
HAL Id: lirmm-01592588
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01592588

Submitted on 25 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposing the model-checking of mobile robotics
actions on a grid

Rim Saddem-Yagoubi, Olivier Naud, Karen Godary-Dejean, Didier Crestani

To cite this version:
Rim Saddem-Yagoubi, Olivier Naud, Karen Godary-Dejean, Didier Crestani. Decomposing the model-
checking of mobile robotics actions on a grid. 20th IFAC World Congress, Jul 2017, Toulouse, France.
pp.11156-11162, �10.1016/j.ifacol.2017.08.1236�. �lirmm-01592588�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01592588
https://hal.archives-ouvertes.fr


Decomposing the model-checking of mobile
robotics actions on a grid

Rim SADDEM ∗,∗∗ Olivier NAUD ∗

Karen GODARY DEJEAN ∗∗ Didier CRESTANI ∗∗

∗ Irstea, UMR ITAP, 361 rue Jean-Franois Breton, BP 5095, F-34196
Montpellier , France,

(e-mail: {rim.saddem@irstea.fr},{olivier.naud@irstea.fr})
∗∗ Laboratoire d’Informatique Robotique et Microlectronique de

Montpellier (LIRMM), UMR 5506, Université de Montpellier, 161 rue
Ada, 34 095 Montpellier Cedex 5, France,

(e-mail: {godary,crestani}@lirmm.fr)

Abstract: Mobile automated systems, such as robots or machinery for precision agriculture,
may be designed to perform actions that vary in space according to information from sensors or
to a mission map. To be reliable, the design process of such systems should involve the combined
verification of spatial and dynamic properties. We consider here CTL model-checking of a
mobile robot’s behavior, using the UppAal Timed Automata verifier. We consider reachability
properties including path finding. Space is modeled as a 2D grid and the mobile robot path is
unknown a priori. In this case, the exhaustive state space exploration of model-checking leads to
the generation of many possible movements. This exposes such model-checking to combinatorial
issues depending on the grid size and the complexity of system dynamics. In this paper, we
propose a decomposition methodology reducing the memory requirements for the verification
task. The decomposition is twofold. The grid is decomposed in sub-grids and the model-checking
query on the whole grid is decomposed in a set of queries on the sub-grids. A set of test cases and
check the validity of the decomposition concept. The decomposition methodology is compared to
a simpler method that verifies the reachability property without proceeding to decomposition.

Keywords: Formal verification, reachability property, models, decomposition methods,
automata, robotics, unique action, precision agriculture, spatial process, spatial grid

1. INTRODUCTION & RELATED WORK

The development of mobile automated systems has seen
a lot of progress in recent years. Such systems perform
actions, make decisions and act in real time with limited
human intervention or autonomously. For example self-
driving cars are able to interact with their environment
and navigate toward their destination without human
intervention. Al-A’Abed et al. (2015) reports about the
development of a prototype intelligent parking system for
self-driving cars. A vehicle parking position is assigned and
a path to it is computed with power consumption as opti-
mization criterion. The ability to generate an efficient and
sure path from a given initial point to a final destination
is still a challenging task (Souissi et al. (2013)).

Research on autonomous equipment in agriculture started
back in the early 1960, focusing at the time on the de-
velopment of automatic steering systems (Bechar and Vi-
gneault (2016)). In the last decade, an increasing number
of research projects on agricultural robots were undertaken
(Herrera et al. (2016), Kayacan et al. (2013)). AdAP2E
(Lenain (2014)) is a research project which aims at de-
veloping an interactive and mechanically reconfigurable
robotic demonstrator. The reconfigurable robot should be
able to perform precise movements in agricultural and

natural environments. One task in this project, in which
authors of this paper are involved, is to supervise and
verify the robot’s missions. It can be illustrated in the fol-
lowing way. Let us suppose the robot has its usual parking
facility at a specific location in a farm. It would have then
to reach a field to perform an operation and move from a
field to another. Quite often, there are many points from
which the operation on the field can be started, and the
space between two fields can be poorly structured so that
there is no pre-determined route that the robot should
follow. The robot moves in a partially known and dynamic
environment. All actions (having an effect on environment
or not) that the robot may do during its mission depend
on its position, its internal state and its environment.
Two objectives for this robotic mission design can then
be formulated:

(1) verify a priori that the mission is compatible with
spatial constraints and robot dynamics,

(2) generate a controller for the robot mission manage-
ment.

