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Abstract

We present a robotic embodiment experiment based on real-time functional mag-
netic resonance imaging (rt-fMRI). In this study, fMRI is used as an input device
to identify a subject’s intentions and convert them into actions performed by a
humanoid robot. The process, based on motor imagery, has allowed four subjects
located in Israel to control a HOAP3 humanoid robot in France, in a relatively nat-
ural manner, experiencing the whole experiment through the eyes of the robot.
Motor imagery or movement of the left hand, the right hand, or the legs were used
to control the robotic motions of left, right, or walk forward, respectively.

1 Introduction

This work aims at dissolving the boundary between the human body
and surrogate representations in immersive virtual reality and physical real-
ity. By dissolving the boundary, we mean that the subject is expected to have
the illusion that his or her surrogate representation is his or her own body,
and behave and think accordingly. This may help disabled humans to con-
trol an external device just by thinking, without any bodily movement being
involved. As illustrated in Figure 1, our aim was to provide a subject the most
intuitive thought-based control of a robotic body. The subject was located in
Israel and the robot was located in France; this geographic split was made due
to the availability of the facilities. In order to reach this goal, we decided to
focus on motor control, using real-time functional magnetic resonance imag-
ing (rt-fMRI) to detect the subjects’ movement intentions and translate them
into actions performed by a HOAP3 humanoid robot.

The majority of brain–computer interfaces (BCIs) with humans are based
on electroencephalogram (EEG) technology. Although fMRI is expensive and
less accessible, fMRI-based BCI is promising for several reasons. The superior
spatial resolution, as compared with EEG, may allow exploring new modes
of BCI, based on new types of mental patterns. If successful, attempts can be
made to localize underlying brain patterns with the fMRI and detect the same
patterns using more accessible devices such as EEG or functional near-infrared
spectography (fNIRS). The latter is especially relevant, since it is based on the
same hemodynamic responses as measured by fMRI. fMRI-based BCI can also
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Figure 1. Robotic embodiment: General principle of data processing and experimental tasks.

be used for training patients in BCI, for rehabilitation
sessions, or for next generation neurofeedback—in all
these cases very specific brain areas may be targeted.
Finally, smaller and portable fMRI devices may become
available.1

1. http://www.news-medical.net/news/2008/07/08/39842.aspx

2 Previous Work

Telerobotics is the technology that allows a human
operator to steer robots at a distance. Telerobotic
control strategies have evolved from the classical master-
slave control to advanced supervisory control (Sheridan,
1992). Shared autonomy and the sophistication of
the robotic control allows a telerobot to be steered by



classical and modern input devices (such as keyboard,
mouse, eye tracker, voice recognition system, etc.), or
through a virtual reality functional intermediary (Khed-
dar, 2001). Recently, the possibility of using BCIs to
control robots is gaining popularity. BCIs allow a human
to control a computer or a mechatronic device just by
thinking, without any body movement being involved.
While contemporary BCI systems are far from the inter-
faces imagined by Hollywood in movies such as Avatar2

or Surrogates,3 there has been some progress made
and a surge of interest in recent years (Mak & Wolpaw,
2009).

Most BCI research is aimed at helping paralyzed
patients, such as patients with amyotrophic lateral scle-
rosis (ALS) and severe nervous system damage including
spinal cord injuries and stroke, and the goal is to provide
such patients with some level of communication, control
of external devices, and mobility.

BCI was successfully demonstrated with invasive
methods such as electrocorticography (ECoG, e.g.,
Leuthardt, Schalk, Wolpaw, Ojemann, & Moran, 2004)
and intracortical neural interfaces (e.g., Donoghue,
Nurmikko, Black, & Hochberg, 2007; Kim et al.,
2011). Recently, a tetraplegic patient was able to use
such electrodes to drink coffee by partially controlling
a robotic arm (Hochberg et al., 2012). Most BCI sys-
tems intended for humans rely on the measurement of
an EEG recorded from the scalp. BCI-controlled robots
have primarily been demonstrated using three major
EEG-based BCI paradigms: the Steady-State Visually-
Evoked Potential (SSVEP), the P300 wave, and motor
imagery.

