possess a ScalMul algorithm which
takes as input a ciphertext of m and a plaintext α and outputs a ciphertext of
α×m (which is why we consider a ring as the message space for Π+ instead of
an additive group).

Besides, they are very efficient: as detailed in Section 5.3, they only require 2
rounds, whereas Couteau et al.’s Switch×→+ needs 6. Our full switching protocols
work over R∗∪{0}. They are built on top of the switching protocols over R∗ (i.e.
without 0), plus some additional tools like 2-party re-encryption, encrypted zero
test, and a 2-party protocol to homomorphically compute a product under Π+

(see Figure 1). Our security proofs are simpler than Couteau et al’s. In terms of
round complexity, the savings are substantial: our full ESP protocols require 7
and 4 rounds respectively, whereas Couteau et al’s ESP need 7 and 11.

In a second part, we propose an efficient instantiation of our generic protocol
over the field Z/pZ. Working over Z/pZ has several advantages compared to
Z/nZ (for an RSA modulus n): it means true message space equality, instead
of computational equality. It also means faster arithmetic by carefully choosing
the prime p. Our instantiation combines a variant of Elgamal together with the
Castagnos-Laguillaumie additively homomorphic encryption from [9]. Because
Elgamal is only secure in the subgroup of squares modulo p, our variant over
Z/pZ∗, denoted Eg∗, encodes the messages into squares and adds the encryption
of a witness bit (i.e. the Legendre Symbol) under Goldwasser-Micali [23] for its
homomorphic properties modulo 2. For Π+, we use a variant of the Castagnos-
Laguillaumie encryption scheme (CL) described in [9, Section 4]. We work over
(subgroups of) the class group of an order of a quadratic field of discriminant
∆p = −p3. Computations are done in this class group. The elements are repre-

sented by their unique reduced representative, i.e. by two integers of size
√
|∆p|.

Thus, an element of the class group requires 3 log p bits. Under slightly different
security assumptions, it is possible to further reduce the size of the elements
and to achieve a better bit complexity. We discuss these implementation options
in Section 5.3 and compare their costs with the ESP from Couteau et al. [10].
Our ESP protocol reduces the round complexity by a factor of almost 3 in the
× → + direction, while remaining constant in the other direction. Using the
variant of CL optimized for size, the bit complexity is also significantly reduced
in the × → +, while remaining in the same order of magnitude in the other.

We also propose improvements on CL that can be on independent interest.
That system makes exponentiations in a group whose order is unknown but
where a bound is known. We show that using discrete Gaussian distribution
instead of uniform distribution improves the overall computational efficiency
of the scheme. Moreover in order to use our generic construction, we devise a
2-party decryption for CL.

4

Eventually we discuss in Section 6 how to adapt our generic construction and
our instantiation against malicious adversaries.

2 Cryptographic Building Blocks

In this section, we recall some classical definitions and operations that will be
useful in the rest of the paper.

2.1 Homomorphic encryption schemes.

In Section 3, we will give a definition of Encryption Switching Protocols (ESP),
previously proposed in [10]. An ESP allows to switch a ciphertext under an en-
cryption protocol Π1 into a ciphertext under another encryption protocol Π2,
and vice versa. ESP require the protocols Π1 and Π2 to be (partially) homo-
morphic. In this paper, we consider ESP between an additively homomorphic
encryption Π+ and a multiplicatively homomorphic encryption Π×.

In Definitions 1 and 2 below, we define Π+ and Π× formally in a generic
context. An additive homomorphic encryption is most commonly defined over
a group. In our setting, Π+ is defined over a ring R to guarantee that for
m,m′ ∈ R, the product m × m′ is well defined. For genericity Π× is defined
over an algebraic structure with a single associative binary operation (denoted
×) and an identity element; i.e. a monoid. By doing so, our definition encapsu-
lates encryption schemes over (Z/pqZ)∗ ∪ {0} (with p, q primes) such as [10], as
well as our instantiation over Z/pZ presented in Section 5.

Definition 1 (Additively homomorphic encryption). Let (R, +, ×, 1R,
0R) be a ring. An additively homomorphic encryption scheme over the message
space R is a tuple Π+ = (Setup,KeyGen,Encrypt,Decrypt,Hom+,ScalMul) such
that:

Setup is a PPT algorithm algorithm which takes as input a security parameter
1λ and outputs public parameters params (these public parameters will be omitted
in the algorithms’ inputs).

KeyGen is a PPT algorithm taking public parameters as inputs and outputting a
pair of public and secret key (pk, sk).

Encrypt is a PPT algorithm which takes as input some public parameters, a
public key pk and a message m ∈ R, and outputs an encryption c.

Decrypt is a PPT algorithm which takes as input public parameters, a public key
pk (omitted in Decrypt’s input), a secret key sk and a ciphertext c, and outputs
a message m ∈ R.

Hom+ is a PPT algorithm which takes as inputs some public parameters, a
public key pk and two ciphertexts c and c′ of m ∈ R and m′ ∈ R respectively,
and outputs a ciphertext c′′ such that Π+.Decrypt(sk, c′′) = m+m′ ∈ R.

ScalMul is a PPT algorithm which takes as inputs some public parameters, a

5

public key pk, a ciphertext c of m ∈ R and a plaintext α ∈ R, and outputs a
ciphertext c′ such that Π+.Decrypt(sk, c′) = α×m ∈ R.

Remark 1. A generic algorithm for computing Π+.ScalMul(pk, c, α) is given by
2Mul+(c,Π+.Encrypt(α)), where 2Mul+ is an interactive PPT algorithm which
computes homomorphically the product of two ciphertexts for Π+. 2Mul+ is
defined more formally in Section 2.3. For our instantiation we provide a non-
interactive, more efficient version over Z/pZ (see Section 5).

Definition 2 (Multiplicatively homomorphic encryption). Let (M, ×,
1M) be a monoid. A multiplicatively homomorphic encryption scheme over the
message spaceM is Π× = (Setup,KeyGen,Encrypt,Decrypt,Hom×,ScalMul) such
that:

Setup, KeyGen, Encrypt and Decrypt as in Definition 1 except that Encrypt and
Decrypt receives the input messages from M instead of R.

Hom× is a PPT algorithm which takes as input some public parameters, a public
key pk and two ciphertexts c and c′ of m ∈ M and m′ ∈ M respectively, and
outputs a ciphertext c′′ such that Π×.Decrypt(sk, c′′) = m×m′ ∈M.

ScalMul is a PPT algorithm which takes as inputs some public parameters, a
public key pk, a ciphertext c of m ∈ M and a plaintext α ∈ M, and outputs a
ciphertext c′ such that Π×.Decrypt(sk, c′) = α×m ∈M.

Remark 2. A generic algorithm for computing Π×.ScalMul(pk, c, α) is given by
Π×.Hom×(pk, c, c′), where c′ = Π×.Encrypt(pk, α). In Section 5, we provide a
more efficient version over (Z/pZ)∗.

The above encryption schemes must be correct in the usual sense. Moreover,
we consider as a security requirement the indistinguishability under a chosen
plaintext attack (IND-CPA). We refer the reader to e.g, [25] for the standard
definition of IND-CPA.

2.2 One round 2-Party Decryption.

A crucial feature of the encryption protocols which are used in the ESP is the
fact that they support a 2-party decryption (threshold cryptosystems were intro-
duced in [17]). These encryption schemes are equipped with a Share procedure
that is run by a trusted dealer, which works as follows: it takes as input a pair
of keys (sk, pk) obtained from the KeyGen algorithm and produces two shares
skA and skB of the secret key sk. It outputs (skA, skB) and an updated public
part still denoted pk. Its decryption procedure is an interactive protocol denoted
2Dec which takes as inputs the public parameters, a ciphertext c, and the secret
key of each participant skA and skB and outputs a plaintext m which would
have been obtained as Decrypt(sk, c).

Contrary to the classical definition of threshold decryption, we suppose that
the protocol is in a single round. The protocol 2Dec(pk, c; skA; skB) is supposed
as follows: Alice starts the protocol and sends her information in one flow to

6

Bob which ends the computation and gets the plaintext. This is because in our
context, we do not decrypt plaintexts but plaintexts which are masked by a
random element. For example, protocols whose decryption only performs expo-
nentiations with secret exponents gives one round 2-party decryption by sharing
the exponentiations. This is the case for many cryptosystems.

The semantic security is adapted from the standard IND-CPA notion by
giving the adversary one of the two secret keys, as well as a share decryption
oracle which simulate the party with the other secret key. A formal definition
can be found for instance in [41,11].

We need as an additional security requirement the notion of zero-knowledge
defined in Appendix A, which means that no information on the secret keys
are leaked during an interaction with a curious adversary. Cryptosystems like
Elgamal [17] or Paillier [19] satisfy all these properties. We will propose a variant
of Elgamal and a variant of Castagnos-Laguillaumie [9] that satisfy also these
properties in Section 5.

2.3 Homomorphically computing a product with Π+.

A core routine of our protocol is the computation of aΠ+-encryption of a product
XY given Π+-encryptions of X and Y (this is why we assume that Π+ has a ring
R as message space). We describe in Fig. 1 a protocol which is implicitly used in
[10]. It is a simplified variant of a protocol proposed by Cramer, Damg̊ard and
Nielsen from [11]: the main difference comes from the fact that the result of this
2-party computation is obtained only by one of the user, who can forward the
result to the other. This leads to the use of a single randomness on Alice’s side,
instead of one on each side. We will denote by 2Mul+(pk,C+

X , C
+
Y ; skA; skB) a

call to this protocol. Again, this protocol will be a 2-round protocol since the
shared decryption is single round, and the first ciphertext can be sent along
with the shared decryption. This protocol has to be zero-knowledge in the sense
similar to those of Def. 5 and 7 (we do not write down this definition which can
be readily adapted).

Input : pk, skA,C
+
X
,C

+
Y

Input : pk, skB,C
+
X
,C

+
Y

r
$←− R

C+
r = Π+.Encrypt(pk, r)

C
+
−rX = Π+.ScalMul(pk, C

+
X
,−r)

C
+
−rX−−−−−−−−−−−−−−−→

C
+
r+Y

= Π+.Hom+(pk, C
+
Y
,C+
r)

2Dec(pk, C
+
r+Y

; skA; skB)
−−−−−−−−−−−−−−−−−−−−−−−→ Bob gets r + Y

C
+
X(r+Y)

= Π+.ScalMul(pk, C
+
X
, r + Y)

C
+
XY←−−−−−−−−−−−−−−− C

+
XY

= Π+.Hom+(pk, C
+
X(r+Y)

, C−rX)

Fig. 1. 2Mul+: 2-party protocol to compute C+
XY from C+

X and C+
Y

7

Theorem 1. Let Π+ be an additively homomorphic encryption scheme with a
zero-knowledge one round 2-party decryption. Then, the protocol described in
Fig. 1 is correct and zero-knowledge.

