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Abstract. In this paper we are interested in the use of argumentation for handling
inconsistency in inconsistent knowledge bases expressed with existential rules.
We propose an instantiation of an argumentation framework and demonstrate it
is coherent, relatively grounded and non trivial, therefore satisfying the rational-
ity postulates from the literature. We demonstrate how argumentation semantics
relate to the state of the art of handling inconsistency in this setting, allowing us
to propose the first dialectical proof in the literature for a given semantics.
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1 Introduction

We place ourselves in a concrete, practical setting called ONTOLOGY-BASED DATA
ACCESS (OBDA) [41]. In this setting a consistent ontology (that we consider in this pa-
per, for the sake of generality, to be expressed using existential rules [17]) is employed
to “transparently access” a set of different, independently developed data sources with
the benefit of unified querying and implicit information exposure. In some cases, the
union of data sources can be inconsistent with the ontology. In order to still be able to
reason and query data sources in presence of inconsistency, maximal consistent subsets
of the union of the data sources, called repairs [36], are considered. Since the repairs are
consistent, classical entailment can be used on the repairs in different manners. These
different ways of considering entailment on repairs are called inconsistency tolerant
semantics [36].

Another way of dealing with inconsistency in OBDA is argumentation. Logic-based
argumentation considers constructing arguments from inconsistent knowledge bases,
computing attacks between them and using so called argumentation semantics in or-
der to select acceptable arguments and their conclusions. Several approaches for logic
based argumentation exist in the literature: assumption-based argumentation frame-
works (ABA) [16], DeLP [33], the deductive argumentation, where an argument is
perceived as a tuple (H,C) of set of premises H and a conclusion C [12] or AS-
PIC/ASPIC+ [39].

In this paper, we are interested by the use of argumentation for handling inconsis-
tency in OBDA. The benefit of using argumentation is that it allows to represent the data
in a format that is easier to grasp by a user. It allows (by examining the support of an



argument) to track the provenance of different pieces of information used to conclude a
given formula and to see (by examining the attacks between arguments) which pieces of
information are not compatible together. More precisely, we ask the following research
question: “Is it possible to use logic based argumentation in order to handle inconsis-
tency in OBDA?” We show that the answer to the question is positive, as demonstrated
by the following main four contributions of the paper:

– We propose an instantiation of an argumentation framework and demonstrate it is
coherent, grounded and non trivial (Section 3).

– We show the link between the argumentation semantics and inconsistency tolerant
semantics (Section 4).

– We validate the proposed instantiation by showing it abides by the rationality postu-
lates proposed in the literature (Section 5).

– We propose the first dialectical proof in the literature for a given semantics and anal-
yse its properties in terms of finiteness, soundness, completeness and dispute com-
plexity (Section 6).

Our work is significant as it gives an alternative and promising method of handling
inconsistency using argumentation in OBDA. On the one hand, it allows a user to better
grasp a piece of information since it is represented in form of an argument. On the
other hand, we prove that the output of our argumentation based system coincides with
the output provided by existing inconsistency tolerant semantics from the literature.
We also provide a novel dialectical proof for a given inconsistency tolerant semantics.
Such result paves the way for improved explanation techniques of inconsistency tolerant
semantics using argumentation.

2 Inconsistency Handling in OBDA with Existential Rules

There are two major approaches to representing ontologies in the OBDA setting: De-
scription Logics (such as EL [8] and DL-Lite [18] families) and rule-based languages
(such as Datalog± [17] language, a generalization of Datalog [22] that allows for exis-
tentially quantified variables in rule heads). As a response to Datalog± undecidability
when answering conjunctive queries, different decidable fragments were proposed and
studied in the literature [11]. These fragments generalize the aforementioned Descrip-
tion Logics families and overcome their limitations by allowing any predicate arity as
well as cyclic structures. In the next section we detail the logical language used through-
out the paper and namely existential rules.

2.1 Syntax and Semantics of Existential Rules

We consider the positive existential fragment of first-order logic FOL(∃,∧) [23, 10]. Its
language L is composed of formulas built with the usual quantifiers (∃,∀) and only two
connectors: implication (→) and conjunction (∧).

We consider usual first-order vocabularies with constants but no other function sym-
bols. A term is thus a variable or a constant. A vocabulary is a pair of two disjoint sets



V = (P, C), where P is a set of predicates and C is a set of constants. A term t over V is
a constant or a variable; different constants represent different values (unique name as-
sumption). As an example, we define the following vocabulary with the set of constants
C = {John, Tom}, P = {student, teacher, teaches}. The unique name assumption
dictates that John and Tom which have different names refer to different entities in the
real world. We use uppercase letters for constants, if the constant is a word then the first
letter is put in uppercase, and we use lowercase letters for variables.