In SSVEP, a flickering visual stimulus is displayed to
the subject. When the retina is excited by a signal rang-
ing from 3.5 to 75 Hz, the brain generates electrical
activity at the same frequency as the visual stimulus,
which can be detected in the EEG signal. SSVEPs are
highly interesting for robot control due to their sim-
plicity, their superior signal-to-noise ratio, and their
high decision rate. Previous studies have explored its
use in the control of mobile robots (e.g., Prueckl &
Guger, 2009; Ortner, Guger, Prueckl, Graenbacher,

2. http://www.imdb.com/title/tt0499549/
3. http://www.imdb.com/title/tt0986263/

& Edlinger, 2010), and recently, humanoid robots as
well (Gergondet et al., 2011; Gergondet, Kheddar,
Hintermuller, Guger, & Slater, 2012).

The P300 wave is an event-related potential (ERP)
that appears 300 ms after an infrequent task-related
event. This ERP is now commonly used in BCI systems
due to its reliability: the waveform is easily and consis-
tently detectable, with little variation in measurement
techniques. Even though the bit rate (i.e., the amount
of commands that are sent to the external object in a
second) is typically lower than SSVEP, it is still a reli-
able BCI pattern, included in several robotic control
systems (e.g., Bell, Shenoy, Chalodhorn, & Rao, 2008;
Rebsamen et al., 2006; Iturrate, Antelis, Kübler, &
Minguez, 2009; Rebsamen et al., 2010; Lenhardt &
Ritter, 2010).

Because they rely on visual evoked responses, both
SSVEP and P300 can be compared to eye-tracking sys-
tems in terms of input interface: they provide the same
set of functionalities to the user and suffer from the same
limitations. Mostly, the mapping between the user inten-
tions and the functionality is arbitrary, in contrast to
what we would expect from a thought-based interaction
paradigm.

Motor imagery has also been used for EEG-based
BCI. Motor imagery is a mental process by which an
individual rehearses or simulates a given action. As
explained in Neuper and Pfurtscheller (2001), imag-
ination of movement evokes brain networks that are
similar to the networks evoked by real execution of the
corresponding physical movement. A series of studies
was carried out with motor-imagery-based naviga-
tion of highly-immersive virtual reality (Friedman,
Leeb, Pfurtscheller, & Slater, 2010; Pfurtscheller et al.,
2006; Leeb et al., 2006) including experiments with a
tetraplegic patient (Leeb et al., 2007). Royer, Doud,
Rose, and He (2010) demonstrated navigating a virtual
helicopter using four classes: right hand to move right,
left hand to move left, both hands to move up, and none
to move down. Motor imagery requires more training
and the bit rate is lower than P300 and SSVEP, but it
is arguably based on a more intuitive mapping between
the mental patterns and the resulting action taken by the
system.



Since an EEG is recorded at the scalp, it suffers from
high levels of noise and low spatial resolution as com-
pared with other methods for recording brain activity.
fMRI also has several drawbacks: it is expensive, less
accessible, and has low temporal resolution and a built-
in delay because it is based on metabolic changes rather
than on direct recording of electrical activity in the
brain. However, due to its superior spatial resolution
covering the whole brain simultaneously, it holds much
promise for completely new types of control paradigms.

Real-time fMRI has been suggested for various appli-
cations (deCharms, 2008). Typically, rt-fMRI is used
as a form of neurofeedback; that is, the raw signal val-
ues from a specific brain region are visualized on the
screen, either as a bar or as a time-course plot, in order
to provide immediate feedback (Weiskopf et al., 2003)
or delayed feedback (Weiskopf et al., 2004). The sub-
ject uses a mental strategy to increase or decrease the
activity in the target brain region. Such neurofeedback
sessions are different from BCI in various ways. First,
the goal is different: in neurofeedback, the goal is to
train the subject to modulate his or her brain activity,
whereas in BCI, the goal is to allow a subject to control
an external device by thought. Most notably, in neuro-
feedback, most of the effort is done by the subject, and
the system is used only for visualizing the brain signals,
whereas BCI systems include algorithms for processing
the brain signals and mapping them into specific actions
taken by the external device. fMRI was used as an input
device for robotic hand control as publicized by Honda
Research Institute and Advanced Telecommunications
Research (ATR); this nonpublished result was reported
by Honryak (2006).

In traditional fMRI experiments, we collect data
from a subject’s brain and have abundant time after
the experiment is complete to analyze the brain data.
Additionally, algorithms do not need to be optimized for
speed and for memory usage. Conversely, when dealing
with real-time analysis and classification, we need to use
fast algorithms that can manipulate large data sets in a
fraction of a second. In our case, the time between repe-
tition times (TRs), which is the time between our inputs,
is 2 s. In the current real-time experiments, only three
average raw values are calculated for the classification, so

one of the advantages of the simplicity of our method is
its computational efficiency.