We consider that formal methods such as model checking
are appropriate for these design tasks because they provide
guarantied results on a model of a system. Model checking
differs from simulation in the sense that all the possibilities
that are relevant to a model and the property to be verified



are explored in an exhaustive way. This exhaustiveness has
its drawbacks: model checking often leads to combinatorial
problems. In this paper, we deal with the a priori verifica-
tion of a robotic mission (spatial and dynamic properties)
using model checking techniques.

Some studies on multi-agent systems include spatial be-
havior of multiple robots (Claes et al. (2015), Leahy et al.
(2015)). But, until now, the modelling and simulation tools
of multi-agent systems do not provide functionalities for
formal verification of the whole system. Cellular automata
include spatial behavior and are widely used for simulation
in agriculture (Vanwalleghem et al. (2010)). The classical
paradigm is the synchronous evolution of a 2D grid, with
a global state that is formed by logical values in each
cell. There are also asynchronous interpretation of cellu-
lar automata such as in (Wainer and Giambiasi (2001)).
Unfortunately, to our knowledge, very few studies were
conducted on model-checking for the cellular automaton
paradigm and no specific model-checking tool is available.

Timed Automata (Alur and Dill (1994)) have already
been used in the domain of agriculture (Hélias et al.
(2008); Largouët et al. (2012)). UppAal is a tool designed
to validate systems that can be modeled as networks of
Timed Automata. The language used in UppAal extends
the formalism by adding integer variables, structured data
types, user defined functions, and channel synchronisation
(Bengtsson and Yi (2004)). UppAal includes the on-the-fly
model checking feature, which can help to reduce mem-
ory requirements (Larsen et al. (1997, 2003)). However,
the language used does not offer specific means for mod-
elling spatial behavior. Modeling the spatial behavior as
a movement on a 2D grid induces combinatorial explosion
problems for grids of significant size during verification
of reachability properties. With the verification of safety
properties, which requires to explore all the state space,
the combinatorial explosion problem should occur as well.

In the litterature, abstractions and modular verification
techniques(Alur et al. (1999)), reduction methods (Clarke
et al. (2004)) and decomposition methods (Koo and
Mishra (2006)) have been developed to overcome the
combinatorial explosion problem. These methods are not
specifically based on the spatial distribution issue.

In order to model-check a robotic mission, an alterna-
tive approach could use path planning (survey of such
methods in Souissi et al. (2013)) or route planning. In-
cluding constraints or properties to verify in an exact
route planning approach, based on mixed-integer linear
programming approach does require the design of custom
exact algorithms each time constraints change. A survey
of rich vehicle routing problems is given in (Caceres-Cruz
et al. (2015)). Route planning might also be combined with
model-checking: the planned route would be an input to
the verifier. In the case that the desired property would
not be satisfied on the planned route, alternative routes
would have to be found. Such an iterative method might
be error prone.

With the ultimate objective of checking both reachability
and liveness or safety properties, and from the results of
our survey, we concluded that the possibilities of model-
checking tools, such as UppAal, to verify reachability prob-
lems linked to robots spatial behavior should be investi-

gated. In order to make model-checking on such problems
tractable, we propose in this paper a new decomposition
method that is specifically based on the spatial distribu-
tion of the problem.

The outline of the paper is as follows. Section 2 describes
the example problem, its model made with UppAal, and
the reachability property to check. Section 3 introduces
the decomposition methodology. An execution example is
given. In Section 4, we study the behavior of decomposition
algorithm for different scenarios and we compare it to a
basic method which does not proceed to decomposition.

2. ILLUSTRATIVE EXAMPLE AND MODEL

In this section, we will explain the problem we intend
to study using an example that was designed as an
abstraction of some situations that autonomous robots
would encounter in agriculture. We provide a model of
this example problem and formulate the properties that
are to be checked.

2.1 Problem under study

We consider a robot that moves on a regular grid of size
width × length depicted in figure 1. Except on border
lines, the robot may move on the adjacent cell to the east,
the north, the south. Diagonal and west moves are not
permitted.