An atomic formula (or atom) over V is of the form p(t1, ..., tn) where p ∈ P
is an n-ary predicate, and t1, ..., tn are terms. For instance, teaches(John, x1) is a
binary predicate where x1 and John are terms. A ground atom is an atom with no
variables, for example teaches(John, Tom) is a ground atom. A conjunction of atoms
is called a conjunct. A conjunction of ground atoms is called a ground conjunct. For
instance, teaches(John, x1) ∧ teacher(John) is a conjunct and teacher(John) ∧
teaches(John, Tom) ∧ student(Tom) is a ground conjunct. A variable in a for-
mula is free if it is not in the scope of any quantifier. A formula is closed if it has
no free variables. A closed formula is called a sentence. For example, the formula
∃x1teaches(John, x1) is closed because x1 is in the scope of the quantifier ∃, whereas
the formula (teacher(John) ∧ student(x1) ∧ teaches(John, x1)) is not closed be-
cause x1 appears free in the formula.

One way to represent knowledge about the world is to grasp its factual knowledge
represented usually by ground atoms. In the Existential Rules framework this concept
has been extended so that a fact on V is the existential closure of a conjunction of atoms
over V [10]. For instance, ∃x1(student(x1) ∧ enrolled(x1, C1)) is a fact. For a given
fact F we exclude duplicate atoms in F , which allows to see a fact as a set of atoms. For
instance, the fact F = ∃x∃y(r(x)∧ p(A, y)∧ r(x)) can be seen as {p(A, y), r(x)}. By
doing so we will be able to apply set-theoretic operations on facts like union, subset-
inclusion, etc.

Let F be a fact, we denote by terms(F ) (resp. vars(F )) the set of terms (resp.
variables) that occur in F . We recall the notions of substitution and homomorphism
between facts to be used in order to query facts. Given a set of variables X and a set of
terms T , a substitution σ of X by T (notation σ : X → T ) is a function from X to T .
Given a fact F , σ(F ) denotes the fact obtained from F by replacing each occurrence
of x ∈ X ∩ vars(F ) by σ(x). A homomorphism from a fact F to a fact F ′ is a
substitution σ of vars(F ) by (a subset of) terms(F ′) such that σ(F ) ⊆ F ′.

Example 1 (Homomorphism). Consider the following vocabulary V = (C,P):

– C = {A,B}.
– P = {q, r}.

Consider the following two facts over the vocabulary V:

– F = {q(A, x)} where terms(F ) = {A, x} and vars(F ) = {x}.
– F ′ = {q(A,B), r(A)} where terms(F ′) = {A,B} and vars(F ′) = ∅.

Consider vars(F ) and terms(F ′) as our set of variables and set of terms. We have
two possible substitutions.



– σ1 = {(x,A)}.
– σ2 = {(x,B)}.

Where x is substituted by A in σ1 and by B in σ2. Let us see which of these substi-
tutions is a homomorphism from F to F ′:

– When we apply σ1 on F we get σ1(F ) = {q(A,A)}.
– When we apply σ2 on F we get σ2(F ) = {q(A,B)}.

It is clear that the substitution σ2 is a homomorphism from F to F ′ (unlike σ1)
because σ2(F ) ⊆ F ′.

A conjunctive query (CQ) has the following form: Q = ans(x1, . . . , xk) ← B,
where B (the “body” of Q) is a fact, and x1, . . . , xk occur in B and ans is a special
k-ary predicate, whose arguments are used to build an answer. Given a set of facts F ,
an answer to Q in F is a tuple of constants (A1, . . . , Ak) such that there is a homo-
morphism σ from B to F , with (σ(x1), . . . , σ(xk)) = (A1, . . . , Ak). If k = 0, i.e.
Q = ans() ← B, Q is called a Boolean conjunctive query, the unique answer to Q is
the empty tuple if there is a homomorphism from B to F , otherwise there is no answer
to Q. Note that a query Q can be shortly referred to by its body B. For its simplicity,
this notation will be used hereafter.

A complementary way to represent knowledge is to use rules that encode domain-
specific knowledge. Rules are regarded as an ontological layer that reinforces the ex-
pressiveness of the knowledge base. Rules are logical formulae that allow us to infer
new facts (conclusion) from existing facts (hypothesis). Existential rules [10, 17] intro-
duce new variables in the conclusion having ability to represent unknown individuals
(also known in database community as value invention [1]). This form of rules is also
known as tuple-generating dependencies in database community [32]. We denote by x
in a bold font a vector of variables. An existential rule (or simply a rule) is a closed
formula of the form R = ∀x∀y(B → ∃zH), where B and H are conjuncts, with
vars(B) = x ∪ y, and vars(H) = x ∪ z. The variables z are called the existential
variables of the rule R. B and H are respectively called the body and the head of R.
We denote them respectively body(R) for B and head(R) for H .

Existential rules are more expressive than Description Logics as they can represent
complex relations between individuals. For example, the existential rule siblingOf(x, y)
→ parentOf(z, x)∧parentOf(z, y) cannot be expressed in DL because of the “cycle
on variables” [23].