Proof. The correctness follows from the correctness of the encryption scheme
and its homomorphic properties. Let us prove first that it is zero-knowledge
for Alice. We describe a simulator Sim whose behavior is indistinguishable from
Alice’s behavior in front of an adversarial Bob. The simulator receives as input
the public key pk+ and will set SimShare as follows: it calls out Sim2d

Share procedure
of the zero-knowledge property of 2-party decryption for Π+ with pk+ as input.
It obtains a simulated share skB = x+

B and feeds the adversary with it. When Sim
is requested for the 2-party computation of C+

XY from C+
X and C+

Y , it receives
a pair of ((C+

X , C
+
Y), C̄) where C̄ is a ciphertext of XY , it does the following to

simulate C+
−rX , C

+
r+Y and CA:

– It picks R at random in the plaintext space and sets C+
r+Y = Encrypt(pk,R).

– Then it uses the simulator for the zero-knowledge for Alice of the 2-party
decryption Share2d

A (C+
r+Y , R, x

+
B) so that Bob decrypts R (which is equivalent

to Decrypt(sk, C+
r+Y)).

– Eventually, it sets C−rX = Hom+(C̄,ScalMul(C+
X ,−R)). This ciphertext en-

crypts XY − RX so that Bob’s final Hom+ evaluation will cancel out the
RX part and lead to C̄.

The simulated view is the same as a genuine one with R = r + Y , which
means that they are indistinguishable, and the protocol is zero-knowledge for
Alice. The protocol is obviously zero-knowledge for Bob: Bob’s contribution is
simulated by just sending C̄. ut

2.4 2-Party re-Encryption.

The final tool we need to build our encryption switching protocol is an interac-
tive 2-party protocol to re-encrypt a ciphertext from an encryption scheme Π+

intended to pk into a ciphertext of the same encryption scheme of the same mes-
sage, but intended to another key pk′. This protocol is depicted in Fig. 2. Note
that the initial ciphertext to be transformed is not known to Bob. This protocol
readily extends to the multiplicative case, which is useless for our purpose. With
a proof similar to the proof of Theorem 1, we showed that

Theorem 2. Let Π+ be an additively homomorphic encryption scheme with a
zero-knowledge one round 2-party decryption then the protocol described in Fig. 2
is correct and zero-knowledge.

8

Input : pk, pk′, skA, Cm Input : pk, pk′, skB

r
$←− R

C′−r = Π+.Encrypt(pk
′,−r)

C′−r−−−−−−−−−−−−−→
Cr = Π+.Encrypt(pk, r)
Cm+r = Π+.Hom+(pk, Cm, Cr)

2Dec(pk, C+
m+r; skA; skB)

−−−−−−−−−−−−−−−−−−−→ Bob gets m+ r
C′m+r = Π+.Encrypt(pk

′,m+ r)

C′m←−−−−−−−−−−−−− C′m = Π+.Hom+(pk′, C′m+r, C
′
−r)

Fig. 2. 2-party ReEnc+

3 Encryption Switching Protocols

The global scenario is established as follows: two semantically secure threshold
homomorphic encryption schemes, one additive, and the other multiplicative, are
at the disposal of two players. A public key is provided for each protocols, and
the matching secret key is shared among the players by a trusted dealer. Ideally,
these two encryption schemes should have the same plaintext space, which is
assumed to be a ring or a field. An encryption switching protocols makes it
possible to interactively transform a ciphertext from a source encryption scheme
into a ciphertext for the other encryption scheme (the target one) and vice versa.
The formal definitions are given in the following paragraphs.

Definition 3 (Twin ciphertexts). Let Π+ and Π× be two different encryption
schemes with plaintext and ciphertext spaces respectivelyM+, C+ andM×, C×. If
C+
m ∈ C+ and C×m ∈ C× are two encryptions of the same message m ∈M+∩M×,

they are said to be twin ciphertexts.

We will say that two ciphertexts from the same encryption scheme which
decrypt to the same plaintext are equivalent.

Definition 4 (Encryption Switching Protocols). An encryption switching
protocol (ESP) between Π+ and Π×, denoted Π+
 Π×, is a protocol involving
three parties: a trusted dealer D and two users A and B. It uses common Setup
and KeyGen algorithms to set the message space between Π+ and Π× and keys.
It is a pair of interactive protocols (Share,Switch) defined as follows:

– Share((pk+, sk+), (pk×, sk×)) → (pk, skA, skB): It is a protocol (run by D)
which takes as input two pairs of keys (pk+, sk+) and (pk×, sk×) produced
from Π+.KeyGen, Π×.KeyGen and Setup. It outputs the shares skA (sent to
A) and skB (sent to B) of (sk+, sk×) and updates the public key pk.

– Switchway((pk, skA, c), (pk, skB , C))→ C ′ or ⊥: It is an interactive protocol
in the direction way ∈ {+ → ×,× → +} which takes as common input the
public key and a ciphertext C under the source encryption scheme and as
secret input the secret shares skA and skB. The output is a twin ciphertext
C ′ of C under the target encryption scheme or ⊥ if the execution encountered
problems.

9

Correctness An encryption switching protocols Π+
 Π× is correct if for any
λ ∈ N, (params+, params×) ← Setup(1λ), for any pair of keys (pk+, sk+) ←
Π+.KeyGen(1λ, params+) and (pk×, sk×) ← Π×.KeyGen(1λ, params×), for any
shares (pk, skA, skB) ← Share((pk+, sk+), (pk×, sk×)), for any twin ciphertext
pair (C+

m, C
×
m) of a message m ∈M+ ∩M×,

Π+.Decrypt(sk+,Switch×→+((pk, skA, C
×
m), (pk, skB , C

×
m))) = m

Π×.Decrypt(sk×,Switch+→×((pk, skA, C
+
m), (pk, skB , C

+
m))) = m.

Zero-knowledge An ESP has to satisfy a notion of zero-knowledge similar to
the notion of zero-knowledge for threshold decryption (see def. 7). This property
means that an adversary will not learn any other information on the secret share
of a participant that he can learn from his own share, the input, and the output
of the protocol.

Definition 5. An encryption switching protocols Π+
 Π× is zero-knowledge
for A if there exists an efficient simulator Sim = (SimShare,SimA) which simulates
the sharing phase and the player A.

The subroutine SimShare takes as input a public key (pk+, pk×) and outputs
(pk′, sk′B) that simulates the public key obtained from the Share algorithm and
Bob’s share of the secret key.

The subroutine SimA takes as input a direction way ∈ {+ → ×,× → +}, a
source ciphertext C, a twin ciphertext C̄ and a flow flow. It emulates the output
of an honest player A would answer upon receiving the flow flow when running
the protocol Switchway((pk, skA, C), (pk, skB , C)) without skA but possibly skB,
and forcing the output to be a ciphertext C ′ which is equivalent to C̄.

Then, for all λ ∈ N, for any parameters (params+, params×) ← Setup(1λ),
for any pairs of keys (pk+, sk+) ← Π+.KeyGen(1λ, params+) and (pk×, sk×) ←
Π×.KeyGen(1λ, params×), (pk, skA, skB)← Share((pk+, sk+), (pk×, sk×)) or for
any simulated share (pk′, sk′B)← SimShare(pk), and for any adversary D playing
the role of B, the advantage

AdvzkA,Π+
Π×(D) =
∣∣∣Pr[1← DA(pk, skB)]− Pr[1← DSimA()(pk′, sk′B)]

∣∣∣
is negligible.

We define similarly an encryption switching protocols Π+
 Π× that is
zero-knowledge for B. It is zero-knowledge if it is zero-knowledge for A and B.

4 Generic Construction of an ESP on a Ring

We describe in this section a generic construction of an encryption switching
protocol in the semi-honest model. Even though an ESP could allow to switch
between any encryption schemes, its main interest is when its implemented with
homomorphic encryptions. Therefore, we start with an additively homomorphic

10

encryption Π+ and a multiplicatively homomorphic encryption Π× whose mes-
sage space is respectively a ring R and a monoid M. To fit most of the appli-
cations, we will make the assumption that M = R∗, the subgroup of invertible
elements of R, since in general the multiplicative homomorphic encryption will
have a group as message space. In particular, this means that the intersection
over which the switches are defined is R∩M = R∗.

As in [10], in the first place, we are going to describe how we can switch
between Π+-encryptions and Π×-encryptions over R∗. Then we will show how
to modify Π× in order to extend its message space to R∗ ∪ {0}.

Definition 6 (Compatible encryption protocols). Let (R,+,×) be a ring.
Let Π+ and Π× be an additively and multiplicatively homomorphic encryption
in the sense of Def. 1 and 2. They are said to be compatible if

– Π+ and Π× have respectively R and R∗ as message space,
– both of them admit a one-round 2-party decryption as defined in Section 2.2,
– there exists a common setup algorithm Setup and common KeyGen which

allows to set common parameters.

Remark 3. To illustrate this, our instantiation (resp. Couteau et al.’s instanti-
ation) switches between an additively homomorphic encryption whose message
space is the field (Z/pZ,+,×) (resp. the ring (Z/NZ,+,×)) and a multiplica-
tive homomorphic encryption whose message space is the group ((Z/pZ)∗,×)
(resp. ((Z/NZ)∗,×)) and the former is modified so that its message space is the
monoid (Z/pZ,×) (resp. ((Z/NZ)∗ ∪ {0},×)). In particular, Couteau et al.’s
make the additional algorithmic assumption that (Z/NZ)∗ is computationally
equal to Z/NZ.

Share Protocol of the ESP The keys of Π+ and Π× are first shared by a
trusted dealer, this corresponds to the Share algorithm from Def. 4. From public
parameters generated using the common Setup algorithm and two pairs of keys
(pk+, sk+) and (pk×, sk×) it outputs the secret share skA = (sk+

A , sk
×
A) for

Alice and skB = (sk+
B , sk

×
B) for Bob using the Share procedures of the 2-party

decryption of Π+ and Π×.

