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I. CONTEXT

A. Marine biodiversity assessment

Marine biodiversity is increasingly affected by human ac-
tivities such as climate change, habitat destruction and fishing.
In this context a key challenge for marine biologists is to be
able to monitor biodiversity at large scale and high tempo-
ral frequency. However, underwater observations of marine
biodiversity based on free or SCUBA diving are practically
limited in terms of maximal depth and duration of diving
because of physiological and technical constraints. In this
context, the use of an underwater robotics system has an
evident interest, but requires a detailed analysis of the expert
protocols, in order to guarantee that the robotic system is in
synergy with the expert needs. In this paper, we present 3
different functioning modes for the robotic system that we
have established with our biologist partners from the Marbec1

laboratory. The robotic aspect is handled by the LIRMM2

laboratory and its underwater division, the Explore team3.
This paper is structured to present the biological and robotic
context first. Then, a generic control will be demonstrated.
Then, we present our control structure where the control is
applied following the 3 modes. Finally, we present simulation
results.

B. Biologist’s protocols

In accordance with our biologist partners, we have defined 3
main observation protocols (Fig. 1), required by most marine
biodiversity assessments : Transect, Localized Observation
and Species Tracking. This paper presents 2 of these modes
(biologically and their transpositions in robotics) and their
associated control laws. It also presents the results of the
simulation of the 2 modes. The Species Tracking mode is a
combination of the first 2 modes.

Transect [21], [2], [22] is used to study the fish community
in a given area. First, a reference is virtually defined and the
diver mission is to swim along this reference at a constant

1http://www.umr-marbec.fr
2http://www.lirmm.fr
3http://explore.lirmm.fr

Fig. 1. Observation protocols

depth, and to count and identify all the fishes visible within
a given distance [19]. To execute a robotic transect, the robot
must be able to autonomously follow the reference, and to
acquire pertinent information on the environment to allow
the specialist to proceed to the counting and identification
of species. Typically, these information are video streams.
From a robotics point of view, we define this situation as
co-control where some parts on the robotic system is under
autonomous control (situation w.r.t the transect’s reference),
while the mission progression and the direction of observation
is left to the operator control.

Localized Observation is the mode where the observation
of a static feature (e.g. coral heads) is required. The diver
mobility allows to investigate this region of interest with
different angles of view. The transposition of this objective
within the robotic system implies again a co-control situation,
where the user has to be able to change or modify the direction
and distance of observation, while the system autonomously
centers the interesting feature in the sensors field of view (e.g.
video or acoustic camera), and insures its own safety (avoiding
collision with environment).

These 2 different protocols are converted into 2 different
robotic modes. The mobility of the required system imposes
to get rid of the classic gimble lock singularity [8], due to
the Newton’s angle representation. Hence a Quaternion based
formalism has been chosen.



C. The Robotic System

The system we use is based on a robot ROV 2, which
embeds 12 thrusters, a front-looking video camera, a front-
looking acoustic camera, a down looking Doppler log and the
classic suite of sensors such IMU, temperature or water en-
trance detectors. It also carries batteries allowing full energetic
autonomy. An optical fiber links the system with the operator,
allowing for full duplex data transmission.

Fig. 2. the experimentator ROV

Considering equations (1) and (2), the dynamic model of
the ROV is expressed in (3) with M the added mass, D the
coefficient dumping, C the hydrodynamic coupling and G the
hydrostatic phenomena [5].

vb = [u, v, w, p, q, r]T (1)

Fb = [Fu, Fv, Fw,Γp,Γq,Γr]T (2)

Fb = M .
.
vb +D(vb).vb +C(vb) +G(x, y, z,Qb) (3)

Where u, v, w, p, q, r are respectively the velocities and the
rotations speeds along the axes x, y, z of the robot. Forces and
torques are denoted by Fu, Fv, Fw,Γp,Γq,Γr.

We will not present in this paper the problematics related
to the dispatcher (thrust allocation).