To represent knowledge about the world we account for negative constraints, i.e.
knowledge that dictates constraints about the world, also known as denial constraints
in databases [17]. A negative constraint (or simply a constraint) is a rule of the form
N = ∀x(B → ⊥). Negative constraints in the existential rules framework fully cap-
ture concept disjointness of DLs. For example, the following is a negative constraint
retiredFrom(x, y) ∧ worksIn(x, y)→ ⊥. From now on we omit quantifiers in front
of formulae as there is no ambiguity.

A knowledge base is a tupleK = (F ,R,N ) of finite sets of facts, rules and negative
constraints respectively. Reasoning with a knowledge base is done via a mechanism
called saturation. In order to define saturation we need to define rule applicability.



A rule R = B → H is applicable [10] to a fact F if there is a homomorphism
σ from B to F . The application of R to F w.r.t. σ produces a fact α(F,R, σ) =
F ∪ σ(safe(H)), where safe(H) is obtained from H by replacing existential vari-
ables with fresh variables (not used variables). α(F,R, σ) is said to be an immedi-
ate derivation from F . Let F be a fact and R be a set of rules. A fact F ′ is called
an R-derivation of F if there is a finite sequence (called the derivation sequence)
〈F0 = F, ..., Fn = F ′〉 such that for all 0 ≤ i < n there is a rule R ⊆ R which is
applicable to Fi and Fi+1 is an immediate derivation from Fi.

Example 2. For instance, consider R = q(x, y) → p(z, y) and F = {q(A,B), r(A),
s(v)}, R is applicable to F because there is a homomorphism from set {q(x, y)} to set
{q(A,B), r(A), s(v)} that substitutes x by A and y by B. The immediate derivation
from F is the fact:

F ′ = {q(A,B), r(A), s(v)} ∪ {p(w,B)} where w is a fresh variable not used
before.

The reason to introduce fresh variables is to avoid relating variables from the initial
set of facts with new introduced facts. For instance, in the above example if we were to
use v instead of w then we would have {p(v,B)} which dictates that: besides the fact
that v has the property s indicated initially in F , it is also related to B by the predicate
p, which is not faithful to the meaning of the rule.

We denote by C`∗R(F) the saturation of F with respect to R. Applying a rule to
a set of facts is called a chase, and different chase mechanisms use different simplifi-
cations that prevent infinite redundancies. In this paper, we use the skolem chase [37].
Moreover, we restrict ourselves to recognisable FES classes of existential rules where
the chase is guaranteed to stop [10]. Thus, C`∗R(F) is a finite set.

2.2 Inconsistency-Tolerant Semantics

Existential rules framework is widely used in Semantic Web and in the so-called
ONTOLOGY-BASED DATA ACCESS, where rules and constraints act as an ontology
used to “access” different data sources. These sources are prone to inconsistencies.
In this setting, we suppose that the set of rules is compatible with the set of negative
constraints, i.e. the union of those two sets is satisfiable [36].

This assumption is made because in OBDA we assume that the ontology is believed
to be reliable as it is the result of a robust construction by domain experts. However, as
data can be large and heterogeneous due to merging and fusion, in the OBDA setting
the data is assumed to be the source of inconsistency. This means that by applying the
rules on the set of facts, we might violate a constraint.

In what follows we recall the formal definition of inconsistency in the existential
rules framework; then we introduce the subset-repairing technique which is inspired by
the work from the database community [25] and Description Logics [36, 14].

Definition 1 (Inconsistency). A set of facts F is inconsistent with respect to a set of
rulesR and negative constraintsN (or inconsistent for short) if and only if there exists
a constraint N ∈ N such that C`∗R(F) |= body(N).



This means that the set of facts violates the negative constraint N or triggers it.
Correspondingly, a knowledge base K = (F ,R,N ) is inconsistent (with respect to R
andN ) if and only if there exists a set of facts F ′ ⊆ F such that F ′ is inconsistent. An
alternative writing is C`∗R(F) |= ⊥.

Example 3. Let us consider the following knowledge base K with:
F = {cat(Tom), bark(Tom)}, R = {R1 : cat(x1) → miaw(x1)}, N = {N1 :

bark(x2) ∧miaw(x2)→ ⊥}.
The saturation yields: C`∗R(F) = {cat(Tom), bark(Tom),miaw(Tom)}. Ob-

serve that this knowledge base violates the negative constraint N1.

One way to cope with inconsistency is to construct maximal consistent subsets of
the knowledge base [44]. This corresponds to “Data Repairs” [5]. A data repair of a
knowledge base K = (F ,R,N ) is a set of facts F ′ such that F ′ is consistent and there
exists no consistent subset of F that strictly contains F ′ [36].

Definition 2 (Repair). LetK = (F ,R,N ) be a knowledge base. A data repair (repair
for short) of K is a set of facts F ′ ⊆ F such that:

– C`∗R(F ′) 6|= ⊥ (consistency).
– ∀S ⊂ F \ F ′, if S 6= ∅ then C`∗R(F ′ ∪ S) |= ⊥.

Since repairs are computed exclusively on the set of facts and given that the factual
part of the knowledge base is the only source of inconsistency we, from now on, abuse
slightly the notation and refer to K′ by its set of facts F ′. The set of all repairs of K is
denoted byRepair(K).