4.1 Switching protocols over R∗

We describe here the two 2-party switching protocols from an additive homo-
morphic encryption of m to a multiplicative one and vice versa. Contrary to
Couteau et al.’s protocol [10], the two protocols are actually the same since
both the additive and the multiplicative scheme support a ScalMul operation
and a single-round 2-party decryption. It is important to note that in our in-

stantiation, the round complexity is only 2, since the first ciphertext C
(2)
R−1 can

be sent within the flow of the 2-party decryption which is only one round (cf. 2.2
or Fig. 9 and 11). We suppose that m 6= 0 here, and more precisely the message
to be switched lies in R∩M = R∗.

11

Switching protocols between Π1.Encrypt(m) and Π2.Encrypt(m) In
Fig. 3, as our switching protocols in the two directions are the same, the pair
(Π1, Π2) is either (Π+, Π×) or (Π×, Π+).

Input : pk1, pk2, sk1
A, C

(1)
m Input : pk1, pk2, sk1

B , C
(1)
m

R
$←− R∗

C
(1)
mR = Π1.ScalMul(pk1, C(1)

m , R)

C
(2)

R−1 = Π2.Encrypt(pk
2, R−1)

C
(2)

R−1
−−−−−−−−−−−−−→

2Dec(pk1, C
(1)
mR; sk1

A; sk1
B)

−−−−−−−−−−−−−−−−−−−→ Bob gets mR

C(2)
m←−−−−−−−−−−−−− C(2)

m = Π2.ScalMul(pk2, C
(2)

R−1 ,mR)

Fig. 3. 2-party Switch1→2 from Π1 to Π2 where (Π1, Π2) is either (Π+, Π×) or
(Π×, Π+).

The correctness of these two protocols is clear. They are generic and and the
switch from Π× to Π+ is highly simpler than the one in [10] (ours is 2-round
instead of 6-round) and our instantiation will keep this simplicity. We prove in
the following theorem that they are zero-knowledge, and the security proof itself
is also very simple. It only relies on the zero-knowledge property of the shared
decryptions.

Theorem 3. The ESP between Π+ and Π×, whose switching routines are de-
scribed in Figure 3, is zero-knowledge if Π+ and Π× are two compatible encryp-
tion schemes which have zero-knowledge one round 2-party decryptions.

Proof. The proof consists in proving that after a share of the secret keys, both
switching procedures are zero-knowledge for Alice and Bob. Let us start with
the proof that the ESP is zero-knowledge for Alice. We are going to describe a
simulator Sim whose behavior is indistinguishable from Alice’s behavior in front
of an adversarial Bob.
SimShare: The simulator receives as input the public key (pk+, pk×) and simulates
the Share procedure as follows: it calls out the Sim2d

Share procedures of the zero-
knowledge property of Alice for 2-party decryption of respectively Π+ and Π×
with pk+ and pk× as input. In particular it obtains sk′B = (x+

B , x
×
B) it can feed

the adversary with. When Sim is requested for a switch, it receives a pair of twin
ciphertexts (C, C̄).

Game G0. This game is the real game. The simulator generates all the se-
cret shares in an honest way and gives his share to Bob. It plays honestly any
switching protocols on an input (C, C̄) using Alice’s secret key.

Game G1. The first modification concerns the additive to multiplicative di-
rection. The setup and key generation are the same as in the previous game.

12

When requested to participate to a Switch+→×, with (C, C̄) as input, the simu-
lator picks uniformally at random x ∈ R∗ and sets C+

mR = Π+.Encrypt(x) and
C×R−1 = Π×.ScalMul(C̄, x−1). The simulator then concludes the protocol hon-
estly. This game is indistinguishable from the previous since, as x is random,
it is equivalent to a genuine protocol using R = x/m, where m is the plaintext
under C and C̄.

Game G2. In this game, we modify the shared decryption for Π+ using the simu-
lator of 2-party decryption. First, the simulation gives the key x+

B obtained by the
simulation of the shares to Bob. Then after Sim simulated the pair (C+

mR, C
×
R−1)

as above, it uses the simulator Sim2d
A (C+

mR, x, x
+
B , ·) for the 2-party decryption

of Π+ to interact with Bob, where C+
mR is an encryption of x. Thanks to the

property of this simulator this game is indistinguishable from the previous one
(note that the key x+

B is only used in that part of the protocol). Eventually,
the last computation done by Bob, Π×.ScalMul(C×R−1 , x) gives a multiplicative
ciphertext of m equivalent to C̄.

Game G3. In this game, we address the multiplicative to additive way. The
setup and key generation are the same as in the previous games. As in Game
G1, when requested to participate to a Switch×→+, with (C, C̄) as input, the
simulator picks uniformally at random x ∈ R∗ and sets C×mR = Π×.Encrypt(x)
and C+

R−1 = Π+.ScalMul(C̄, x−1). Then, Sim continues honestly the protocol.
This game is indistinguishable from the previous one.

Game G4. The sharedΠ× decryption is modified as in GameG2. The simulation
now gives the simulated key x×B to Bob and then uses the simulator for the 2-
party decryption of Π× with ciphertext C×mR and corresponding plaintext x.
Thanks to the property of this simulator this game is indistinguishable from
the previous one. Again, Bob’s last computation Π+.ScalMul(C+

R−1 , x) gives a
ciphertext equivalent to C̄.
In conclusion, the advantage of the attacker is negligible.

We now prove that the ESP is zero-knowledge for Bob, by describing a simu-
lator Sim whose behavior is indistinguishable from Bob’s behavior in front of an
adversarial Alice. The simulator receives as input the public key pk = (pk+, pk×)
and simulates the Share procedure as above and feed the adversary (Alice) with
the corresponding secret key. When Sim is requested for a switch, it receives a
pair of twin ciphertexts (C, C̄).

In both directions, the simulation is trivial, since Bob’s only flow is the final
forward of the twin ciphertext (we have suppose that the 2-party decryption has
only one round from Alice to Bob), which is done by sending the C̄ ciphertext.
This is indistinguishable from a true execution since C̄ is a random ciphertext
which encrypts the same plaintext that C. ut

4.2 Modification of Π× to embed the zero message

One technical issue to design switching protocols between Π+ and Π× is to
embed the zero message into Π×’s message space so that the message spaces

13

match. To do so, we need to modify the Π× encryption. We will use a technique
quite similar to those in [10]: During their encryption, if the message m is equal
to 0, a bit b is set to 1. It is set to 0 for any other message. Then, the message
m + b (which is never 0) is encrypted using their Elgamal encryption. As this
encryption scheme is no longer injective, to discriminate an encryption of 0, the
ciphertext is accompanied by two encryptions under classical Elgamal of T b and
T ′b where T, T ′ are random elements. We note that these two encryptions are in
fact encryptions of b which are homomorphic for the or gate : If b = 0, we get
an Elgamal encryption of 1 and if b = 1, an Elgamal encryption of a random
element (which is equal to 1 only with negligible probability). Thanks to the
multiplicativity of Elgamal, if we multiply an encryption of b and an encryption
of b′, we get an Elgamal encryption of 1 only if b = b′ = 0 and an Elgamal
encryption of a random element otherwise. In [10] the second encryption of b is
actually an extractable commitment, the corresponding secret key is only known
by the simulator in the security proof.

In our case, we use the additively homomorphic encryption Π+ to discrimi-
nate the zero message: Π+ is used to encrypt a random element r if m = 0 and 0
otherwise. As a consequence, it will be possible to directly obtain an encryption
of b̄ (the complement of the bit b used during encryption) under Π+ using the
zero-testing procedure during the switch from Π0

× to Π+ (see Fig. 7). This gives
a real improvement compared to [10] when we instantiate our generic protocols.
As in [10] we add a useless second encryption of r to be used by the simulation in
the security proof. Our modification is formally described in Fig. 4. The Hom×
procedure is obtained by applying the Hom× procedures of Π×, and Π+. For
the ScalMul procedure, which corresponds to a multiplication by a plaintext α,
it applies the ScalMul procedure of Π× if α 6= 0 and add an encryption of 0 to
the additive part. If α = 0, it outputs an encryption of 0.

The protocol Π0
× directly inherits the indistinguishability under a chosen

message attack from those of Π× and Π+. By a standard hybrid argument, we
can prove the following theorem, whose proof is omitted.

Theorem 4. If Π+ and Π× are IND-CPA, then Π0
× is also IND-CPA.

4.3 Full Switching protocols

Encrypted zero-test In [10] an encrypted zero test (EZT) to obliviously detect
the zero messages during switches is presented. In our case, EZT takes as input
a ciphertext C+

m from the additively homomorphic encryption Π+ of a message
m and outputs a Π+ ciphertext C+

b of a bit b equals to 1 if m = 0 and equals to
0 otherwise. The EZT has to be zero-knowledge in the sense that there exists an
efficient simulator for each player which, on input a pair of twin ciphertext (C, C̄),
is indistinguishable from these honest players. This simulator runs without the
secret share of the the user it simulates.

During the security proof, the simulator will obtain the bit b thanks to the
knowledge of the secret key which decrypts the additional encryption of r ap-
pended during encryption (see Fig. 4).

14

Algo. (Π+
 Π0
×).KeyGen(1λ)

1. params← (Π+
 Π×).Setup(1λ)
2. ((pk×, sk×), (pk+, sk+))← (Π+
 Π×).KeyGen(1λ, params)
3. (pk′, sk′)← Π+.KeyGen(1λ, params)
4. Set pk ← (pk×, pk+, pk′) and sk ← (sk×, sk+, sk′)
5. Return (pk, sk)

Algo. Π0
×.Encrypt(pk,m)

1. Parse pk as (pk×, pk+, pk′)

2. If m = 0 set b← 1 and r
$←− R∗

otherwise set b← 0 and r ← 0
3. C×m+b ← Π×.Encrypt(pk

×,m+ b)

4. C+
r ← Π+.Encrypt(pk

+, r)
5. C′r ← Π+.Encrypt(pk

′, r)
6. Return (C×m+b, C

+
r , C

′
r)

Algo. Π0
×.Decrypt(sk, (C

×
m+b, C

+
r , C

′
r))

1. Parse sk as (sk×, sk+, sk′)
2. B ← Π+.Decrypt(sk

+, C+
r)

3. If B 6= 0 return 0
else
return Π×.Decrypt(sk

×, C×m+b)

Fig. 4. Π× over R : Π0
×

This EZT protocol is done using garbled circuits techniques. An alternative
would be to use techniques based on homomorphic encryption [32]. The resulting
protocol is described in Fig. 5. The function H : R∗ −→ {0, 1}κ (for a security
parameter κ) belongs to a universal hash function family (in practice, this will
be a reduction modulo 2κ of the integer representation of an element of R). We
denote by eq the function that on input (u, v) ∈ {0, 1}κ outputs 1 if u = v and
0 otherwise and we denote by Garble(f) the computation of a garbled circuit
evaluating the function f .