D. Attitude control : State of the art

The analysis of the different robotic modes exposed before
allows decoupling the question of the attitude control from the
linear movement. Different formalisms exist for the attitude
representation. The usual matrix representation [17] uses Euler
angles (yaw, pitch and roll) to express the system attitude. The
evident advantage is the direct comprehensive interpretation
by human, but this representation faces the known singularity
called ’gimbal lock’, which expresses the fact that when pitch
is +/-90◦, then yaw angle is no more defined. Nevertheless, for

small variation of pitch and roll angle around zero (especially
on ground), it is possible to design attitude control using Euler
angles [4], or Rodrigues angles [13] [4] [10].

Another attitude representation formalism in based on
Quaternions formalism. The advantage is that the previous
singularity disappears. Quaternion based feedback control has
been studied in the literature [20], [16], [3], [1]. System
dynamics is considered with backstepping approach and non-
linear feedback [14], [6], [15], [4], [9].

An interesting point that differentiates the previous solutions
from each other is the way to calculate the attitude error
function. Indeed the control design requires an expression for
the error function, from which convergence to zero will be
provided by the control [12], [23]. Two options are reported
in the literature : i) attitude quaternion can be considered as
normalized 4D vectors and error function can be expressed
as the difference between current and desired quaternions
[4]. The problem is that this vector difference is no more a
normalized quaternion; and ii) the quaternion difference as
expressed in (4) remains on the unitary sphere (as done in [7],
[14] and [11]), i.e. belongs to (SO3). In the sequel, we will
use this formalism by decomposing the error quaternion in the
error angle around unit rotation vector.

II. GENERIC QUATERNION CONTROL

A. Notation

Let us define these notations :
• Q : Attitude quaternion (4x1) vector
• Qd : Desired attitude quaternion (4x1) vector
• ω : Rotational velocity (expressed in the body frame)

(3x1) vector
•

.
Qd : Desired velocity quaternion (4x1) vector

•
.
ω : Rotational acceleration (expressed in the body frame)
(3x1) vector

• K,K2 : Control gains
• Q(w,x,y,z) : Coordinates (w, x, y or z) of quaternion Q
Let ω(.) be a 3D rotational velocity vector (expressed in

different frames), then W(.) designs the associated imaginary
quaternion as W(.) = [0,ωT

(.)]. Let v(.) be a 3D translational
velocity vector (expressed in different frames), then V(.) de-
signs the associated imaginary quaternion as V(.) = [0,vT(.)].

B. From error quaternion to angle and unit rotation vector

To perform the angle control, we need to calculate the angle
and unit rotation vector from the error quaternion.

Let Q designs the quaternion (and QD the desired quater-
nion) corresponding to a rotation of an angle α around the
normalized vector n.

Q = (cos
α

2
,−sinα

2
n)

The error quaternion is defined by :

Qe = Q∗
d ⊗Q (4)

where ⊗ defines the quaternion multiplication.



If the error quaternion is not equal to the neutral quaternion
(Qe 6= [1, 0, 0, 0]), the angle αe and unit rotational vector ne

are defined as:
αe = 2acos(Qe(w))

ne =
1»

Q2
e(x) +Q2

e(y) +Q2
e(z)

[Qe(x), Qe(y), Qe(z)]

Else, the rotational vector is not defined, so we consider an
arbitrary axis ne = [1, 0, 0]T and a null angle αe = 0.

C. Stabilization control

The control objective here is to drive the system to a desired
orientation with a desired rotational velocity.

We can now state the following proposition.

Proposition 1 : The speed control (5) stabilizes the
system to the desired attitude with a desired rotational
velocity, i.e. Q converges to Qd and

.
Q converges to

.
Qd.

W = Q∗
e ⊗Wd ⊗Qe +W0 (5)

with (6), (7), K strictly positive.