Example 4 (Example 3 cont’d). The two possible repairs are: P1 = {cat(Tom)} and
P2 = {bark(Tom)}. If we consider F ∪ {animal(Tom)}, then the repairs become:

P1 = {cat(Tom), animal(Tom)} and P2 = {bark(Tom), animal(Tom)}

Once all repairs are computed, there are different ways to compute queries that
follow from an inconsistent knowledge base. The most prominent way is to allow the
entailment of a query if it is entailed from all repairs. This is called the CQA semantics
(Consistent Query Answering semantics) or AR-semantics (All Repairs semantics) .
Please note that in our context a query under CQA has either a yes or a no answer.
When we say a query is accepted that means it has a yes answer (entailed), otherwise it
has a no answer (not entailed).

Definition 3 (CQA semantics). LetK = (F ,R,N ) be a knowledge base and letQ be
a query. Then Q is accepted under CQA in K, written K |=CQA Q iff for every repair
P ∈ Repair(K), it holds that C`∗R(P) |= Q.

Example 5 (Example 4 cont’d). We have that:
C`∗R(P1) = {cat(Tom), animal(Tom), miaw(Tom)}
C`∗R(P2) = {bark(Tom), animal(Tom)}.
It is the case that K |=CQA animal(Tom) but it is not the case that K |=CQA

miaw(Tom) because miaw(Tom) is not entailed from P2.



Another possibility is to check whether the query is entailed from the intersection
of closed repairs (ICR-semantics).

Definition 4 (ICR-semantics). Let K = (F ,R,N ) be a knowledge base and letQ be
a query. Then S is ICR-entailed from K, written K |=ICR Q if and only if:⋂

P∈Repair(K)

C`∗R(P) |= Q

Example 6 (Example 5 cont’d). It is not the case that K |=ICR cat(Tom).

Finally, another possibility is to consider the intersection of all repairs and then
close this intersection under the rules (IAR-semantics).

Definition 5 (IAR-semantics).
Let K = (F ,R,N ) be a knowledge base and let Q be a query. Then Q is IAR-

entailed from K, written K |=IAR Q iff:

C`∗R

 ⋂
P∈Repair(K)

P

 |= Q
Let us show that the three semantics can yield different results.

Example 7. (ICR and IAR different from CQA) Consider K = (F ,R,N ), with:

– F = {haveCat(John, Tom), haveMouse(John, Jerry)}.
– R = {haveCat(x1, x2)→ haveAnimal(x1, x2),
haveMouse(x3, x4)→ haveAnimal(x3, x4)}.

– N = {haveCat(x1, x2) ∧ haveMouse(x1, x3)→ ⊥}.

There are two repairs:

– P1 = {haveCat(John, Tom)}.
– C`∗R(P1) = {haveCat(John, Tom), haveAnimal(John, Tom)}.
– P2 = {haveMouse(John, Jerry)}.
– C`∗R(P2) = {haveMouse(John, Jerry), haveAnimal(John, Jerry)}.

Consider a queryQ = haveAnimal(John, x) asking whether John has an animal,
recall that this is boolean query that has a yes or no answer. It holds that K |=CQA Q
since C`∗R(P1) |= Q and C`∗R(P2) |= Q, but neither K |=ICR Q (since C`∗R(P1) ∩
C`∗R(P2) = ∅) nor K |=IAR Q (since P1 ∩ P2 = ∅).

Let us now show that CQA and ICR are different from IAR.

Example 8. (CQA and ICR different from IAR) Consider the following knowledge
base K:

– F = {cat(Tom), dog(Tom)}.
– R = {cat(x1)→ animal(x1), dog(x2)→ animal(x2)},



– N = {cat(x1) ∧ dog(x1)→ ⊥)}.

We haveRepair(K) = {P1,P2}with P1 = {cat(Tom)} and P2 = {dog(Tom)}.
C`∗R(P1) = {cat(Tom), animal(Tom)}, C`∗R(P2) = {dog(Tom),
animal(Tom)}. Observe that, it is not the case that K |=IAR animal(x) since we
have P1

⋂
P2 = ∅. However, K |=CQA animal(x). This is because C`∗R(P1) |=

animal(x) and C`∗R(P2) |= animal(x). Also, we have K |=ICR animal(x) since
C`∗R(P1) ∩ C`∗R(P2) = {animal(Tom)}.

Inconsistency handling can rely on another concept called minimal conflicts. Given
a knowledge base K, a set of facts C is called a minimal conflict of K if and only if C
is inconsistent and every subset of C is consistent.

Definition 6 (Minimal conflicts). Let K = (F ,R,N ) be an inconsistent knowledge
base. A set of facts C is called a minimal conflict of K if and only if:

– C`∗R(C) |= ⊥ (inconsistency).
– ∀X ⊂ C, if X 6= ∅ then C`∗R(C \X) is consistent (minimality).

We denote by conflict(K) the set of all minimal conflicts of K.