The correctness of the protocol comes from the fact that the last three lines of
the protocol compute the encryption of bA⊕ bB by homomorphically evaluating
bA + bB − 2bAbB from the encryptions of bA and bB . By construction, bA⊕ bB =
eq(r′, r′′) which is equals to 1 if m = 0 and 0 otherwise, with probability 1−2−κ.
This is exactly the encryption of the bit b. This protocol is zero-knowledge (see
[10]). Using [28], the communication needed is 8κ2 bits of preprocessing for the
garbled circuit and κ2 bits and κ oblivious transfers for the online phase (cf. [10,
Fig. 4]).

4.4 2-party ESP between Π+.Encrypt(m) and Π0
×.Encrypt(m)

The protocol of Fig. 6 is quite similar to the one of [10]. First we use the EZT
sub-protocol to get a Π+ encryption of the bit b. A notable difference with the

15

Input : pk, skA,C
+
m Input : pk, skB

r
$←− R∗

r′ ← H(r)

C+
r ← Π+.Encrypt(pk, r)

C
+
m+r

← Π+.Hom+(pk, C+
m,C

+
r)

2Dec(pk, C
+
m+r

; skA; skB)
−−−−−−−−−−−−−−−−−−−−−−−→ Bob gets m + r

r′′ ← H(m + r)

bA
$←− {0, 1}

C
+
bA
← Π+.Encrypt(pk, bA)

C(·) ← Garble(bA ⊕ eq(r′, ·))
C(·)

−−−−−−−−−−−−−−−→ bB ← C(r
′′)

C
+
bB←−−−−−−−−−−−−−−− C

+
bB
← Π+.Encrypt(pk, bB)

C
+
−2bAbB

← Π+.ScalMul(pk, C
+
bB

,−2bA)

C
+
bB−2bAbB

← Π+.Hom+(pk, C
+
bB

,C
+
−2bAbB

)

Cb ← Π+.Hom+(pk, C
+
bA

,C
+
bB−2bAbB

)

Fig. 5. EZT: 2-party protocol to compute C+
b from C+

m

Input : (pk×, pk+, pk′), skA, C
+
m Input : (pk×, pk+, pk′), skB , C

+
m

Alice gets C+
b

EZT(C+
m)

←−−−−−−−−−−−−→

Alice gets C′b
ReEnc+(pk+, pk′, C+

b)
←−−−−−−−−−−−−−−−→ Bob gets C′b

C+
m+b = Π+.Hom+(pk+, C+

m, C
+
b)

C+
m+b−−−−−−−−−−−−−→

Alice gets C×m+b

Switch+→×(C+
m+b)←−−−−−−−−−−−−→ Bob gets C×m+b

r, r′
$←− R∗

C+
rb = Π+.ScalMul(pk+, C+

b , r)
C′
r′b = Π+.ScalMul(pk′, C′b, r

′)

C×m = (C×m+b, C
+
rb, C

′
r′b)

C×m−−−−−−−−−−−−−→

Fig. 6. 2-party Switch+→× from Π+ to Π0
× over R∗ ∪ {0}

Input : pk, skA, C
×
m = (C×m+b, C

+
r , C

′
r) Input : pk, skB , C

×
m = (C×m+b, C

+
r , C

′
r)

Alice gets C+
m+b

Switch×→+(C×m+b)←−−−−−−−−−−−−→ Bob gets C+
m+b

Alice gets C+

b̄

EZT(C+
r)

←−−−−−−−−−→

Alice gets C+

b̄(m+b)
= C+

m

2Mul+(C+
m+b, C

+

b̄
; skA; skB)

←−−−−−−−−−−−−−−−−−−−−−→ Bob gets C+

b̄(m+b)
= C+

m

Fig. 7. 2-party Switch×→+ from Π0
× to Π+ over R∗ ∪ {0}

16

protocol of [10] is that this encryption of b can be used directly to set an element
of the ciphertext for Π0

+, which saves many rounds in the interaction. Since the
bit b is encrypted twice (this second encryption is only used during the security
proof), the ReEnc+ protocols allows to re-encrypt the output of EZT to the right
public key. Then, thanks to the homomorphic property of the Π+ scheme, Alice
can construct an additive encryption of m + b and the Switch+→× protocol of
Fig. 3 is used to get the Π+-encryption of m + b. The two ciphertexts of b are
randomized to get a proper multiplicative ciphertext.

In Fig. 7, starting from a multiplicative ciphertext ofm, we run an Switch×→+

with the first component of C×m, which is a Π×-encryption of m+ b. Hence, we
get C+

m+b. Then, we run the EZT protocol on the second component C+
r and

the output the encryption of a bit b′ whose value is 1 when r = 0, i.e., when
b = 0 and 0 otherwise. Therefore b′ = b̄ and EZT actually outputs an encryption
of b̄. It is now possible to homomorphically remove the bit b remaining in the
Π+-encryption of m+ b, C+

m+b. Inspired by the implicit technique used in [10],

we use the 2Mul+ protocol to obtain, from C+
b̄

and C+
m+b, a Π+-encryption of

(m+ b)b̄ which is equal to a Π+-encryption of m.

Note that we can not simply use the fact that m + b + b̄ − 1 = m over Z
to get m: The expression m + b is really equal to the message m plus the bit b
only for fresh multiplicative ciphertexts. After an homomorphic multiplication
between a ciphertext of a non zero message with a ciphertext of zero it becomes
something random. As a result, we have to multiply it by b̄ to get 0.

The zero-knowledge property of our ESP essentially comes from the fact that
each routine (ReEnc+ and 2Mul+) is individually zero-knowledge, inherited from
the zero-knowledge of the 2-party decryption of the encryption protocols. We
also use the fact that the encryption schemes are IND-CPA, in order to be able
to simulate intermediate ciphertexts. This means that the assumptions in our
theorem are weak and very natural.

Theorem 5. The ESP between Π+ and Π0
× whose routines are described in

Fig. 6 and 7 is zero-knowledge if Π+ and Π× are two compatible encryptions
that are IND-CPA and whose 2-party decryptions are zero-knowledge, and EZT
is zero-knowledge.

Proof. (sketch) The full proof of this theorem can be found in Appendix B.
This proof can be sketched as follows: First we give the secret key sk′ to the
simulation. From a pair of twin ciphertexts, it allows the simulation to know the
bit that encode the fact that the plaintext is 0 or not. With that knowledge, the
simulation can retrieve the ciphertexts that constitute the input and the output
of each building block, and use their zero-knowledge simulator to emulate them.
Then, we remove the knowledge of sk′ from the simulation which replaces each
input and output by random ciphertexts. Thanks to the IND-CPA property of
the encryption schemes this is indistinguishable from the previous step. As a
result, the whole protocol is simulated without knowing any secret. ut

17

5 Instantiation of our Generic Construction on Z/pZ

In this section we provide an instantiation of our generic construction on a field
Z/pZ for a prime p, by describing an additively homomorphic encryption and
a multiplicatively homomorphic one. Both schemes enjoy an Elgamal structure.
For the additively homomorphic encryption scheme, we will use as a basis the
scheme introduced in [9] (denoted CL in the following). It uses the notion of a
DDH group with an easy DL subgroup, which is instantiated using class groups
of quadratic fields. For the multiplicatively homomorphic scheme, we devise a
variant of the traditional Elgamal encryption over the whole group (Z/pZ)∗.
Both schemes are described in the next subsection. We also describe their 2-
party decryption, since it is required by the generic construction.

5.1 Additively Homomorphic Scheme over Z/pZ

Castagnos-Laguillaumie encryption The encryption scheme from [9] is ad-
ditively homomorphic modulo a prime p. The general protocol is well suited for
relatively small p. For the ESP context, we need a large message space as p must
be at least of 2048 bits for the security of the Elgamal protocol. As a result,
we use the first variant of CL described in [9, Section 4]. This variant is defined
with subgroups of the class group of an order of a quadratic field of discrimi-
nant ∆p = −p3. Thus all computations are done in this class group. Note that
elements are classes of ideals, that can be represented by their unique reduced
elements, i.e., by two integers of roughly the size of

√
|∆p|. As a consequence, a

group element can be represented with 3 log p bits.
We provide some improvements detailed in the following. The CL scheme

does exponentiations to some random powers in a cyclic group of unknown order.
Let us denote by g a generator of this group. Only an upper bound B on this
order is known. In order to make the result of these exponentiations look like
uniform elements of the cyclic group, the authors of [9] choose to sample random
exponents from a large enough uniform distribution, and more precisely over
{0, . . . , B′} where B′ = 2λ−2B, so that the resulting distribution is as distance
to uniform less than 2−λ.

However, it is more efficient to use a folded discrete Gaussian Distribution
instead of a folded uniform distribution. Let z ∈ Z and σ > 0 a real number and
let us denote by ρσ(z) = exp(−πz2/σ2) a Gaussian centered function and define
the probability mass function Dσ over Z by Dσ(z) := ρσ(z)/

∑
z∈Z ρσ(z).

If z is sampled from Dσ, we have |z| > τσ with probability smaller than√
2πeτ exp(−πτ2) (cf. [35, Lemma 2.10]). We denote by τ(λ) the smallest τ such

that this probability is smaller than 2−λ.
If we set σ =

√
ln(2(1 + 2λ+1))/πB, Lemma 1 of Appendix C shows that the

distribution obtained by sampling z from Dσ and computing gz is at distance
less than 2−λ to the uniform distribution in 〈g〉.

For instance for λ = 128, we only add, in the worst case, 6 iterations in
the square and multiply algorithm to compute gz, whereas one has to add 126
iterations with a folded uniform distribution.

18

Description of the scheme. We denote by CL.Gen a parameter generator for CL.
It takes as input 1λ and outputs a tuple (p, g, f, σ). This tuple is such that p is a
prime satisfying p ≡ 3 (mod 4) so that computing discrete logarithms in C(−p),
the ideal class group of the quadratic order of discriminant −p, takes 2λ times.
Then g ∈ C(−p3) is a class of order ps where s is unknown and expected to be of
the order of magnitude of the class number of C(−p): a concrete implementation
for g is given in [9, Fig. 2]. It consists in generating a random ideal of the
maximal order of discriminant −p, and lifting it in the order of discriminant
−p3. Eventually, f ∈ C(−p3) is the class of the ideal p2Z + ((−p +

√
−p3)/2)Z

and σ will be the standard deviation of the Gaussian Distribution discussed
before: σ =

√
ln(2(1 + 2λ+1))/πB, with B = log(p)p3/2/(4π).