3 fMRI-Based BCI

Our system is able to automatically identify a sub-
ject’s intention based on motor imagery in real time,
classify brain activation patterns, and convert them into
robotic actions performed by a humanoid robot. The
aim is to allow intuitive BCI control based on brain
activity. This section describes the system and method
used in the study.

3.1 The System

Imaging was performed on a 3T Trio Magne-
tom Siemens scanner, and all images were acquired
using a 12-channel head matrix coil. Three-dimensional
T1-weighted anatomical scans were acquired with
high-resolution 1-mm-slice thickness (3D MP-RAGE
sequence, TR 2,300 ms, TE 2.98 ms, 1 mm3 voxels).
For blood-oxygenation-level-dependent (BOLD) scan-
ning, T2*-weighted images using echo planar imaging
sequencing (EPI) were acquired using the follow-
ing parameters: TR 2,000 ms, TE 30 ms, flip angle
80◦, 35 oblique slices without gap, 20 toward coronal
plane from anterior commissure–posterior commissure
(ACPC), 3 × 3 × 4 mm voxel size, and covering the
whole cerebrum.

The data coming from the fMRI scanner is saved as
Dicom files,4 and processed by Turbo BrainVoyager
software (TBV; Turbo Brain Voyager, Netherlands,
n.d.), which is a real-time processing, analysis, and visu-
alization application that accepts input from an fMRI
scanner. After processing the data, TBV saves the aver-
age raw data values for each region of interest (ROI)
selected by the operator at each measured time point.

The fMRI scanner is located in Rehovot, Israel, and
the robot in Béziers, France. The flow of high-level
commands (forward, left, right) was sent to the robot
through a User Datagram Protocol (UDP) connection

4. http://medical.nema.org/



Figure 2. The subject sees an avatar in the center of a three-door

room. The subject hears an auditory command and needs to use motor

imagery or movement that corresponds to it.

and the video flow was received through another net-
work flow. The round-trip time from transmission to
reception of data (ping) between Israel and France was
between 100 to 150 ms. Similar to many teleoperation
systems, the vision flow is critical. While a dropped frame
may not be perceived by the fMRI user, the latency must
be as low as possible. We used the visionsystem frame-
work5 to acquire, transcode, and transmit the video
flows.

3.2 The ROI-Based Paradigm

Each experiment is divided into three parts. The
first part is intended for localization of brain areas: the
subject sees an avatar standing in the center of a three-
door room, as seen in Figure 2. The subject is given
pseudorandom instructions and is expected to follow
them. After each action, the subject is instructed to rest,
and during that time, the avatar executes a predeter-
mined command that corresponds to the instruction.
The “right” and “left” commands result in the avatar
turning toward the right or left door correspond-
ingly, and the “forward” command results in the avatar
moving toward the top door. The total amount of
instructions is divided equally between all instruction
types. The entire session is recorded for the purpose
of finding ROIs. An ROI is a selected group of voxels

5. https://github.com/LIRMM-Beziers/visionsystem

Figure 3. An example of right-hand versus left-hand contrast and

legs versus baseline contrast, taken from one subject over the first stage

of the experiment, intended for localization of ROIs.

in the brain; in our study, we select a group of voxels
that were more active in one experimental condition
compared to the other condition, as detected by a Gen-
eral Linear Model (GLM). The experimenter manually
marks the ROIs inside the bright areas of the relevant
anatomical regions where the event-related average sig-
nal for the current ROI is significantly higher than the
other two ROIs. Figure 3 depicts an image from TBV’s
view screen. The three regions (from left to right) rep-
resent the three areas correspondingly: left hand, legs,
and right hand, in the primary motor cortex, and are
delineated by a left versus right hand contrast as well as
a legs versus baseline contrast, using a GLM analysis.
Figure 4 depicts the event-related average time-course of
the contrast. We assume that there are intersubject dif-
ferences in the specific ROIs; however, these ROIs are
always expected to be found in the primary motor area
and are easy to locate with the GLM contrast (this may
be inconvenient to reproduce in other studies, but we
are already improving our system to use an automated
method).

In the second part, we instruct the subject to rest for
1 min; this serves as a baseline resting period in which



Figure 4. An example of event-related averaging plot for left-hand

ROI, taken from one subject. This plot depicts the average

hemodynamic response evoked by the stimulus for an ROI over the first

phase of the experiment. X and Y axes represent the TR position

corresponding to the beginning of the event and the percentage signal

change, respectively.

we collect the mean and standard deviation for each ROI
for the entire baseline period.