Example 9 (Conflicts). Consider the following knowledge base K = (F ,R,N ):

– F = {p(A,A), p(B,C), q(C,B), r(C), w(D)}.
– R = {q(x, y)→ s(x, y)}.
– N = {p(x, x)→ ⊥, p(x, y) ∧ q(y, x) ∧ r(y)→ ⊥}.

We have the following conflict(K):

– C1 = {p(A,A)} and C2 = {p(B,C), q(C,B), r(C)}.

Note that {p(B,C), s(C,B), r(C)} is not a conflict because it is consistent. It is
clear from this knowledge base that every fact in F except w(D) is involved in some
inconsistencies. This means that w(D) will be in all repairs. On the contrary, p(B,C)
will not be in any repair that contains q(C,B) and r(C). Consequently, p(B,C) will
not be in all repairs and will not be accepted under CQA semantics.

The repairs are:

– P1 = {p(B,C), r(C), w(D)}
– P2 = {p(B,C), q(C,B), w(D)}
– P3 = {q(C,B), r(C), w(D)}

We saw how the CQA semantics handles inconsistency in the existential rules frame-
work. In the next section we introduce logic-based argumentation with existential rules,
which is another method to handle inconsistency.

3 Instantiating Dung’s Abstract Framework with Existential
Rules

In this section we show how to instantiate Dung’s [28] abstract model with the logic pre-
sented in the previous section. Subsection 3.1 defines the instantiation and Subsection
3.2 studies its properties.



3.1 Arguments and attacks

An argument is composed of premises and a conclusion [12]. The set of premises is
seen as a justification, a support, a reason or a proof for the conclusion.

Definition 7 (Argument). Let K = (F ,R,N ) be an inconsistent knowledge base. An
argument is a couple a = (H,C) such that:

1. H ⊆ F and C`∗R(H) 6|= ⊥ (consistency).
2. C = α0 ∧ . . . ∧ αn is an atom or a conjunct such that {α0, . . . , αn} ⊆ C`∗R(H)

(entailment).

Given an argument a, we denote its support by Supp(a) = H and its conclusion by
Conc(a) = C.

An argument is defined as a couple in which the support is a set of facts responsible
from the entailment of the conclusion C from the knowledge base K. The first clause
ensures that the support is consistent, which is an important property [12]. The second
clause ensures the preservation of entailment from the support H to the conclusion C.
Note that here arguments are constructed only from the factual part F of the knowledge
base, and there are no rules or negative constraints in the support or the conclusion.
The reason to exclude such formulas is due to an assumption inherent to OBDA which
dictates that the rules and the negative constraints are satisfiable and reliable, therefore
they should not be subjects of any attack.

Since all inconsistency comes from the facts, the only type of attack needed is the
so-called direct undercut, also known as assumption attack.

Definition 8 (Attack). An argument a attacks b if and only if ∃h ∈ Supp(b) such that

C`∗R({Conc(a), h}) |= ⊥.

Note that the attack relation is not symmetric, as illustrated by the following exam-
ple.

Example 10 (Non-symmetry). Let F = {p(M), q(M), r(M)}, R = ∅, N = {p(x) ∧
q(x) ∧ r(x)→ ⊥)}. Let a = ({p(M), q(M)}, p(M) ∧ q(M)), b = ({r(M)}, r(M)).
The argument a attacks b but b does not attack a because there exists no h ∈ Supp(a)
which is inconsistent with Conc(b) = r(M). However, the set {p(M), q(M)} is indeed
inconsistent with r(M), but according to the definition of the attack we consider a single
atom in the support of a.

This attack relation is irreflexive. This is guaranteed by the fact that for any argu-
ment a, Supp(a) is consistent and it entails Conc(a), therefore Supp(a) and Conc(a)
are consistent together. Consequently, an argument cannot attack itself.

Note that the attack relation can be empty. This happens if the knowledge base is
consistent or all the minimal conflicts in the knowledge base are unary.

Example 11. Consider F = {p(M), r(M)}, R = ∅, N = {p(X) → ⊥)}. We have
only one argument in this case a = ({r(M)}, r(M)). It is clear that p(M) is self-
contradictory because it triggers the negative constraint. It is not hard to see that the
attack relation is empty.



Notation 1 Let K = (F ,R,N ) be a knowledge base, F ′ ⊆ F be a set of facts and S
be a set of arguments. We adapt the following notations:

– Args(F ′) = {a | a is an argument such that Supp(a) ⊆ F ′}. This refers to the set of
all possible arguments that can be constructed from a given set of facts F ′.

– Base(S) =
⋃
ai∈S Supp(ai). A base of a set of arguments is the set of facts that

contains the supports of all arguments from S.
– The set of all arguments that can be constructed over K is denoted as Args(F).

An argumentation framework is defined as follows.

Definition 9 (Argumentation framework). An argumentation framework is a pair
H = (A,X ) where A is the set of arguments and X ⊆ A × A is the correspond-
ing attack relation.