The scheme relies on the notion of a DDH group with an easy DL subgroup.
It is IND-CPA under the DDH assumption in the group generated by g. On the
other hand, in the subgroup of order p generated by f, there is a polynomial time
algorithm, denoted CL.Solve which takes as input an element of 〈f〉 and which
outputs its discrete logarithm in basis f. We refer the reader to [9] for concrete
implementation of CL.Gen and CL.Solve. The resulted scheme is given in Fig. 8.

CL.Setup(1λ)

1. (p, g, f, σ)← CL.Gen(1λ)
2. Return params := (p, g, f, σ)

CL.KeyGen

1. Pick x
$←− Dσ and set h← gx

2. Set pk ← h and set sk ← x.
3. Return (pk, sk)

CL.Decrypt(sk, (c1, c2))

1. Set M← c2/c
x
1

2. m← CL.Solve(M)
3. Return m

CL.Encrypt(pk,m)

1. Pick r
$←− Dσ

2. Compute c1 ← gr

3. Compute c2 ← fmhr

4. Return (c1, c2)

CL.Hom+(pk, (c1, c2), (c′1, c
′
2))

1. Pick r
$←− Dσ

2. Return (c1c
′
1g
r, c2c

′
2h
r)

CL.ScalMul(pk, (c1, c2), α)

1. Pick r
$←− Dσ

2. Return (cα1 g
r, cα2 h

r)

Fig. 8. Castagnos-Laguillaumie over Z/pZ: CL

Theorem 6 ([9]). The CL scheme of Fig. 8 is an additively homomorphic en-
cryption scheme over Z/pZ, IND-CPA under the DDH assumption in the ideal
class group of the quadratic order of discriminant −p3.

One round 2-party decryption for CL We now devise in Fig. 9 a one round
2-party decryption for CL as defined in Section 2.2, i.e. subroutines to share

19

the secret key and the interactive protocol for decryption. As the scheme has
an Elgamal structure, it can be readily adapted from the threshold variant of
the original Elgamal scheme (cf. [39] for instance) with a simple additive secret
sharing of the key x = xA + xB . However, as the group order is unknown, this
secret sharing must be done over the integers. This kind of sharing has been
addressed before (cf. [14, Section 4] for instance).

As x is sampled from Dσ, we saw before that x ∈ [−τ(λ)σ, τ(λ)σ] for a small
τ(λ) except with negligible probability. Then the integer xA is taken uniformly
at random in the interval [−τ(λ)σ2λ, τ(λ)σ2λ], and xB = x − xA. This choice
makes the secret sharing private. Note that in that case, there is no gain in using
a Gaussian Distribution to generate the shares. We refer the interested reader
to Appendix D for details.

CL.Share(sk, pk)

1. Parse x = sk
2. Pick xA

$←− {−τ(λ)σ2λ, . . . , τ(λ)σ2λ} and set xB = x− xA
3. Return (pk, skA = xA, skB = xB)

CL.2Dec(pk, C = (c1, c2); skA = xA; skB = xB)

Input : pk, skA, C Input : pk, skB

c1,A ← c
xA
1

C, c1,A−−−−−−−−−−−−−→ Compute M← c2/(c
xB
1 c1,A)

m← CL.Solve(M)

return m

Fig. 9. 2-party Decryption for CL

Theorem 7. The 2-party Decryption for CL described in Fig. 9 is correct and
zero-knowledge.

Proof. Correctness follows from the shared exponentiation. Let us prove first
that the protocol is zero-knowledge for Alice (see Def. 7 in Appendix A).

For the secret key shares, the simulator Sim2d
Share picks x′ from Dσ, x′A

$←−
{−τ(λ)σ2λ, . . . , τ(λ)σ2λ} and set x′B = x′−x′A. As the secret sharing is private,
the distribution of x′B is statistically indistinguishable from the distribution of
the real xB (see Appendix D for the computation of the statistical distance).

Then we describe the simulator Sim2d
A which emulates Alice. From a cipher-

text C, a plaintext m, it computes M = fm. Then it simulates c1,A by setting

c1,A = c2/(Mc
x′B
1), so that Bob’s computations leads to M. The value sent by

the simulation is thus perfectly indistinguishable from the real one.

20

It is straightforward to see that the protocol is zero-knowledge for Bob: secret
key shares are simulated as previously, and x′A is obviously indistinguishable from
the real xA, and then Bob sends nothing during the protocol. ut

5.2 Multiplicatively Homomorphic Scheme over Z/pZ

Elgamal over (Z/pZ)∗ Let q be an odd Sophie Germain prime, and let us
denote by p the associated prime, i.e., p = 2q + 1. The DDH assumption is
widely supposed to hold in the subgroup of order q of (Z/pZ)∗ which is the
subgroup of quadratic residues modulo p, denoted Sp. The Elgamal cryptosystem
defined in Sp is multiplicatively homomorphic and semantically secure if the DDH
assumption holds in that subgroup.

It is well-known that the DDH assumption does not hold in the whole group
(Z/pZ)∗. As a result, in order to extend the message space to (Z/pZ)∗, we
need to encode elements of (Z/pZ)∗ as quadratic residues. The situation is quite
similar to the Elgamal over (Z/nZ)∗ of [10], but actually simpler to handle since
we work modulo a prime p and not modulo an RSA integer n (in particular, we
can publicly compute square roots or distinguish quadratic and non quadratic
residues and we do not have to hide the factorization of n).

Since p = 2q + 1, we have p ≡ 3 (mod 4), and −1 is not a quadratic residue
modulo p. Let m ∈ (Z/pZ)∗, let us denote by (m/p) the Legendre symbol of m
modulo p. Then (m/p) ×m is a quadratic residue mod p. Let L be the group
morphism from ((Z/pZ)∗,×) to (Z/2Z,+) that maps m to 0 (resp. to 1) if m is
a quadratic residue (resp. is a non quadratic residue). The map

((Z/pZ)∗,×) −→ (Sp,×) × (Z/2Z,+)
m 7−→

(
(m/p)×m , L(m)

)
is a group isomorphism. As a consequence we can encode elements of (Z/pZ)∗ as
a square plus one bit. The square can be encrypted with the traditional Elgamal
encryption, and the bit L(m) has to be encrypted separately. In order to have
a multiplicatively homomorphic encryption, L(m) has to be encrypted with a
scheme that is homomorphic for the addition in Z/2Z. We choose Goldwasser-
Micali encryption [23] for that. The drawback is that we need an additional
assumption, namely the Quadratic Residuosity assumption (QR) for the secu-
rity of our protocol. To avoid that, an idea could have been to encrypt L(m) as
an integer in the exponent with another Elgamal scheme or with the additive
scheme of the previous Subsection. However, after computing the product of `
messages m1, . . . ,m` over encrypted data, the decryption would give more infor-
mation than the Legendre symbol of the product of the mi’s, namely

∑n
i=1 L(mi)

in the integers, instead of modulo 2. Moreover, this extra information has to be
taken into account to devise a zero-knowledge 2-party decryption. As this in-
formation can not be simulated, this gives a complex 2-party protocol, perhaps
by using an extra homomorphic encryption scheme like in [10]. Note that a so-
lution consisting in randomizing L(m) by adding a (small) even integer, with a
Gaussian Distribution, for instance, still leaks the number ` of multiplications

21

that have been made. As a result, it seems to be an interesting open problem to
devise an encryption scheme that allows homomorphic addition in Z/2Z, or that
simulates it without leaks, without relying on a factorization-based assumption
(in [10], the same problem was handled more smoothly thanks to the fact that
the authors worked with a composite modulus).

Description of the scheme. Let λ be a security parameter. Let GM.Gen be a
parameter generator for the Goldwasser-Micali encryption scheme. It takes as
input 1λ and outputs (N, p′, q′) such that p′, q′ ≡ 3 (mod 4) are primes and
N = p′q′ is such that factoring N takes 2λ time. We use the threshold variant
of Goldwasser-Micali described in [26] to define a suitable 2-party decryption.

We also define Eg∗.Gen a parameter generator for Elgamal. It takes as input
1λ and outputs (p, q, g) such that q is a prime, p = 2q + 1 is a prime such that
computing discrete logarithms in (Z/pZ)∗ takes 2λ times, and g a generator of
Sp, i.e., and element of (Z/pZ)∗ of order q. We depict in Fig. 10, the adaptation
of Elgamal over the whole multiplicative group (Z/pZ)∗, denoted Eg∗.

Eg∗.Setup(1λ)

1. Set (p, q, g)← Eg∗.Gen(1λ)
2. Return params := (p, q, g)

Eg∗.KeyGen

1. Set (N, p′, q′)← GM.Gen(1λ)
2. Add N to params

3. Pick x
$←− {0, . . . , q − 1}

4. Set h← gx

5. Set pk ← h
6. Set sk ← (x, p′, q′)
7. Return (pk, sk)

Eg∗.Decrypt(sk, (c1, c2, c3))

1. Set M ← c2/c
x
1 (mod p)

2. Set L← c
(N−p′−q′+1)/4
3 (mod N)

3. If L = 1 return M else return −M

Eg∗.Encrypt(pk,m)

1. Pick r
$←− {1, . . . , q − 1}

2. Pick r′
$←− {1, . . . , N − 1}

3. Set c1 ← gr (mod p)
4. Set c2 ← (m/p)mhr (mod p)
5. Set c3 ← (−1)L(m)r′2 (mod N)
6. Return (c1, c2, c3)

Eg∗.Hom×(pk, (c1, c2, c3), (c′1, c
′
2, c
′
3))

1. Pick r
$←− {0, . . . , q − 1}

2. Pick r′
$←− {1, . . . , N − 1}

3. Return (c1c
′
1g
r, c2c

′
2h
r, c3c

′
3r
′2)

Eg∗.ScalMul(pk, (c1, c2, c3), α)

1. Pick r
$←− {0, . . . , q − 1}

2. Pick r′
$←− {1, . . . , N − 1}

3. Set c′1 ← c1g
r (mod p)

4. Set c′2 ← (α/p)αc2h
r (mod p)

5. Set c′3 ← (−1)L(α)c3r
′2 (mod N)

6. Return (c′1, c
′
2, c
′
3)

Fig. 10. Elgamal over (Z/pZ)∗: Eg∗

22

The following theorem is a consequence of the previous discussion and the

properties of the Goldwasser-Micali variant. Note that modulo N , c
(N−p′−q′+1)/4
3

equals 1 if c3 is a quadratic residue, and −1 if c3 has Jacobi symbol 1 and is not
a quadratic residue.