The robot must perform one specific action for each cell it
visits. A cell must be visited only once. Let A, B, and C
be the actions to be performed by the robot in the field.
The figure 1 describes an example of the distribution of
actions to be done when a cell is visited.

1 2 3 4 5 6 7 8
A B B A B C A C 1
C C A A B C C A 2
C C A A C A B A 3
C C A A C B B A 4

Length

W
id
th

West East

South

North

Fig. 1. Distribution of actions accross a grid

Robot internal dynamics are represented in our example
model only by precedence constraints on actions. These
constraints can be represented by an automaton (Fig-
ure 2). In this example, doing action A before action B
is authorized but doing action A before action C is not.

A B C

Fig. 2. Automaton of precedence constraints

Sample motion of the robot: Let us suppose that
the robot is initially in the north-west corner cell in grid
depicted Figure 1. It needs to perform action A. Actions B
and C are assigned respectively to next cell to the east and
next cell to the south. Action B can be done after A and



action C cannot (see Figure 2). It follows that the robot
can only move to the east.

Next subsection provides a model for robot operations,
which we call Movement Based (MB) Model.

2.2 MB Model

In the following, each cell of a grid is represented by a pair
(x,y) where x is the line index, starting north, and y is the
column index, starting west. The current position of the
robot in the model is denoted (i, j), which is initialised at
(iinit, jinit). The MB model is composed of two automata:
a control automaton and a movement automaton.

Control automaton (Figure 3): At init time, the starting
cell for the robot is selected. There are three similar
parts in the automaton that correspond to each potential
movement. Let us examine movements to the east. In
the state ”Position”, the controller checks if, from the
current position, and according to movement constraints,
the robot may move to the east. If so, the control state
may change to ”Seek Neighbor”. If not, the path leads to
state ”Right Not Permitted”. In this case, the controller
updates the variable depAut to prevent the controller to
cycle infinitely on this test.

From state ”Seek Neighbor”, the controller may then check
if the target neighbor has already been visited. If it has,
the path leads to state ”Right Not Permitted”. Otherwise,
the variable authorization is updated and next state is
”Check Authorization”. The value of authorization is
calculated from precedence constraints (Figure 2).

From state ”Check Authorization”, the output transition
bears a guard on the value of authorization. If the value is
true, then a command event may be sent to the movement
automaton and next state is ”Position”. Otherwise, next
state is ”Right Not Permitted”.

Fig. 3. The control automaton

Movement automaton (Figure 4): This automaton rep-
resents the actual robot displacement and memory of the
movements. It receives synchronization signals from the
control automaton (north, south, east). After a movement
to the east, for example, the movement automaton updates
its variables. The new position of the robot becomes the
adjacent cell to the east of previous cell. The new current
cell is marked as visited (the MB model updates a boolean
array of the size of the grid) and the action attached to
the cell is performed by the robot.

Fig. 4. The movement automaton

It may be noted that MB model is a network of untimed
automata. A CTL model-checker, such as e.g. LTSmin 1 ,
could then be used in this simple case. The reason for
UppAal choice is that for more realistic applications, the
precedence constraints automaton would be replaced by
a timed model of mobile equipment dynamics. So, timed
models and TCTL model-checking will be required in the
end. There exist several TCTL model-checkers such as
RED (hybrid automata), TAPAAL and ROMEO (Timed
Petri Nets) and UPPAAL (timed automata). UppAal fits
our needs.

2.3 Reachability property verification

As said in introduction, the objective of the paper is to
propose a method for verifying a priori a robotic mission.
We consider here that the mission on the grid needs to be
fulfilled for any possible start point on west border and
any possible end point on east border.

Let us define two functions on a rectangular grid G. BW
stands for West Border, and BW(G) returns the subset of
cells that belong to the west border of grid G. Similarly,
BE(G) returns the subset of cells that belong to the
East Border of G. Let us denote by w −→ e the path
(succession of cells) from cell w to cell e, verifying the
actions precedence constraints.

The verification property studied in this paper is

∀ w ∈ BW(G),∀ e ∈ BE(G),∃ w −→ e (Π)

We call the property Π total reachability side to side
property.