In order to calculate the sets of arguments that can be accepted together, called
extensions, different acceptability semantics were introduced in the literature.

Definition 10 (Extensions). LetH = (A,X ) be an argumentation framework, E ⊆ A
and a ∈ A.

– We say that E is conflict free iff there exists no arguments a, b ∈ E such that (a, b) ∈
X .

– E defends a iff for every argument b ∈ A, if we have (b, a) ∈ X then there exists
c ∈ E such that (c, b) ∈ X .

– E is admissible iff it is conflict free and defends all its arguments.
– E is a complete extension iff E is an admissible set which contains all the arguments

it defends.
– E is a preferred extension iff it is maximal (with respect to set inclusion) admissible

set.
– E is a stable extension iff it is conflict-free and for all a ∈ A \ E , there exists an

argument b ∈ E such that (b, a) ∈ X .
– E is a grounded extension iff E is a minimal (for set inclusion) complete extension.
– An argument is :
• skeptically accepted with respect to a semantics x if it is in all extensions under x,

and there exists at least one extension,
• credulously accepted with respect to a semantics x if it is in at least one extension

under x and
• rejected if it is not in any extension under x.

To facilitate the readability of the paper we adapt the following notations.

Notation 2 For an argumentation framework H = (A,X ) we denote by Extx(H) the
set of its extensions with respect to the semantics x. We use the abbreviations p, s, and
g for respectively preferred, stable and grounded semantics. We denote by Scx(H) the
set of skeptically accepted arguments and by Crx(H) the set of credulously accepted
arguments ofH under the semantics x. In addition, we also use the following notations:

– range+(a) = {b | (a, b) ∈ X} (the set of arguments attacked by a)



– range−(a) = {b | (b, a) ∈ X} (the set of arguments that attack a)
– range+(S) =

⋃
a∈S range

+(a)

– range−(S) =
⋃
a∈S range

−(a)

To every knowledge baseK = (F ,R,N ) corresponds an argumentation framework
H = (A,X ) where A = Args(F ′) and X ⊆ A×A is the attack relation between the
arguments of A, as specified in Definition 8. We call H = (A,X ) the corresponding
argumentation framework of K = (F ,R,N ).

Let us use an example to show how to construct an argumentation framework from
a given knowledge base.

Example 12 (Pick two!). Consider the “Fast, Good or Cheap. Pick two!” project man-
agement principle. It states the fact that the three properties Fast, Good and Cheap of a
project are interrelated, and it is not possible to optimize all the three, then one should
always pick two of the three. It can be represented as a knowledge base as follows:

F = {project(P ), isfast(P ), isgood(P ), ischeap(P )}
R = {isfast(x) ∧ isgood(x) → isexpensive(x)}
N = {ischeap(x) ∧ isexpensive(x) → ⊥}

All the arguments that can be generated from K are presented in Appendix, Table 4.
The attacks are defined with respect to the following set of conflicts:

conflict(K) = {C1, C2} such that C1 = {ischeap(P ), isfast(P ), isgood(P )} and
C2 = {ischeap(P ), isexpensive(P )}.

There are three extensions under stable / preferred semantics:

– E1 = {a2, a10, a11, a12, a13, a14, a15, a22, a23, a27, a28, a29, a32, a33, a38, a39,
a40, a41, a43, a44, a45, a46, a47, a48, a49, a50, a51, a52, a53, a54}.

– E2 = {a1, a4, a5, a6, a19, a20, a21, a22, a25, a26, a32, a33, a34, a35, a36, a37, a40,
a41, a42, a44}.

– E3 = {a3, a7, a8, a9, a16, a17, a18, a23, a24, a25, a28, a29, a30, a31, a34, a35, a40,
a42, a43}.

For this argumentation framework Scs(H) = Scp(H) = {a40}. Note that the
grounded extension is equal to {a40}. We have Crs(H) = Crp(H) = A. There are
no rejected arguments.

3.2 Characterizing the outputs

Logic-based argumentation frameworks allow to exploit the structure of arguments to
reason in terms of acceptable conclusions. We introduce two definitions allowing us to
reason over such an argumentation framework. The output of an argumentation frame-
work is usually defined [19, Definition 12] as the set of conclusions that appear in all
the extensions (under a given semantics).



Definition 11 (Output of an argumentation framework). Let K = (F ,R,N ) be a
knowledge base and H = (A,X ) the corresponding argumentation framework. The
output ofH under semantics x is defined as:

Outputx(H) =
⋂

E∈Extx(H)

Concs(E).

In the degenerate case when Extx(H) = ∅, we define Output(H) = ∅ by convention.

Note that the previous definition asks for existence of a conclusion in every exten-
sion. This kind of acceptance is usually referred to as skeptical acceptance. We say that
a query Q is skeptically accepted if it is a logical consequence of the output ofH:

Definition 12 (Skeptical acceptance of a query). LetK = (F ,R,N ) be a knowledge
base and H = (A,X ) the corresponding argumentation framework. A query Q is
skeptically accepted under semantics x if and only if Outputx(H) |= Q.