Theorem 8. The Eg∗ scheme of Fig. 10 is multiplicatively homomorphic over
(Z/pZ)∗, and it is IND-CPA under the DDH assumption in the subgroup of
quadratic residues of (Z/pZ)∗ and the QR assumption in (Z/NZ)×.

One round 2-party decryption for Eg∗ We describe in Fig. 11 a one round
2-party decryption for Eg∗. This protocol is adapted from the threshold variant
of the original Elgamal scheme and the basic threshold Goldwasser-Micali of [26,
Subsection 3.1].

This simple protocol gives a huge performance improvement compared to
the Elgamal over (Z/nZ)∗ of [10]: in that work, after the exponentiations, a
CRT reconstruction is needed to recover m, and a quantity that leads to the
factorization of n must be shared. To make this 2-party reconstruction zero-
knowledge, the authors use an additional additively homomorphic encryption,
and have to do the reconstruction over encrypted data. As a result, the protocol
is very complex (implicitly described in [10, Fig. 2]) with 5 rounds instead of 1.

Eg∗.Share(sk, pk)

1. Parse (x, p′, q′) = sk

2. Pick xA
$←− {0, . . . , q − 1} and set xB ≡ x− xA (mod q)

3. Pick pA, pB , qA, qB
$←− {0, . . . , N} such that pA ≡ pB ≡ qA ≡ qB ≡ 0 (mod 4)

4. Set p0 = p′ − pA − pB and q0 = q′ − qA − qB
5. Set pk ← (pk,N0 = (N − p0 − q0)/4)
6. Return (pk, skA = (xA, x

′
A), skB = (xB , x

′
B))

Eg∗.2Dec(pk, C = (c1, c2, c3); skA = (xA, pA, qA); skB = (xB , pB , qB))

Input : pk, skA, C Input : pk, skB

c1,A ← c
xA
1 (mod p)

c3,A ← c
(−pA−qA)/4

3 (mod N)
C, c1,A, c3,A−−−−−−−−−−−−−→ Set M ← c2/(c

xB
1 c1,A) (mod p)

Set L← c3,Ac
(−pB−qB)/4

3 C
N0
3 (mod N)

If L = 1 return M else return −M

Fig. 11. 2-party Decryption for Eg∗

23

Theorem 9. The 2-party Decryption for Eg∗ described in Fig. 11 is correct and
zero-knowledge.

Proof. The proof is similar to the proof of Theorem 7. For the Elgamal part of the
protocol, secret key shares are simply taken uniformly at random in {0, . . . , q−1},
and the value sent by Alice is computed as c1,A = c2/(McxB1), where M =
(m/p)m. The Goldwasser-Micali part of the protocol is also simulated in a similar
fashion from c3 and L(m) and the key share from a fake factorization of N just
as in [26, Subsection 3.1] ut

Extension of the message space from (Z/pZ)∗ to Z/pZ We use the generic
construction depicted in Fig. 4 with the additively homomorphic scheme de-
scribed in the previous subsection. We denote by Egp.Gen, a group generator

which combines the generators for Eg∗ and CL : on input 1λ, it first runs Eg∗.Gen,
which outputs (p, q, g). The prime p equals 3 mod 4 and is such that computing
discrete logarithms in (Z/pZ)∗ takes time 2λ. As the best algorithms for com-
puting such discrete logarithms are faster than the algorithms for computing
discrete logarithms in the class group C(−p) (the sub-exponential complexity
is respectively Lp[1/3, (64/9)1/3 + o(1)] and Lp[1/2, 1 + o(1)], see [43,24]), this
prime p is compatible with the prime generated by CL.Gen. As a result Egp.Gen
executes CL.Gen by setting this prime p and adapts the others quantities accord-
ingly. The resulting scheme is described in Fig. 12 for completeness.

5.3 ESP over Z/pZ: Efficiency and Comparisons

In Table 1 we give the round complexity (rc) and bit complexity (bc) of our
algorithms and we compare our full ESP protocols with that of Couteau et
al. [10]. For sake of clarity, and because it is identical to that of [10], we omit
the complexities resultant from the garbled circuit-based EZT protocols. Our
2-party decryption algorithms (both for CL and Eg∗) only require 1 round. Note
that we carefully analyzed the interactive algorithms so as to gather consecutive
flows when possible within a single round. For example our 2Mul+ and ReEnc+

protocols (see Fig. 1 and 2) require only 2 rounds since Alice can send C+
rX

(resp. C ′−r) and her 2Dec data simultaneously. For the same reason, our generic
switches in R∗ also require 2 rounds. Therefore, our (Π+
 Π0

×).Switch+→×
needs 7 rounds: 2 for the initial EZT, 2 for ReEnc+, 2 for sending C+

m+b and the
Switch+→×, and 1 for sending the final result to Bob. In the other direction,
the initial Switch×→+ and the EZT are independent and can thus be processed
simultaneously in 2 rounds. Adding 2 rounds for the 2Mul+, the round complexity
for (Π+
 Π0

×).Switch×→+ adds up to 4 rounds only. In comparison, and using
the same optimizations, the ESP switches from Couteau et al. requires 7 and 11
rounds respectively.

We express the communication cost in terms of the number of bits ex-
changed between the parties. The bit complexity (bc) is given as a function
of the ring/field size. Observe that although, the best (conjectured) asymp-
totic complexity to compute a discrete logarithm in the ideal class group used

24

Egp.Setup(1λ)

1. Set (p, q, g, g, f, σ)← Eg∗.Gen(1λ)
2. Return params := (p, q, g, g, f, σ)

Egp.KeyGen

1. Set (N, p′, q′)← GM.Gen(1λ)
2. Add N to params

3. Pick x×
$←− {0, . . . , q − 1}

4. Set h× ← gx
×

5. Pick x+
$←− Dσ and set h+ ← gx

+

6. Pick x′
$←− Dσ and set h′ ← gx

′

7. Set pk ← (h×, h+, h′)
8. Set sk ← (x×, p′, q′, x+, x′)
9. Return (pk, sk)

Egp.Decrypt(sk, (c1, c2, c3))

1. Set M← c2/c
x+

1

2. Set B ← CL.Solve(M)
3. If B 6= 0 return 0

4. Set M ← c2/c
x×
1 (mod p)

5. Set L← c
(N−p′−q′+1)/4
3 (mod N)

6. If L = 1 return M else return −M

Egp.Encrypt(pk,m)

1. If m = 0 set b← 1 and r
$←− (Z/pZ)∗

otherwise set b← 0 and r ← 0
2. Pick r×

$←− {1, . . . , q − 1}
3. Pick r×

′ $←− {1, . . . , N − 1}
4. Set c1 ← gr

×
(mod p)

5. Set c2 ← ((m + b)/p)(m + b)h×
r×

(mod p)

6. Set c3 ← (−1)L(m+b)r×
′2

(mod N)

7. Pick r+
$←− Dσ

8. Compute c1 ← gr
+

, c2 ← frh+
r+

9. Pick r′
$←− Dσ

10. Compute c′1 ← gr
′
, c′2 ← frh′

r′

11. Return (c1, c2, c3, c1, c2, c
′
1, c
′
2)

Fig. 12. Elgamal over Z/pZ : Egp

25

in CL is in Lp[1/2, 1 + o(1)] (see. [24]), one must consider a prime p that is
large enough to guarantee that the DLP over (Z/pZ)∗ is hard, i.e such that
Lp[1/3, (64/9)1/3 + o(1)] > 2λ (see e.g. [43]). In Table 1, `, represents the bit
length of p for our protocol over Z/pZ and of n for Couteau et al.’s protocol
over Z/nZ.

For our protocols, we give the bit complexities for two variants: for the version
of CL used in this paper bc is the cost deduced from Fig. 8. The drawback of
this scheme is that ciphertexts are represented with 2 elements of C(−p3) which
gives 2 × 2× 3

2 × ` = 6` against 2` for Paillier. Therefore, we include a column
with the cost bc’ that correspond to the so-called “faster variant” of CL from [9,
Section 4]. This variant defines ciphertexts in C(−p)×C(−p3), represented with
`+ 3` = 4` elements. Moreover, for 2-party decryption we only have to share an
exponentiation in C(−p) instead of C(−p3) so the cost drops from 6`+ 3` = 9`
to 4`+ ` = 5`.

For the former variant, the security depends upon DDH in C(−p3) whereas
for the faster variant it is based upon the following indistinguishability argu-
ment: Let g be a generator of a subgroup of C(−p). After having chosen m,
the adversary is asked to distinguished the following distributions : {(gx, gy,
ψ(gxy)), x, y ← Dσ/p} and {(gx, gy, ψ(gxy)fm), x, y ← Dσ/p}, where Dσ is the
Gaussian Discrete distribution defined in Subsection 5.1 and ψ is a lifting map
from C(−p) to C(−p3), defined in [9, Lemma 3]. We denote LDDH by the cor-
responding assumption. The algorithmic assumptions required for each protocol
are presented in Table 2.

Table 1. Comparisons of the round complexities and bit complexities of our protocols
(v1 and v2) with that of Couteau et al. [10]. (∗) For the EZT protocol the communi-
cation cost for the garbled circuit is omitted as it is the same for v1, v2 and [10] (cf.
Subsection 4.3 for the cost).

round complexity bit complexity

Algorithms this work [10] v1 v2 [10]

Eg∗.2Dec 1 n/a 5` 5` n/a
CL.2Dec 1 n/a 9` 5` n/a
CL.EZT(∗) 2 n/a 15` 9` n/a
CL.2Mul+ 2 n/a 21` 13` n/a
CL.ReEnc+ 2 n/a 21` 13` n/a

(Π+
 Π×).Switch+→× 2 2 15` 11` 10`
(Π+
 Π×).Switch×→+ 2 6 17` 13` 36`

round complexity bit complexity

ESP protocols this work [10] v1 v2 [10]

(Π+
 Π0
×).Switch+→× 7 7 69` 45` 37`

(Π+
 Π0
×).Switch×→+ 4 11 53` 35` 61`

26

Table 2. Algorithmic assumptions

This work (v1) This work (v2) [10]

DDH in C(−p3) LDDH in C(−p3) DCR
DDH in Sp DDH in Sp DDH in Sn
QR QR QR

6 ESP secure against malicious adversaries

To reach the security against malicious adversaries, it is necessary to add zero-
knowledge proofs by all parties that every computation is done correctly with
the knowledge of every plaintext. In [10], the zero-knowledge proofs are classical
Schnorr-like proofs and range proofs, but they need also to design a new strong
primitive called twin ciphertext proof (TCP) to prove that a pair of ciphertexts
from two different encryption schemes is actually a pair of twin ciphertexts. This
allows to avoid generic circuit-based zero-knowledge proofs, but still requires a
costly cut-and-choose technique (which can be amortized). This proof consists
first in gathering a large pool of random genuine twin ciphertexts (proved thanks
to the knowledge of the plaintext and the randomness, and of the homomorphic
property of the encryption schemes). This part is done once for all. During an
ESP, each time a twin ciphertext proof is needed, a fresh twin ciphertext pair is
taken from the pool to perform a simple co-linearity proof.