Wd = 2Q∗
d ⊗

.
Qd (6)

W0 = [0,−Kαene]T (7)

ω0 = −Kαene (8)

Proof :
First, differentiating the error quaternion (4) with (6):

.
Qe =

.
Q∗

d ⊗Q+Q∗
d ⊗

.
Q

=
.
Q∗

d ⊗Q⊗ (Q∗ ⊗Qd ⊗
.
Q∗

d ⊗Q+Q∗ ⊗
.
Q)

= Qe ⊗ (Q∗ ⊗Qd ⊗
.
Q∗

d +
1

2
W ⊗Q∗)⊗Q

=
1

2
(Qe ⊗W −Wd ⊗Qe)

(9)

To demonstrate the stability we use the Lyapunov function
candidate (10) with Υ = [1, 0, 0, 0]T :

L =
1

2
(Υ−Qe)T .(Υ−Qe) (10)

where . defines the dot product.
Differentiating (10) yields:

.
L = −

.
QT

e .Υ +
.
QT

e .Qe (11)

Because of
.
QT .Q = 0, (11) become:

.
L = −

.
Qe(w)

(12)

Considering the control law (5), (9) yields:
.
Qe =

1

2
Qe ⊗W0 (13)

By the term by term decomposition of quaternion multipli-
cation and (7):

.
Qe(w)

= −1

2
(Qe(x)

.ω0(x)
+Qe(y)

.ω0(y)
+Qe(z) .ω0(z))

.
Qe(w)

=
K

2
αesin(

αe

2
) (14)

Considering (14), (11) and (7) for W0 yields:

.
L = −K

2
αesin(

αe

2
) (15)

With K strictly positive and αe ∈]− π;π] thus
.
L < 0: the

speed control converges hence αe converges to 0 and Q∗
e ⊗

Wd ⊗Qe is the feedforward velocity term. �
Consider this velocity control ω in (5) as a reference

velocity ωref to control acceleration.

Proposition 2 : The acceleration control (16) stabilizes
the system to the reference rotational velocity ωd = ωref

with a desired rotational acceleration
.
ωd.

.
ω = K2(ωd − ω) +

.
ωd (16)

Proof :
To demonstrate the stability we use the second Lyapunov

function candidate (17) :

L2 =
1

2
(ωd − ω)T (ωd − ω) (17)

Differentiating (17) yields:
.
L2 = (

.
ωd −

.
ω)T (ωd − ω) (18)

With (16), (18) become :
.
L2 = −K2(ωd − ω)T (ωd − ω) (19)

Considering K2 strictly positive,
.
L2 < 0, the control

converges, i.e lim
t→+∞

ω = ωd uniformly.

�
Combining (16) with ωref from (5), we can write the full

control of our robotic system as :

.
W =

.
Wd +K2(Q∗

e ⊗ ωd ⊗Qe −
ï

0
Kαene

ò
−W ) (20)

Considering the dynamic model of our system (3), the
actuation demand can be written as (ρ being disturbances and
Mpqr partial matrix of M announced in I-C) according to a
classic computed torque approach:

Γpqr = Mpqr.
.
ωd

+Mpqr.K2(Q∗
e ⊗ ωd ⊗Qe −Kαene − ω)

+ ρ

(21)



III. TRANSPOSITION OF BIOLOGICAL PROTOCOLS TO
ROBOTICS

A. Specifications

Initially, we have to translate the needs of biologists into
robotic constraints. In view of the description of the Transect
in I-B, we can enunciate these constraints:
• Constant depth or constant ground distance (possibly

modified to respect the robot security constraint).
• Constant reference heading.
• Ability to change the deviation from the heading refer-

ence (equivalent to the rotation of the head of the diver).
• Fixed longitudinal forward velocity (with respect to hard-

ware limitations of the actuators).
• Constant pitch.
• Constant roll.
The second mode is Localized Observation. It can be

defined as follows:
• Rotation trajectory on the isosphere whose center is the

interest point.
• Fixed distance to the interest point.
• Orientation to look at the interest point.

B. 2 functioning modes

To link the 2 different modes (Transect and Localized
observation) to the generic quaternion control II, we define
four bases {BB}, {BC}, {BC}desired and {BS} shown Fig.
3.