It is possible to make an alternative definition, which uses the notion of univer-
sal acceptance instead of skeptical one. According to universal criterion, a query Q is
accepted if it is a logical consequence of conclusions of every extension:

Definition 13 (Universal acceptance of a query). LetK = (F ,R,N ) be a knowledge
base and H = (A,X ) the corresponding argumentation framework. A query Q is
universally accepted under semantics x if and only if for every extension Ei ∈ Extx(Q),
it holds that Concs(Ei) |= Q.

In general, universal and skeptical acceptance of a query do not coincide. Take for
instance the KB from Example 7. We can check that Q = haveAnimal(John, x) is
universally accepted but not skeptically accepted.

Example 13 (Cont’d Example 7). Let us compute the corresponding argumentation
framework H, and compare the sets of universally and skeptically accepted queries
under preferred semantics. We have the following Args(F):

a1 = ({haveCat(John, Tom)}, haveCat(John, Tom))
a2 = ({haveMouse(John, Jerry)}, haveMouse(John, Jerry))
a3 = ({haveMouse(John, Jerry)}, haveAnimal(John, Jerry))
a4 = ({haveCat(John, Tom)}, haveAnimal(John, Tom) ∧ haveCat(John, Tom))
a5 = ({haveCat(John, Tom)}, haveAnimal(John, Tom))
a6 = ({haveMouse(John, Jerry)}, haveAnimal(John, Jerry)
∧haveMouse(John, Jerry))

The attack relation is drawn in Figure 1. Consequently, we get the following Ext(H)
under the stable and preferred semantics:

E1 = {a1, a4, a5} E2 = {a2, a3, a6}

The set of conclusions of the extensions are:

– Concs(E1) = {haveCat(John, Tom), haveAnimal(John, Tom)∧haveCat(John, Tom),
haveAnimal(John, Tom)}.



– Concs(E2) = {haveMouse(John, Jerry), haveAnimal(John, Jerry), haveAnimal(Jo
-hn, Jerry) ∧ haveMouse(John, Jerry)}.

The output Output(H) under the stable and preferred semantics of the argumen-
tation framework is empty because the intersection of Concs(E1) and Concs(E2) is
empty. Consider now the boolean query Q = haveAnimal(John, x), it is clear that
the query is universally accepted because Concs(E1) |= Q and Concs(E2) |= Q. How-
ever, Q is not skeptically accepted because Output(H) 6|= Q.

Fig. 1: Argument graph of Example 7.

Note that for single-extension semantics (e.g. grounded), the notions of skeptical
and universal acceptance coincide. So we simply use word “accepted” in that case.

Definition 14 (Acceptance of a query). Let K = (F ,R,N ) be a knowledge base,
H = (A,X ) the corresponding argumentation framework, x a single-extension seman-
tics and let E be the unique extension of H = (A,X ). A query α is accepted under
semantics x if and only if Concs(E) |= Q.

In order to formally capture the subtle difference between universal and skeptical
acceptance let us define the notion of a supporting argument. An argument a supports a
query if and only if the query is entailed by the conclusion of the argument a.

Definition 15 (Support). Let H = (A,X ) be an argumentation framework over an
inconsistent knowledge base K and let Q be a query. An argument a ∈ A supports the
query Q if and only if Conc(a) |= Q. We call a a supporter or a supporting argument
of Q. The set of all supporters of a given query Q is denoted by S(Q).

The universal and non-universal acceptance can be further characterized in a precise
way. The goal of introducing such characterization is to be able to understand why
a query is universally accepted or not. In what follows, when we do not specify the
semantics, we suppose stable or preferred semantics.



Definition 16 (Reduct of extension). Given an extension E ⊆ A and a query Q, set
S(Q)

⋂
E is called the reduct EQ ⊆ E of the extension E w.r.t the queryQ if and only if

it is non-empty. The previous definition says that the reduct of the set of all extensions
Ext(H) with respect to Q is defined as Ext(H)Q = {EQ|E ∈ Ext(H)}.

The reduct EQ of the extension E with respect to the query Q is defined as the set
of all supporters of Q which belong to E .

Definition 17 (Complete reduct). The set of all reducts Ext(H)Q with respect to a
queryQ is complete if and only if there exists no E ∈ Ext(H) such that EQ /∈ Ext(H)Q.

This means that the set of all reducts is complete if it covers all the extensions.
However a further characterization can be developed to precisely determine when and
how a reduct can be complete or not. It turns out that the latter has a tight relation with
the hitting set problem.

Example 14 (Reducts). Let us see how we compute reducts. Consider the following
knowledge base:

– F = {jaguar(T ), leopard(T )}.
– R = {jaguar(x)→ animal(x), leopard(x)→ animal(x)}.
– N = {jaguar(x) ∧ leopard(x)→ ⊥}.