To enhance our generic construction against malicious adversaries, we use the
same method. In fact, the additional properties needed for the homomorphic
encryption schemes are the same as in [11]: the Π+ and the Π× encryption
schemes must support zero-knowledge proof of plaintext knowledge, proof that
the ScalMul operation has been performed correctly and also support a 2-party
decryption in the malicious setting. Then we use the TCP technique as in [10]
for twin ciphertext proofs.

As a result, we modify our generic construction by adding such proofs in each
step of the switching protocols. This ensures honest behavior and thus make the
ESP secure in the malicious settings. In particular this brings soundness in the
sense of [10]: no malicious player can force the output of an ESP not to be a twin
ciphertext.

The protocols Π+ and Π× described in the instantiation from the previous
section support the required features. For the Π× encryption scheme, we need
zero knowledge proofs and 2-party decryption secure against malicious adver-
sary for the classical Elgamal and for the Goldwasser-Micali encryption scheme.
This can be done with classical methods: zero-knowledge proof à la Schnorr,
adding verification keys to the public keys for 2-party decryption and proof of
exponentiations to the same power. Note that for Goldwasser-Micali, we need
to modify key generation to use strong primes p′ and q′ as in [26].

For the Π+ encryption scheme which is based on the Castagnos-Laguillaumie
encryption scheme, we need proofs for an Elgamal variant in a group of unknown

27

order, namely a class group of a quadratic order. Then 2-party decryption secure
against malicious adversary is obtained as for the Π× scheme.

Generalizations of Schnorr proofs in group of unknown orders have been
addressed extensively in [7]. In this framework, a generalized Schnorr proof can
be used if the cyclic group considered is what is called a safeguard group, which
is roughly a group whose set of small orders elements is small and known, and
for which it is hard to find roots of elements. The case of class groups has been
explicitly taken in account for example in [13,12], where it is argue in particular
that class groups of discriminant −p, C(−p), can be considered to have the
properties of safeguard groups. As a result, we can apply directly the framework
of [7] for the faster variant of CL mentioned in Subsection 5.3 as exponentiations
are defined in C(−p) for this variant.

7 Conclusion

The encryption switching protocol is a promising cryptographic primitive for-
malized by Couteau et al. in [10]. We propose in this article a generic framework
to build such an ESP. Our approach makes the design of an ESP simple and
efficient. In particular, we propose an instantiation whose round complexity is
dramatically improved compared to Couteau et al., since we reduce by a factor
3 the number of round in the multiplicative to additive direction (while we have
the same number of rounds in the other way). Again, in terms of bit complexity,
our switching protocol in the multiplicative to additive direction gains a factor
almost 1.7, while in the other direction Couteau et al.’s switch is smaller by a
factor 1.2. This is essentially because in our case, the additively homomorphic
encryption has large ciphertexts. In particular, any additively homomorphic en-
cryption satisfying the conditions of our construction with smaller elements will
allow to gain in terms of bit complexity. Our instantiation, which is secure in the
semi-honest model under classical assumptions can be extended to the malicious
case. We believe that it is possible to improve our instantiation by deviating a bit
more from the generic construction. Moreover, an interesting open problem is to
design an encryption scheme which is homomorphic for the + in F2 without the
factorization assumption. A consequence could be to have an ESP whose security
relies only on a discrete logarithm related assumption. Designing a more efficient
encrypted zero-test is also a direction which will allow a significant improvement
in the protocol.

Acknowledgments: The authors would like to thank Geoffroy Couteau for
fruitful discussions, careful reading and constructive comments on the prelimi-
nary version of this work. We also express our thanks to Bruno Grenet, Romain
Lebreton, Benôıt Libert and Damien Stehlé for their feedbacks.

The authors are supported in part by the French ANR ALAMBIC project
(ANR-16-CE39-0006), by the ”Investments for the future” Programme IdEx
Bordeaux - CPU (ANR-10-IDEX-03-02), and by ERC Starting Grant ERC-
2013-StG-335086-LATTAC.

28

References

1. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic cir-
cuits: depth reduction and size lower bounds. Theoretical Computer Science 209(1),
47 – 86 (1998)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold FHE. In: EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer
(2012)

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 673–701. Springer (2015)

4. Beaver, D.: Foundations of secure interactive computing. In: CRYPTO’91. LNCS,
vol. 576, pp. 377–391. Springer (1992)

5. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–
188. Springer (2011)

6. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A prac-
tical implementation of secure auctions based on multiparty integer computation.
In: FC 2006. LNCS, vol. 4107, pp. 142–147. Springer (2006)

7. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer (2009)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

9. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer (2015)

10. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In:
CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 308–338. Springer (2016)

11. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299.
Springer (2001)

12. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142.
Springer (2002)

13. Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and sig-
nature schemes in general groups. In: EUROCRYPT 2002. LNCS, vol. 2332, pp.
256–271. Springer (2002)

14. Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed
RSA key generation. In: TCC 2010. LNCS, vol. 5978, pp. 183–200. Springer (2010)

15. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: CRYPTO 2003. LNCS, vol. 2729,
pp. 247–264. Springer (2003)

16. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer
(2013)

17. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: CRYPTO’89. LNCS, vol.
435, pp. 307–315. Springer (1990)

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

29

19. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: FC 2000. LNCS, vol. 1962, pp. 90–104. Springer (2001)

20. Gavin, G., Minier, M.: Oblivious multi-variate polynomial evaluation. In: IN-
DOCRYPT 2009. LNCS, vol. 5922, pp. 430–442. Springer (2009)

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th ACM STOC. pp. 197–206. ACM Press (2008)

22. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: 19th ACM STOC.
pp. 218–229. ACM Press (1987)

23. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

24. Jacobson Jr., M.J.: Computing discrete logarithms in quadratic orders. Journal of
Cryptology 13(4), 473–492 (2000)

25. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. Chap-
man & Hall/CRC, 2nd edn. (2014)

26. Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer (2002)

27. Kiayias, A., Yung, M.: Secure games with polynomial expressions. In: Automata,
Languages and Programming, 28th International Colloquium, ICALP 2001, Pro-
ceedings. LNCS, vol. 2076, pp. 939–950. Springer (2001)

28. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and ap-
plications. In: ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer (2008)

29. Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure arithmetic computa-
tion using switchable homomorphic encryption. Cryptology ePrint Archive, Report
2014/539 (2014)

30. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer (2011)

31. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: SCN 08. LNCS, vol. 5229,
pp. 2–20. Springer (2008)

32. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer (2013)

33. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party compu-
tation system. In: Proceedings of the 13th USENIX Security Symposium, August
9-13, 2004, San Diego, CA, USA. pp. 287–302. USENIX (2004)

34. Micali, S., Rogaway, P.: Secure computation (abstract). In: CRYPTO’91. LNCS,
vol. 576, pp. 392–404. Springer (1992)

35. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

36. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

37. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: CRYPTO 2012. LNCS, vol. 7417, pp.
681–700. Springer (2012)

38. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238. Springer (1999)

39. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In: EUROCRYPT’91. LNCS, vol. 547, pp. 522–526.
Springer (1991)

30

40. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer
(2009)

41. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology 15(2), 75–96 (2002)

42. Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate poly-
nomials. J. Mathematical Cryptology 7(1), 1–29 (2013)

43. Thomé, E.: Algorithmic Number Theory and Applications to the Cryptanalysis
of Cryptographical Primitives. Habilitation à diriger des recherches, Université de
Lorraine (2012)

44. Tople, S., Shinde, S., Chen, Z., Saxena, P.: AUTOCRYPT: enabling homomorphic
computation on servers to protect sensitive web content. In: ACM CCS 13. pp.
1297–1310. ACM Press (2013)

45. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation
of polynomials using few processors. SIAM Journal on Computing 12(4), 641–644
(1983)

46. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS. pp. 160–164. IEEE Computer Society Press (Nov 1982)

47. Ye, Q., Wang, H., Pieprzyk, J., Zhang, X.M.: Efficient disjointness tests for private
datasets. In: ACISP 08. LNCS, vol. 5107, pp. 155–169. Springer (2008)

A 2-Party Decryption : zero-knowledge

Definition 7. An encryption scheme Π supporting 2-party decryption is zero-
knowledge for A if there exists an efficient simulator Sim2d = (Sim2d

Share,Sim2d
A)

which simulates the sharing phase and the player A.
The subroutine Sim2d

Share takes as input a public key pk and outputs (pk′, sk′B)
that simulates the public key obtained from the Share algorithm and Bob’s share
of the secret key.

The subroutine Sim2d
A takes as input a public key pk a ciphertext c, a plaintext

m, possibly skB and a flow flow. It emulates honest player A’s answer upon
receiving the flow flow when running the protocol 2Dec(pk, c; skA; skB) without
skA, and forcing the output to be m.

Then, for all λ ∈ N, for any (params ← Setup(1λ), for any pair of keys
(pk, sk)← Π.KeyGen(1λ, params), for any shares (pk, skA, skB)← Share(pk, sk)
or for any simulated share (pk′, sk′B) ← Sim2d

Share(pk), and for any adversary D
playing the role of B, the advantage

AdvzkA,Π(D) =
∣∣∣Pr[1← DA(pk, skB)]− Pr[1← DSim2d

A ()(pk′, sk′B)]
∣∣∣

is negligible.
We define similarly that Π is zero-knowledge for B. It is zero-knowledge if

it is zero-knowledge for A and B.

B Proof of Theorem 5

Theorem 5. The ESP between Π+ and Π0
× whose routines are described in

Fig. 6 and 7 is zero-knowledge if Π+ and Π× are two compatible encryptions

31

that are IND-CPA and whose 2-party decryption are zero-knowledge, and EZT
is zero-knowledge.

Proof. Once again, the proof consists in proving that after a share of the secret
keys, both switching procedures are zero-knowledge for Alice and Bob. As both
switches consist in a sequence of protocols that have been independently proved
secure, the main issue in the proof consists in showing that their sequential
combination is still secure. The reduction will get a pair (C, C̄) of input and
output of the whole switches, and the main idea is to construct such intermediate
pairs for each independent subroutines using random ciphertexts.