From preliminary studies it came that, in order to verify
Π, memory requirements could exceed the possibilities of a
usual PC (8Gb) for rectangular grids as small as 4x32 cells.
The subject of this paper is to study if a decomposition

1 https : //fmt.cs.utwente.nl/tools/ltsmin/



method may help to manage this problem. To this end,
two approaches were compared:

(1) The first one, called here Reference, does not proceed
to decomposition and checks (Π) with a set of reach-
ability queries that correspond to each start point on
BW(G) and each point on BE(G) (end of path).

(2) The second one is specific to the spatial nature of the
problem and is called here Decomposition. It consists
in dividing the grid into subgrids that overlap on a
recovery column and finding points on that column
that have specific properties.

3. DECOMPOSITION OF THE PROBLEM

In this section, the Decomposition methodology that we
propose is presented, as well as an analysis on how de-
composition modifies problem solving. The algorithm is
provided and its behavior is described using an example.

3.1 Description of the decomposition methodology

Our approach involves modeling decomposition and verifi-
cation decomposition. The modeling decomposition (illus-
trated in Figure 5) consists in decomposing the global grid
G into two sub-grids (S1 and S2) with a recovery column
RC. This column belongs to both sub-grids and verifies
RC = BE(S1) = BW(S2).

Fig. 5. Example of modeling decomposition

Let us denote P1 and P2 the following sets:

P1 = {u ∈ BE(S1) / ∀ w ∈ BW(S1), w −→ u}
P2 = {v ∈ BW(S2) / ∀ e ∈ BE(S2), v −→ e}

The verification decomposition consists in decomposing
the total reachability side to side property Π into two
properties Π1 and Π2:

P1 6= ∅ (Π1) P2 6= ∅ (Π2)

When Π1 and Π2 are verified and P1 ∩ P2 6= ∅, it may be
so that the property Π is verified. Conditions are analysed
in sub-section 3.2. When P1 ∩ P2 = ∅, it is not possible to
directly conclude on Π and a further step is needed (see
subsection 3.4).

3.2 Analysis of decomposition

Let us suppose that for a given grid, Π1 and Π2 are
verified and that P1 ∩P2 6= ∅. Let us consider one element
u ∈ P1 ∩ P2.

Let C1 be a minimal set of points of BE(S1) that need to
be visited in order to reach u, u included. Let C2 be a
minimal set of points of BE(S1) = BW(S2) that need to
be visited in order to reach all points of BE(S2) from u, u
included.

The necessary condition for Π to be verified, by means of
paths that would all include u, is that there exist C1 and
C2 such that C1 ∩ C2 = {u}. This condition is obviously
sufficient for proving Π from Π1 and Π2. On the contrary,
if ∃v ∈ C1 ∩ C2 with v 6= u, then v would be visited
twice: once verifying Π1 (to reach u from BW(S1)) and
once verifying Π2 (to reach BE(S2) from v). This would
violate the visit constraint.

Considering the MB model of our example problem, the
C1 ∩ C2 = {u} condition is sufficient for proving Π from
Π1 and Π2 using the UppAal verifier.

It can be noted that in case that either Π1 or Π2 is not
verified, it may be so that Π may still hold. This is because
the decomposition heuristic presented so far is based on
a single passing point in the recovery column RC that
should include paths of the robot from all points of BW(S1)
to all points BE(S2). Π may still hold if several passing
points on the recovery column can be used. The procedures
described in 3.4 handle this case.

3.3 Decomposition algorithm

Let us introduce some further terminology. A potential
point is a point u from P1 ⊂ RC. It can be reached from
all points of BW(S1). Let u ∈ C1 with C1 defined as in 3.2.
We call order of u the cardinal of C1. A critical point u is
a potential point from which all points of BE(S2) can be
reached. u ∈ P1 ∩ P2 and it verifies C1 ∩ C2 = u.

The outline of the Decomposition algorithm is as follows:

(1) The models of systems over sub-grids S1 and S2 are
generated from the model of system over G.

(2) A search of all potential points of order 1 in RC is
performed, and the result is PPo1, subset of RC.

(3) If PPo1 6= ∅, a critical point is searched in this set.
(4) If at least one critical point exists, Π is verified and

the problem is solved.
(5) If no critical point has been found at this step,

proceed to East, and then West, Repartition (see 3.4).
(6) Otherwise, the process is repeated for the following

orders, until problem is solved or order is greater than
the grid width.