In the third and last part, the task stage, we instruct
the subject to imagine moving his or her limbs and
collect the average values from each ROI every 2 s.
A classification is made using the z-score formula and
is calculated for each measured value by using the mean
and standard deviation from the baseline period:

z = x − μ

σ
, (1)

where

• x is the average raw value in an ROI in the current
TR;

• μ is the mean raw value of the ROI in the baseline
period; and

• σ is the standard deviation value of the ROI in the
baseline period.

The selected class at each time step is the class corre-
sponding to the ROI with the maximal z score value for

that duration. The system then transmits the classifica-
tion to the HOAP3 robot located in France. Each ROI
is mapped to a different action performed by the subject,
which in turn activates a precomputed robotic motion.
Turning left, right, or walking forward corresponds to
left-hand, right-hand, or legs imagery, respectively.

3.3 Generation of the Motion Database
for the Robot

In order to control the robot through such high-
level instructions, we created a motion database for
a follower task with the HOAP3 robot. Contrary to
human-sized robots, small humanoid robots such as
HOAP3 are very stable. Hence, we are free to execute
those motions with a local joint control loop, without
using a balance stabilizer. Moreover, the robot receives
a new command every 2 s and has to walk on a flat floor
without obstacles. Thus, there is no need for a reactive
pattern generator, and the use of a motion database is
fairly straightforward in our case for producing tasks
such as tracking as presented in Lengagne, Ramdani,
and Fraisse (2011). In this paper, we use the method
presented in Lengagne, Vaillant, Yoshida, and Khed-
dar (2013) to generate motions performing a sequence
of contact stances and to ensure the balance and the
physical limits of the robot.

Video feedback to the user is obtained directly from
the HOAP-3 embedded cameras.

3.4 Motion Optimization

As presented in Lengagne et al. (2013), the goal
is to compute the joint trajectories q(t ) that minimize
a cost function C , perform the desired task, and ensure
the integrity of the robot.

min
q(t )

C(q(t ))

subject to

{
ceq(q(t )) = 0

cineq(q(t )) ≤ 0

, (2)

where ceq is the set of continuous equality constraints
that allows for the definition of the foot position dur-
ing a contact phase, and cineq is the set of continuous
inequality constraints relative to the balance and the



limits of the robot. In order to deal with the constraints,
classical optimization techniques revert to time dis-
cretization, even if they may produce unsafe motions,
where some constraint violations between the instants
of the time-grid may occur, as shown (Lengagne et al.,
2011). In order to avoid any constraint violation, this
method considers a time-interval discretization that
decomposes the motion into several intervals and uses
a polynomial approximation over each time interval
of any state variables of the robot, in order to easily
take into account continuous inequality and equality
constraints.

3.5 Motion Properties

We created a database of motions in order for the
robot to walk forward, turn to the left, or turn to the
right. Each motion is decomposed into several con-
tact phases, that is, a lapse of time when no contacts
are created or released. To ensure continuity, every
motion starts and ends with the same posture. The
turning motions are composed of five phases that per-
form a rotation of 30◦, whereas the walking motions
are composed of nine phases that produce steps of
5 cm each.

During the optimization processes, we considered
the following cost function that produces a smooth and
low-energy motion:

C(q) = a
∫ T

0

∑
i

Γ2
i dt + b

∫ T

0

∑
i

...
q i

2dt + cT , (3)

where a = 1e − 2, b = 1e − 5, and c = 4 are the values
we set heuristically to have human-like walking motion
(from Lengagne et al., 2013).

4 Experimental Validation

4.1 Experimental Setup

In a parallel work (Cohen, Koppel, Malach, &
Friedman, 2014), we consider the same ROI paradigm
applied to the control of a virtual avatar—while in this
work, we deal with the control of a physical robot.

In the study reported here, we also used the avatar
as a feedback in the first experimental stage, which
was intended for defining three nonintersecting ROIs
per subject. The subjects saw a virtual environment
with an avatar standing in the bottom center of the
space, and were instructed to imagine themselves as
the avatar. The avatar would turn 90◦ toward either
the left or the right, or would walk 2 s when facing
forward. In BCI, we would like to achieve the most
intuitive mapping between thought patterns and the
resulting interaction (Friedman et al., 2010). Imag-
ining hands for motion direction and feet for forward
motion is not identical to the way you control your
body when walking, but it is clearly not arbitrary
or intuitive.