ZK for Alice. Let us start with the proof that the ESP is zero-knowledge for
Alice. We describe a simulator Sim whose behavior is indistinguishable from
Alice’s behavior in front of an adversarial Bob.
SimShare: The simulator receives the public key (pk+, pk×) and sets SimShare as
follows: it calls out the Sim2d

Share procedures of the zero-knowledge property of
Alice for 2-party decryption of respectively Π+ and Π× with pk+ and pk× as
input. In particular it gets sk′B = (x+

B , x
×
B) it feeds the adversary with. When

Sim is requested for a switch, it receives a pair of twin ciphertexts (C, C̄).

Game G0. This game is the real game. The simulator simulates all the secrets
in an honest way and gives his share to Bob. It plays honestly any switching
protocols on an input (C, C̄) using Alice’s secret key.

Game G1. Each time Sim is requested for a switch (Switch×→+ or Switch+→×)
it is given as input (C, C̄) and one of the two is an encryption of m under
Π0
×, which contains an Π+-encryption under pk′ of the bit b. The simulation

uses its knowledge of the secret key sk′ to decrypt the bit b. This game is
indistinguishable from the previous one.

Game G2. A modification is done for the additive to multiplicative case. The
setup and key generation are the same as in the previous game. When requested
to participate to a Switch+→×, with (C, C̄) as input, the simulator uses its knowl-
edge of b to query the EZT’s simulator for Alice with (C,Π+.Encrypt(pk+, b)) as
input. By definition of the simulator for the EZT, this game is indistinguishable
from the previous one.

Game G3. After the simulation of the EZT procedure, Alice and Bob gets C+
b .

The simulation now uses the ReEnc+’s simulator for Alice with this C+
b and

Π+.Encrypt(pk′, b) as input, once again thanks to the knowledge of b. Thanks to
the zero-knowledge property of ReEnc+, this game is indistinguishable from the
previous one.

Game G4. Now the simulation uses the simulator for the Switch+→×. As the
simulation knows C̄, it can extract its first component which is a Π×-encryption
of m + b. Therefore, it calls Switch+→×’s simulator for Alice with C+

m+b (ob-

tained by genuinely computing the Hom+ after the re-encryption) and C̄’s first
component. Because we proved that the Switch+→× procedure is zero-knowledge
in Theorem 3, this game is indistinguishable from the previous one.

32

Game G5. The final flow from the switching protocols is simply the forward
of C̄ since it is a twin ciphertext of C: this game is indistinguishable from the
previous one.

Game G6. The modification now concerns the multiplicative to additive case.
The simulation has as input (C, C̄) where C is an encryption of a message
m under Π0

× and C̄ is a twin ciphertext. Sim still knows the bit b. To sim-
ulate the switch, it uses the corresponding simulator for Alice with, as in-
put the first component of C which is an encryption using Π× of m + b and
Π+.Hom+(pk+, C̄,Π+.Encrypt(pk+, b)) which is an encryption m+ b under Π+.
Because of the zero-knowledge property of this switch proved in Theorem 3, this
game is indistinguishable from the previous one.

Game G7. The simulation now simulates the EZT procedure: it feeds the corre-
sponding simulator with the second component of C (which is an encryption of a
random element under Π+) and Π+.Encrypt(pk+, b̄), which is a valid input. The
EZT being zero-knowledge, this game is indistinguishable from the previous.

Game G8. The last step of the switch in the multiplicative to additive direction
is the computation of the Π+ encryption of a product. The simulation makes a
call to the simulator of the 2Mul+ protocol with as input: the output of the first
switch, the output of the EZT and C̄. As this is a genuine input, this game is
indistinguishable from the previous.

Game G9. From now on, the simulation will not use its knowledge of b and
of the secret key sk′. To do so, in the additive to multiplicative direction, the
simulation will feed the EZT simulator with (C,C ′), where C ′ is a ciphertext of
a random element in R under pk, instead of an encryption of b (see Game G2.).
Thanks to the IND-CPA property of Π+, this game is indistinguishable from
the previous one.

Game G10. The simulation runs the simulator for the re-encryption process with
C+
b and a ciphertext of random element in R under pk′, instead of an encryption

of b, and again, because Π+ is IND-CPA, this game is indistinguishable from
the previous one.

Game G11. In the multiplicative to additive direction, the simulator of the first
ESP is run with the first component of C and a ciphertext of a random element
in R∗ under pk×. Since Π× is IND-CPA, this game is indistinguishable from the
previous one.

Game G12. The simulation now runs the EZT simulator with the second com-
ponent of C and a ciphertext of a random element of R instead of an encryption
of b̄. Because Π+ is IND-CPA, this game is indistinguishable from the previous.

Game G13. The simulation now uses the procedure SimShare to simulates Bob’s
keys. By the zero-knowledge property of the 2-party decryption, this game is
indistinguishable from the previous one and the adversary is in an environment
completely simulated by Sim.

33

ZK for Bob. The proof that the protocols are zero-knowledge for Bob follows
the same lines. It is a bit simpler since Bob has less contribution in the additive
to multiplicative direction and the switch the other way around is essentially
symmetric. ut

C Uniform Sampling in a Cyclic Group of unknown
order With a Folded Discrete Gaussian Distribution

Let σ > 0 a real number and let us denote by ρσ the Gaussian centered func-
tion: ρσ(x) = exp(−π||x||2/σ2) for x ∈ Rn. For a lattice Λ, we note ρσ(Λ) =∑
x∈Λ ρσ(x) and define the probability mass function DΛ,σ over Λ by

∀x ∈ Λ,DΛ,σ(x) = ρσ(x)/ρσ(Λ).

The smoothing parameter was defined by Micciancio and Regev [35]. For a
lattice Λ, and a real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such
that ρ1/s(Λ

? \ {0}) 6 ε.
From [35, Lemma 3.3], we have :

Fact 1

ηε(Λ) 6

√
ln(2n(1 + 1/ε))

π
λn(Λ).

The following result is implicit in [35] and made explicit in [21, Corollary
2.8].

Fact 2 Let Λ,Λ′ be n-dimensional lattices of same rank, with Λ′ ⊆ Λ. Then
for any ε ∈ R, 0 < ε < 1/2, any σ > ηε(Λ

′), (DΛ,σ mod Λ′) is within statistical
distance at most 2ε of the uniform distribution over (Λ mod Λ′).

Lemma 1. Let G be a cyclic group of order q, generated by g. Consider the ran-
dom variable X with values in G with uniform distribution: Pr[X = h] = 1

q for
all h in G, and Y the random variable with values in G defined as follows. Draw

y from DZ,σ, with σ > q
√

ln(2(1+1/ε))
π , and define Y = gy. Then, ∆(X,Y) 6 2ε.

Proof. Let X ′ the random variable with values in {0, . . . , q − 1} with uniform
distribution and Y ′ defined by Y ′ = (y mod q) where y is drawn from DZ,σ.
Clearly, ∆(X,Y) = ∆(X ′, Y ′).

We apply the Fact 1 with n = 1 and Λ′ = qZ. As λn(qZ) = q, we get

ηε(qZ) 6 q

√
ln(2(1 + 1/ε))

π
·

Then we apply Fact 2 with Λ = Z and Λ′ = qZ. For any σ > q
√

ln(2(1+1/ε))
π ,

∆(X ′, Y ′) 6 2ε.

34

D Sharing Secret over the Integers

As one of the protocols involved in our construction needs a group of unknown
order, sampling the secret key exponents and their shares is an issue. We have
to use secret sharing of integers in a public interval. This problem has already
been addressed, for example in [14, Section 4].

We adapt here this solution to fit our special case of sharing between two
parties. Let s ∈ {−N, . . . , N} be an integer to be shared. Let λ be a security
parameter. Let sA (resp. sB) be the share of Alice (resp. of Bob). The idea is
to take sA uniform in a very large interval in order to make the distribution
sB = s − sA almost independent of s. More precisely, the share sA is drawn
uniformly in {−2λN, . . . , 2λN} and sB := s− sA.

Let us show that the scheme is private. Let s′ ∈ {−N, . . . , N} be another
secret shared as (s′A, s

′
B) with s′A uniform in I := {−2λN, . . . , 2λN} and s′B :=

s′ − s′A. The scheme is private if sA (resp. sB) is indistinguishable from s′A
(resp. s′B). For sA and s′A it is clear. The share sB and s′B follow the uniform
distribution on I respectively translated by −s and −s′. We next show that
the statistical distance ∆(sB , s

′
B) between the random variables sB and s′B is

negligible. Denote p = 1/(2λ+1N + 1) = Pr[sA = z] for z ∈ I. The statistical
distance ∆(sB , s

′
B) will be maximal if |s − s′| is maximal, for example, wlog, if

s = N and s′ = −N . Let J = {z ∈ Z,Pr[sB = z] > Pr[s′B = z]}. It is clear that
J = {−2λN − N, . . . ,−2λN + N − 1} and that for z ∈ J , Pr[sB = z] = p and
Pr[s′B = z] = 0. As a result as ∆(sB , s

′
B) =

∑
z∈J Pr[sb = z] − Pr[s′B = z], one

has ∆(sB , s
′
B) = 2Np < 2N/(2λ+1N) = 2−λ which is negligible.

In Appendix C, we saw that Discrete Gaussian distribution can improve
uniform sampling in certain cases. However for sharing over the integer, there is
no gain: suppose that sA is taken from DZ,σ for some σ and sB = s − sA. As
before, we compute the statistical distance between two shares of different secrets
s and s′, and this still reduces to computing the distance between DZ,σ − s and
DZ,σ−s′. Let t = |s′−s|. This statistical distance is the same than between D1 :=
DZ,σ and D2 := DZ,σ+t. Let J ⊂ Z be the subset of integers z such that D1(z) >
D2(z). Equality occurs when z2 = (z− t)2, i.e., when z = t/2. So J = {z < t/2}.
As a result ∆(D1, D2) =

∑
z<t/2D1(z)−D2(z) =

∑
−t/26z<t/2D1(z) 6 t/ρσ(Z),

where the equality comes with the cancellation of the terms, and the inequality
by upper bounded all the terms by the value in 0. Then, as ρσ(Z) > σ, we
eventually find that ∆(D1, D2) < t/σ = |s′ − s|/σ < 2N/σ.

As a result the standard deviation must be chosen as σ = 2λ+1N in order to
make that distance negligible, so we obtain something similar to what we saw
with the uniform distance.

35

	Encryption Switching Protocols Revisited: Switching modulo p