The verifier of UppAal requires a specific language based
on a BNF-grammar to define properties. Reachability
properties are defined as E <> p where p is an expression.
In the following, we provide examples of p expressions for
several query types. == is the equality sign in UppAal
language.

search potential point order 1 :
Let w(x1, y1) ∈ BW(S1) and u(x2, y2) ∈ RC

p : iinit == x1 and jinit == y1
and i == x2 and j == y2

and pvisit
pvisit : ∀(x, y) ∈ RC (x, y) 6= (i, j),

visit[x][y] == false

(1)



search potential point order 2 : Let V be a subset of
RC of cardinal 2 such that its elements are adjacent on
the grid. Let w(x1, y1) ∈ BW(S1) and u(x2, y2) ∈ V

p : iinit == x1 and jinit == y1
and i == x2 and j == y2

and pvisit2
pvisit2 : ∀(x, y) ∈ V,visit[x][y] == true

and ∀(x, y) ∈ RC/V,visit[x][y] == false

(2)

search critical point (from order 1 potential point): Let
u(x1, y1) ∈ PPo1, u is starting point, and e(x2, y2) ∈
BE(S2)

p : iinit == x1 and jinit == y1
and i == x2 and j == y2

(3)

The queries for higher orders can easily be deduced from
the examples given above.

3.4 Repartition

As was pointed out in 3.2, Π may be true even in the
absence of critical points. The Decomposition algorithm
includes means to further augment the search of solutions
without more queries with the model-checking tool. It
includes a marking method that memorizes, from the
queries, the existence of a path from each element of
BW(S1) to each element of RC and from each element
of RC to each element of BE(S2). The Decomposition
algorithm proceeds to what we call East repartition.
When there is no critical point, East repartition searches
if, using together all potential points, paths from each
element of BW(S1) to each element of BE(S2) can be
created. The East repartition procedure is inserted in the
algorithm as follows:

East Repartition: Formally Π is verified by an East
repartition iff:

∃R ⊂ RC/ ∀u ∈ R,∀w ∈ BW(S1), w −→ u

∧ ∀u ∈ R ∃Cu ⊂ BE(S2)/ ∀e ∈ Cu, u −→ e

∧
⋃
u∈R

Cu = BE(S2)
(4)

The East Repartition technique provides paths in S2 in
order to look for a solution to Π when no critical point
is found in RC. A similar technique can be applied to S1

when no potential point is found or when East Repartition
has been applied to each order step and no solution was
found. We call this repartition West Repartition.

3.5 Illustrative example

We provide here an illustration of the execution of the
Decomposition algorithm. We number the cells of the
rectangular grid G in the following manner: index u of a
point of coordinates (i, j) is calculated as u = (i−1)×l+j,
where l is grid length. The index in the sub-grids remains
the same. The Figure 6 gives an example of a distribution
of actions that we will use to illustrate the behavior of the
algorithm.

(1) Once sub-grids S1 and S2 have been created, the
search in RC of all potential points of order 1 is
performed. Here, point 13 is reachable at order 1 only

Fig. 6. Example of distribution of actions for G

Fig. 7. Execution in S1 Fig. 8. Execution in S2

from 1 and 9 (see red lines in the Figure 7). Because
of precedence constraints, there is no path at order 1
from 17 and 25 to 13. Point 21 is reachable at order
1 only from 17 and 25. Because there is no potential
point of order 1, it must be proceeded to order 2.

(2) Search in RC of all potential points of order 2 is
performed. 13 and 21 are potential points of order 2
because there exists a path in both directions between
them. 13 is reachable at order 1 from 1 and 9, and
is reachable from 17 and 25 through 21. Similar
reasoning can be made for point 21.

(3) It must now be verified if potential points 13 and 21
are critical (i.e. in S2). 21 is critical and 13 is not (see
Figure 8). Indeed, 8 and 16 can be reached from 13
through 14, 6, 7, 8, 16. There are paths from 13 to 24
and 32 through 21, but these are not permitted since
21 has already been visited in sub-grid S1. Precedence
constraints forbid other paths from 13 to 24 and 32.
From 21, 8 and 16 can be reached through 22, 14, 6,
7, 8, and 16. Points 24 and 32 can be reached through
22, 30, 31, 32, and 24. As 21 is a critical point, Π is
verified over G and the problem is solved.