Fig. 3. 4 bases

The target frame {BS} is a virtual frame projected on the
interest point, according to the functioning mode. In Transect
mode, the interest point is a virtual point which lives only on
the reference and its forward velocity is driven by the operator
({BS}-X axis is collinear with the transect and {BS}-Z axis
is vertically pointing down).

In Localized Observation, the frame interest point is the
same as mode interest point. {BS}-X axis and {BS}-Y axis
are coplanar to the sea floor and the {BS}-Z axis is the normal
to the plane.

The desired sensor frame {BC}desired is relative to the
target frame, depending on the current functioning mode. The

transformation from target frame to desired sensor frame is
denoted by the quaternion QSCd and a translation TSCd.

The body frame {BB} is attached to the robotic system. The
quaternion QB represents the system’s attitude with respect to
the inertial frame {BO}.

The real sensor frame {BC} is attached to the observation
system (front camera on Fig. 3). The transformation from body
frame to sensor frame is defined by a rotation (Quaternion)
QBC and a translation TBC .

The objective of the control is to converge the real sensor
frame {BC} to desired sensor frame {BC}desired.

The control of the translations being specific to the func-
tioning mode (sensors based or environment based), we will
present them in the following section.

IV. TRANSECT MODE

In the transect mode, the translation movement is defined
relatively to the reference, defined as an absolute path, or
relative to an environmental feature.

Mode parameters are :
• Global initial position of transect xsinit . These coordi-

nates can be built from a desired GPS position and depth,
or relative to a global map.

• Robot last known absolute position xbinit before posi-
tion estimation. it is often the last GPS position before
immersion.

• Desired transformation between the robot {Bs} and
{Bc}desired frames, expressed as TSCd and QSCd.
The rotation possibilities (observation on the side of the
transect) are expressed in this quaternion.

• Sensor position and attitude in the body frame, QBC and
TBC .

• Forward speed along the transect vs = (
.
s, 0, 0). s denotes

the curvilinear position of {Bs} on transect.
• Transect attitude Qs

A. Control

The first step is to calculate the target frame attitude and
position:

Vs0 = Qs ⊗ Vs ⊗Q∗
s (22)

xs0 = xsinit +

∫ t

0

vs0dt (23)

Then, we calculate the desired attitude of sensor frame (24),
the attitude of real sensor frame (25) and the error quaternion
(26):

Qcd = Qs ⊗QSCd (24)

Qc = Qb ⊗QBC (25)

Qe = Q∗
cd
⊗Qc (26)

We now apply the control (20) to obtain the rotational
acceleration command.

Afterwards, we perform the control in translation. For
this, the robot is equipped by a Doppler log (vdopp =
[vxdopp

, vydopp
, 0]T ) and a depth meter (zdepth). The Doppler

log position in body frame is expressed in QBDopp.



We estimate the robot position :

Vb0 = Qb ⊗QBDopp ⊗ Vdopp ⊗Q∗
BDopp ⊗Q∗

b (27)

xb0 = xbinit +

∫ t

0

vb0dt (28)

xb(z)
= zdepth (29)

We calculate the desired robot position :

xbd = xs0 + (Qs⊗TSCd⊗Q∗
s)− (Qb⊗TBC ⊗Q∗

b) (30)

We perform the velocity control, with target speed forward
(22) and the centrifugal effect:

VBd0 =

ï
0

K3(xbd − xb0)

ò
+ Vs0

+Qb ⊗QBC ⊗
ï

0
ωc × TCBc

ò
⊗Q∗

BC ⊗Q∗
b

(31)

Finally, we express the linear acceleration in the body frame
to calculate the forces to apply on the robot through the
dynamic model (see I-C).

.
Vb = Q∗

b ⊗
ï

0
K4(vBd0 − vb0)

ò
⊗Qb (32)

B. Simulation

The simulations are performed on a 3D simulator [18] with
the exact inverse dynamic model. The restoring torque and
force of buoyancy are not considered. The static simulation
parameters are defined in Tab. I.