In the next step, the subjects viewed a live video feed
through a camera located at the eyes of the robot. The
robot was located inside a 9.6 × 5.3 m room in France.
The participants saw a technician who instructed them
to move left, right, or forward using hand gestures. This
method also allows the researchers to assess that the
robot motion truly reflects the thought-based instruc-
tions initiated by the subject. The objective given to
the subjects in this experiment was to walk around two
obstacles in a figure-eight-shaped course, for an approx-
imate length of 1.5 m. Each subject underwent between
three and seven test sessions, each lasting 12 min (360
TRs), in which the BOLD signal from the entire brain
was measured every 2 s. At the end of this period, we
calculated two values: the mean signal and the standard
deviation for the entire rest period.

The system sent a nominal value to the robot every 2 s
(corresponding to the ROI with the maximal z score).
The left or right commands initiated a 30◦ turning
sequence, and the forward command initiated a two-
step forward walking sequence, both lasting between
8 and 14 s. The robot executed a new command only
after completing the previous command; that is, many of
the commands classified by the system were ignored by
the robot, and in practice the robot performed between
25 and 45 commands per session. In practice, while
each command was based on a 2-s time window, the
subjects focused on the same command (left, right, or
forward) for the time it took the robot to perform the



action, which was longer. One alternative is to aver-
age the BOLD signal over the time it takes the robot to
complete an action. However, due to the hemodynamic
delay, we expect these latter values to be the “best” ones;
we chose to allow the BOLD signal to reach its peak
and stay at a relatively constant plateau during the time
window of the robot action.

4.2 Subjects

The study included four right-handed participants:
one man (age 26), referred to as S1, who performed 10
successful sessions of 12 min, using either exclusively
motor imagery or motor movements, and three women
(ages 25, 28, and 33) who performed the task using
motor movements.

We tested the system with both motor imagery and
motor movement; in the latter case, subjects were
instructed to move their fingers and toes in order to
move, rather than the corresponding imagery tasks.
Because the commands are only extracted from brain
signals, and because eventually such interfaces are
intended for paralyzed patients, allowing the subjects
to move their fingers and toes is still of interest. When
using imagery alone, we occasionally fit the subject with
electromyography (EMG) sensors on his or her hands
and legs, and verify there is no electrical activity sent to
the muscles. This test was done with S1 on other occa-
sions when controlling the avatar by thought, but due
to time constraints, this test was not done in the cur-
rent study. S1 had participated in many motor imagery
sessions previous to this study, had complete control
of all three imagery commands, and therefore was the
only subject selected to perform the task using motor
imagery.

In the case of motor movement, the resulting brain
signal and contrast are relatively strong; our experience
indicates that any subject can perform the task without
any difficulty and with literally no training. However,
using motor imagery, the subjects need to be trained
for several two-hour sessions. The training is necessary
because it takes time for the subject to find the right
imagery strategy to activate the motor regions. For
example, participants imagine tapping with either right

or left hand to turn, and imagine moving their feet back
and forth to walk forward.

5 Results

Free-choice scenarios allow for an experience of
performing a task in a relatively natural and continuous
mode, as opposed to trigger-based BCI experiences. A
limitation of free-choice scenarios is that it is difficult
to accurately measure success rates. We have obtained
accuracy measures from S1 of the same method with an
avatar-based experiment; these were 100% for a two-class
(50% chance-level) task (right hand vs. left hand) and
93% for the three-class (33% chance-level) task, across
several runs, using the same ROI-based method as
reported here (Cohen, Druon, Lengagne, Mendelsohn,
Malach, Kheddar, & Friedman, 2012). In our experi-
ment, the subject was always successful in performing
the task in the allocated time. However, different
subjects had various degrees of control, and some com-
pleted the tasks faster than others. Most trials were con-
structed so that time allowed for errors. In the present
scenario, the subject was able to surround both obstacles
by following visual instructions made by the technician.
We cannot quantify success rates, but it is clear that the
probability of successfully completing the 12-min task
with chance-level control is extremely small. We tested
the same method by allowing subjects to guide a 3D
avatar following a trajectory on a virtual path. Seven sub-
jects were able to perform the task with a high level of
success; the results will be published elsewhere.

The participants were asked to perform one of the
following three missions.

• Free Navigation. The user is allowed to visit the
room freely.