4. RESULTS & DISCUSSION

In this section, we study the performance of Decompo-
sition algorithm for different scenarios and we compare
it with the Reference algorithm (see 2.3). For a possible
moves from a cell (here a = 3), the complexity of Reference
algorithm with respect to grid size w (width) x l (length)
is aw.l and the complexity of Decomposition is 2xaw.l/2.
We focus on the impact in memory requirement and time
execution.

4.1 Comparison methodology

From preliminary studies about memory behavior, testing
a set of grid cases, it was decided to use grid sizes of 4x16
and 4x32. The following test base was built for 4x16 size
(size I): 10 4x16 random grids for which Π is not verified, 11
4x16 grids for which Π is verified with a solution involving
a potential point at order 1, including the case ’allA’
with action A assigned to all cells, and 10 others with
solution at order 2. For orders 1 and 2, except ’allA’, the



Table 1. Comparison in Memory (M) and Ex-
ecution Time (ET) between Reference algo-

rithm and Decomposition algorithm

Classe Scenarios Reference Decomposition

ET (s) M(KB) ET (s) M(KB)

Order 1

I.1 3.1 14,936 2 84
I.2 2.9 16,432 2 84
I.3 1.6 92 2 84
I.4 3.0 11,572 2 84
I.5 3.6 16,448 2 84
I.6 3.5 14,928 2 84
I.7 4.7 18,588 2 84
I.8 5.2 19,876 2 84
I.9 3.9 18,356 2 84
I.10 5.0 28,724 2 92
all A 412.8 2760,436 3.3 18,756

Order 2 I.1-10 1.6 84 4.6 84

I.1 2.0 12,024 10 84
I.2 1.6 84 10 84

No I.3 1.6 92 10.4 84
solution I.4-8,10 1.6 84 10.4 84

I.9 1.6 84 9.4 84

Order 1

II.1 986.72 7191,716 3.6 17,604
II.2 667.0 ¿28305,268 8.6 56,712
II.3 4738.2 29011,768 4.0 39,756
II.4 5212.2 34719,696 4.5 30,540

Order 2

II.1 1575.7 18623,220 97.4 192,928
II.2 2782.7 25417,372 160.6 346,444
II.3 2618.6 21659,564 160.5 346,492
II.4 6211.8 86793,712 578.9 346,464

grids were produced thanks to an ad-hoc method (mixing
cells with pre-determined actions and cells with random
chosen actions). For size 4x32 (size II), 4 cases were defined
at order 1 and 4 other cases for order 2. We call each
grid of the test base a scenario. We group scenarios in
classes according to their a priori difficulty for solving by
decomposition.

The results of tests are given in the table 1. These
results were obtained with UppAal verifier in Breadth
First Search (BFS) mode. This mode was used because
it allows a fair comparison with the basic method and
because it should exhibit less variation in performance
between queries for a given grid.

In order to analyse the performance results, it is useful to
consider the following points:

• With the Reference algorithm on grids of width 4×16,
42 reachability queries are always addressed to the
UppAal model checker.
• With the Decomposition algorithm, queries are made

on smaller grids but are more numerous. For solution
at first order, 20 to 32 queries need to be addressed to
the verifier: 16 reachability queries in sub-grid S1 and
between 4 to 16 reachability queries for sub-grid S2.
Solution at greater orders require still more queries.
• UppAal model checker uses on-the-fly searching tech-

nique: it stops when the first solution of the reach-
ability property is found. That is why, it does not
generate all the states graph. Nervertheless, in BFS
order, the solution is far from the root of the graph
because it can be found only at east border of the grid.
This makes a difference for Decomposition algorithm
which works on half-grids.

• The size of states graph depends on the distribution
of actions in the grid.

• UppAal allocates an initial memory bloc of size 84
KB when starting to execute query 2 .

In table 1, the columns named ET (Execution Time) give
the total time required by the all needed queries. The
columns named M (Memory) give the required memory
by the query that required maximum memory.