TABLE I
SIMULATION PARAMETERS

xsinit = [0, 0, 3]T xbinit
= [0, 0, 0]T

TSCd = [0, 0,−2]T QBC = [1, 0, 0, 0]T

K = 1 K2 = 3
K3 = 2 K4 = 2
TBC = [0.25, 0, 0]T Qs = [0.9239, 0, 0, 0.3827]T

(flat with 45deg from North)

During the simulation, we changed the speed forward
.
s

along the transect (waiting stabilization of the robot at the
transect starting point and then starting transect at T=11s to
T=54s) and the orientation of the camera QSCd, viewing left
side (T=20s to T=28s) then right side (T=36s to T=42s).

We observe the robot position error (Fig. 4) which changes
every transition (beginning and end of the transect or orienta-
tion change) and which nullifies thanks to control.

We also observe the sensor attitude error (Fig. 5) through
the angle error and error vector.

V. LOCALIZED OBSERVATION MODE

In the localized observation mode, the translation control is
a visual control to center the point of interest in the camera
image. The distance between the interest point and the camera
can be measured by a sensor or by visual analysis. Visual
analysis is performed with the OpenCV library.

Mode parameters are :

Fig. 4. 3 robot position errors along the axes x, y, z

Fig. 5. Sensor attitude error

• Desired distance between the robot and the point of
interest dd.

• Attitude of the point of view QSCd

• Camera mechanical connection on the robot QBC and
TBC .

A. Control

First, we rotate the reference QSCd according to user
commands ωjoy:

QSCd =

∫ t

0

1

2
QSCdWjoydt (33)

We normalize the quaternion (33) then we define the error
quaternion:

Qe = Q∗
SCd ⊗ (Qb ⊗QBC) (34)

We perform the acceleration control as explained in II-C.
The camera provides the following information: the 3D dis-
tance between the camera and the point of interest (X-axis



and Y-axis in camera image). We calculate the translational
displacement necessary to center the buoy in the camera image
taking into account the drift generated by the camera rotation.

vc =

K3x.dxcamera + ωcy .d
K3y.dycamera + ωcx .d

K3z(dd − d)

 (35)

Let’s transfer the translation velocity to body frame (36),
and apply the centrifugal effect (37):

Vcb = QBC ⊗ Vc ⊗Q∗
BC (36)

vBd = vcb + ωbd × TBC (37)

And perform the acceleration control:

.
vb = K4(vBd − vb) (38)

B. Simulation

In the simulation, the point of interest is a yellow submerged
buoy with known diameter (to calculate the Z-axis distance).
The static simulation parameters are defined in Tab. II.

TABLE II
SIMULATION PARAMETERS

TBC = [0.25, 0, 0]T QBC = [1, 0, 0, 0]T

K = 1 K2 = 3
K3 = 2 K4 = 5
dd = 2m

The simulation consists of multiple 3D movements around
the buoy (see the attached video). We observe the sensor
attitude error (Fig. 6) through the error vector and angle error.

Fig. 6. Sensor attitude error

We also observe the distance error and the position error of
the buoy in the camera image (Fig. 7) and the action of the
control to minimize errors.

Fig. 7. Distance error

VI. CONCLUSIONS

Our works are the basis of a collaboration between biolo-
gists and roboticians. The goal is to design a robotic system
for the assessment of marine biodiversity. The challenge is to
control the robot for three specific functioning modes extracted
from biologist needs. For that, we defined a quaternion attitude
control adapted for our needs and its variants depending on
the mode. And we proved its convergence. Finally, we show
that our solution (Transect and Localized Observation mode)
is efficient and convergent, with a real time simulator. We also
began local field experiments to test these modes in water.

The following of these works will include a mission to
Mayotte to test the 3 functioning modes in real environmental
constraints. We also plan to make use of the data gathered
during the Mayotte mission (videos) to study the robot impact
in the context of counting fishes. Then, the next step is to
study and manage the switching between these functioning
modes and the result on the system (e.g. control, software
architecture). Modes switching causes modifications of the
configuration set. We plan to manage it with linking functions,
as well as specific mechanisms at the middleware and mission
management levels.
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