• Seek and Find. An operator shows an object to the
robot, then hides it. The subject has to navigate the
room to locate it.

• Follower. An operator indicates (by gestures
to the robot) the path that should be followed.
This figure-eight-shaped path wound around
two obstacles in order to use all of the three basic
movements.



Figure 5. The lab room in France, in which the figure-eight-shaped path was drawn on the

floor.

Figure 6. Raw BOLD activation levels of subject S1 in the three ROIs used to control the robot

with motion (fingers and toes).

In one of the runs, S1 successfully completed the
figure-eight-shaped path, shown in Figure 5, by
reaching the out point in exactly 12 min.

Figures 6–11 show the mean activation values of the
three ROIs over two sessions performed by subject S1
from two sessions: in one session the subject was allowed
to move both fingers and toes, and in the other session
the subject only used motor imagery. Figures 6–7 show
the raw values for the three conditions in both motor
movement and motor imagery. In order to classify the
subject’s intentions, we normalized the raw BOLD
values using the z score formula and choose the high-

est signal as the classified action, as shown in Figures 8
and 9.

During the baseline duration (30 TRs), all three
regions fluctuated synchronously (Figures 10 and 11).
In contrast, the task phase (Figures 8 and 9) is com-
posed of sections such that in each section one of the
ROIs has increased activity compared to the other two
ROIs that typically remain in sync: this is the result of
the subject activating one of the three motion types (by
either imagery or motion) selectively in order to con-
trol the robot. The switch among regions (classes) is
relatively slow. In this case, the robot itself was slow



Figure 7. Raw BOLD activation levels of subject S1 in the three ROIs used to control the robot

with motor imagery.

Figure 8. Normalized activation levels of subject S1 in the three ROIs used to control the

robot, during task, using motion.

and took a few seconds to move forward or rotate. In
future work, we will examine whether subjects can learn
to switch among classes faster.

In the motor imagery session described in Figure 9,
the subject was not able to properly rotate left. Inspect-
ing Figure 11 explains why: during the baseline there
was a large peak in the left-hand ROI, probably due to
an artifact (such as hand motion instead of imagery).
As a result, the baseline value for the left ROI was high.
Since the current control paradigm is based on the per-
centage of signal change as compared to the baseline, it
was difficult for the subject to exceed the high value of

the baseline. In this particular session, the subject real-
ized the limitation and was able to complete the task
by turning almost 360◦ to the right instead of rotating
left.

We are also interested in the subjective experience
of the subjects: what is it like to control a robot by
thought, using fMRI? The subjects filled in a ques-
tionnaire and were interviewed after most sessions. All
subjects received the same questionnaire, which included
13 questions about their experience and control, such
as “Was there a delay between thought and the avatar’s
movement?” and “Did you feel that the avatar was an



Figure 9. Normalized activation levels of subject S1 in the three ROIs used to control the

robot, during the task, using motor imagery.

Figure 10. Normalized activation levels of subject S1 in the three ROIs used to control the

robot, during baseline, using motion.

extension of your own body?” and “Did you feel that
the avatar’s right hand movement was an extension of
your hand?” The small number of subjects does not
allow for systematic analysis, but we can provide a few
anecdotal comments. Subject S1 reported a strong sense
of being in the robotic body and “in France.” On one
of the occasions, the technician picked the robot up in
order to avoid hitting an obstacle, and S1 reported this
as “hey, why is he lifting me up?” On another occasion
we surprised S1 by introducing a mirror in the experi-
ment room in France. The subject reported: “How cute,
I have glowing eyes.” Subject S2 reported that she felt
“very small.”

6 Conclusions and Future Work

The results of this study indicate that subjects can
learn to control a robot using either motor imagery
or movement, classified by our system, in better-than-
chance levels with very little training. The system can
also be used to train people for a BCI. Our aim is to
allow subjects to perform diverse tasks in the virtual or
real environment, using a natural mapping of mental
patterns to functionality.

The ROI-based method we have presented here is
simple and computationally efficient; we plan to extend
it using machine learning techniques in order to iden-



Figure 11. Normalized activation levels of subject S1 in the three ROIs used to control the

robot, during baseline, using motor imagery.

tify more specific multivoxel brain patterns that may
lead to identifying more complex intentions. In the
course of these studies, we also intend to explore how
the sensation of agency and embodiment develop in the
context of such BCI experiences. This study is the first
step and proves feasibility and potential; and we hope
more exciting results will follow.
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