4.2 Memory performances

From all the test base, it seems that the Decomposition
algorithm succeeds in reducing memory requirements. For
the ”all A” case, which is a worst case for order 1, the
reduction is, as expected, spectacular.

In some cases like scenario I.3 in order 1, memory saving is
less apparent. Our hypothesis is that the complexity of the
path generation of the initial grid is generated by one half
of the grid, whereas the rest of the grid has a moderate
effect on stored paths. In that case, the decomposition
method should have a lower effect on complexity with
regards to the basic reference method.

For size I, at second order and for last class (Reference
algorithm finds that Π is false), the Decomposition algo-
rithm offers comparable memory requirements as Refer-
ence.

The 8 scenarios of size II (4x32 grid) were tested in order
to demonstrate the effect of the exponential complexity
according to grid size. The memory requirements with
Reference algorithm is between 7Go and 87 Go whereas
the Decomposition algorithm could solve all cases, with
memory requirement below 0.4 Gb.

In conclusion, the Decomposition algorithm succeeds in
reducing memory requirements and it allows to address
grids of bigger sizes than the Reference. Moreover, the
Decomposition methodology has potential for grids of
bigger size than those used in the experiments. Indeed, the
Decomposition principle can be applied recursively until
finding the granularity that makes problem solvable.

4.3 Time performances

At first order, the Decomposition algorithm solves Π with
20 to 32 queries. The average query time is 0.10s for 4x16
grids and 12.46s for 4x32 grids. The Reference algorithm
requires 16 queries, which have an average execution time
of 0.22s for 4x16 grids and 206.1s for 4x32 grids.

At the second order, the Decomposition Algorithm solves
the problem using 46 queries in each scenario case for 4x16
(size I) grids with an average query time of 0.1s, which is
the minimum resolution for measurement of elapsed time.
For these cases, the Reference algorithm is better than the
Decomposition algorithm in execution time. For 4x32 (size
II) grids, Decomposition performs better than Reference.

For the no solution class (size I), the Decomposition
algorithm requires more execution time than the Reference
algorithm and it solves the problem (Π being false) using
[94 - 104] queries.

2 https : //www.it.uu.se/research/group/darts/uppaal/press/
uppaal − 3.4.shtml



5. CONCLUSION AND FUTURE WORK

In this paper, it was investigated how model-checking
can be applied to address spatial properties for mobile
robots. We have proposed a decomposition methodology
that is specific to the spatial nature of the problem and
that decomposes both modeling and verification. The
structure and motivations of the Decomposition algorithm
were explained. The experimental results provided suggest
that the decomposition algorithm is efficient in reducing
memory requirement in comparison to a basic reference
method. In some cases, the decomposition algorithm also
reduces model-checking execution time.

The decomposition principle can be applied recursively,
which offers potential to solve large grids. The Decom-
position methodology could also be developed further, by
dividing the initial grid in n sub-grids (S1,.., Sn) instead of
2. This enhanced decomposition methodology would apply
a similar decomposition technique for S1 and Sn. Then, it
would search for a path from a potential point u on east
border of S1 to a potentially critical point v on west border
of Sn. This enhanced approach may be more interesting
than applying recursively decomposition methodology be-
cause it would reduce the number of queries from n.C to
2.C+k where C is the number of queries in a sub-grid and
k is the number of queries for searching a single path from
u to v Another further step would be to develop methods
that would be applicable to both safety and reachability
properties. The theory of Timed games (Pnueli et al.
(1998)) also seems relevant for supporting control design
for mobile robots acting on a spatial grid.

ACKNOWLEDGMENT

This work has received the support of French National
Research Agency under the grant number ANR-14-CE27-
0004 attributed to AdAP2E project.

REFERENCES

Al-A’Abed, M., Majali, T., Omar, S., Alnawaiseh, A.,
Al-Ayyoub, M., and Jararweh, Y. (2015). Building a
prototype for power-aware automatic parking system.
Proceedings of 2015 IEEE Int. Renewable and Sustain-
able Energy Conference, IRSEC 2015.

Alur, R., De Alfaro, L., Henzinger, T.A., and Mang,
F.Y. (1999). Automating modular verification. In Int.
Conf. on Concurrency Theory, 82–97. Springer, Berlin,
Heidelberg.

Alur, R. and Dill, D.L. (1994). A theory of timed
automata. Theoretical Computer Science, 126, 183–235.

Bechar, A. and Vigneault, C. (2016). Agricultural robots
for field operations: Concepts and components. Biosys-
tems Engineering, 149, 94–111.

Bengtsson, J. and Yi, W. (2004). Timed Automata:
Semantics, Algorithms and Tools, 87–124. Springer,
Berlin, Heidelberg.

Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D.,
and Juan, A.A. (2015). Rich vehicle routing problem:
Survey. ACM Computing Surveys (CSUR), 47(2), 32.

Claes, D., Robbel, P., Oliehoek, F.A., Tuyls, K., Hennes,
D., and van der Hoek, W. (2015). Effective approx-
imations for multi-robot coordination in spatially dis-
tributed tasks. In Proceedings of the 2015 Int. Conf. on

Autonomous Agents and Multiagent Systems, 881–890.
International Foundation for Autonomous Agents and
Multiagent Systems.

Clarke, E., Talupur, M., Touili, T., and Veith, H. (2004).
Verification by Network Decomposition. In P. Gardner
and N. Yoshida (eds.), CONCUR 2004 - Concurrency
Theory, 276–291. Springer Berlin Heidelberg.

Hélias, A., Guerrin, F., and Steyer, J.P. (2008). Using
timed automata and model-checking to simulate mate-
rial flow in agricultural production systems - application
to animal waste management. Computers and Electron-
ics in Agriculture, 63(2), 183–192.

Herrera, D., Tosetti, S., and Carelli, R. (2016). Dy-
namic modeling and identification of an agriculture au-
tonomous vehicle. IEEE Latin America Transactions,
14(6), 2631–2637.

Kayacan, E., Kayacan, E., Ramon, H., and Saeys, W.
(2013). Modeling and identification of the yaw dynamics
of an autonomous tractor. 9th Asian Control Confer-
ence, ASCC 2013.

Koo, H.M. and Mishra, P. (2006). Functional Test Gener-
ation Using Property Decompositions for Validation of
Pipelined Processors. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’06,
1240–1245. European Design and Automation Associa-
tion, 3001 Leuven, Belgium.

Largouët, C., Cordier, M.O., Bozec, Y.M., Zhao, Y.,
and Fontenelle, G. (2012). Use of timed automata
and model-checking to explore scenarios on ecosystem
models. Environmental Modelling & Software, 30, 123–
138.

Larsen, K.G., Larsson, F., Pettersson, P., and Yi, W.
(2003). Compact data structures and state-space reduc-
tion for model-checking real-time systems. Real-Time
Systems, 25(2-3), 255–275.

Larsen, K.G., Pettersson, P., and Yi, W. (1997). Uppaal
in a nutshell. International Journal on Software Tools
for Technology Transfer, 1(1-2), 134–152.

Leahy, K., Jones, A., Schwager, M., and Belta, C. (2015).
Distributed information gathering policies under tem-
poral logic constraints. In 2015 54th IEEE Conf. on
Decision and Control (CDC), 6803–6808. IEEE.

Lenain, R, c. (2014). ”anr adap2e project
reference anr-14-ce27-0004 adaptive autonomous
production platform for environment”. URL
"http://www.agence-nationale-recherche.fr/
?Project=ANR-14-CE27-0004".

Pnueli, A., Asarin, E., Maler, O., and Sifakis, J. (1998).
Controller synthesis for timed automata. In Proc.
System Structure and Control. Elsevier. Citeseer.

Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A.,
Belanger, N., and Feyzeau, P. (2013). Path planning: A
2013 survey. Proceedings of 2013 Int. Conf. on Industrial
Engineering and Systems Management, IEEE - IESM
2013.

Vanwalleghem, T., Jimnez-Hornero, F., Girldez, J., and
Laguna, A. (2010). Simulation of long-term soil redistri-
bution by tillage using a cellular automata model. Earth
Surface Processes and Landforms, 35(7), 761–770.

Wainer, G.A. and Giambiasi, N. (2001). Application of
the cell-devs paradigm for cell spaces modelling and
simulation. Simulation, 76(1), 22–39.