We have the following Args(F):

a1 = ({jaguar(T )}, jaguar(T )) a2 = ({leopard(T )}, leopard(T ))
a3 = ({leopard(T )}, animal(T )) a4 = ({jaguar(T )}, animal(T ) ∧ jaguar(T ))
a5 = ({jaguar(T )}, animal(T )) a6 = ({leopard(T )}, animal(T ) ∧ leopard(T ))

The attack relation is drawn in Figure 2. Consequently, we get the following Extx(H)
such that x ∈ {s, p}:

E1 = {a1, a4, a5} E2 = {a2, a3, a6}

– Consider Q1 = ∃x(animal(x)); we get EQ1
1 = {a5, a4} and EQ1

2 = {a3, a6}.
– Consider now Q2 = ∃x(animal(x) ∧ leopard(x)); we get EQ2

2 = {a6} and EQ2
1

does not exist.

Ext(H)Q1 = {EQ1
1 , EQ1

2 } is complete and Ext(H)Q2 = {EQ2
2 } is not because the

latter does not cover the extension E1 as it has no reduct.

Still the characterization of universal acceptance is not precise enough to give a
complete account. Consider the set of all reducts w.r.t Q = ∃x(animal(x)) which is
{{a5, a4}, {a3, a6}} (Example 14). This set holds the “reasons” to believe that Q is
universally accepted. However, it would have been sufficient to just have {{a5}, {a3}}
or other combinations that keep in a minimal way those supporters which preserve the
entailment of the query Q in each extension.

In combinatorics and diagnosis theory this problem is known as the hitting set prob-
lem [43]. It is also referred to as the transversal problem in hypergraph theory [31].



Fig. 2: Argument graph, the gray-colored arguments are the supporting arguments of
the query Q1.

Definition 18 (Hitting set). Given a collection C = {S1, ..., Sm} of finite nonempty
subsets of a set B (the background set), a hitting set of C is a set A ⊆ B such that
Sj ∩ A 6= ∅ for all Sj ∈ C. A hitting set of C is minimal (w.r.t ⊆) if and only if no
proper subset of it is a hitting set of C. A minimum hitting set is a minimal hitting set
w.r.t set-cardinality.

Finding one / all minimal / minimum hitting set is an interesting problem. It has a
relation with different problems in different areas. In what follows we give a precise
characterization of universal acceptance by means of the hitting set problem.

Definition 19 (Proponent set). LetQ be a query and Ext(H)Q be its complete reduct.
The minimal hitting set S (w.r.t⊆) of Ext(H)Q is called a proponent set. The minimum
proponent set is defined as the smallest proponent set w.r.t to cardinality among all
proponent sets.

Example 15 (Example 14 cont’d). Q = ∃x(animal(x)) has 4 proponent sets S1 =
{a5, a3}, S2 = {a5, a6}, S3 = {a4, a3} and S4 = {a4, a6}.

Following the definition, a proponent set is the smallest set of arguments that allows
us to infer the query from all extensions. We obtain the following characterization,
which is similar to the concept of a complete base [45].

Proposition 1. Q is universally accepted⇔Q has a proponent set.

Proof. If Q is universally entailed then by definition ∀Ei ∈ Extx(H), it holds that
Concs(Ei) |= Q. This means that ∀Ei ∈ Extx(H) there exists a set of facts Fi ⊆
Concs(Ei) such that Fi |= Q, hence ∀Ei ∈ Extx(H) we can construct a set of argu-
ments Ai such that ∀ai ∈ Ai, Fi ⊆ Conc(ai) and Fi |= Q (set of supporters from each
Ei). One can see that the set of all supporters S = {A1, . . . ,An} over all extensions
Ei where i ∈ {1, . . . , n} is actually a complete reduct. From here, it is straightforward
to conclude that there does exist a proponent set as by definition for any collection of
non-empty subsets there exists a minimal hitting set.



The left to right implication is trivial. The existence of a proponent set is entailed by
the fact the queryQ has a complete reduct (by definition). Therefore, for each extension
Ei ∈ Extx(H) there exists at least one argument ai ∈ Ei such that Conc(ai) |= Q.
Consequently, for each extension Ei ∈ Extx(H) we have Conc(ai) ∈ Concs(Ei), then
this necessarily yields ∀Ei ∈ Extx(Q), Concs(Ei) |= Q.

A proponent set holds the smallest set of arguments which are distributed over all
extensions and support the queryQ. So, if one extension does not contain any supporters
then the query is not universally accepted.1 The reason for the absence of such supporter
is what we call the presence of a block. We follow the notion of a block from [38] and
instantiate it in our setting. A blockB is a set of arguments which are (1) all credulously
accepted, (2) attack all the supporters ofQ, and (3) can all together be extended to form
an extension.

Definition 20 (Block). LetQ be a query and let C = {range−(a)|a ∈ S(Q)}. A set of
arguments B ⊆ A is a block of Q under stable / preferred semantics if and only if:

1. B is a hitting set of C; and,
2. There exists an admissible set B′ ⊆ A such that B ⊆ B′.

Note that a query may have more than one block. The minimum block is defined as the
smallest block w.r.t to cardinality among all blocks.

Interestingly, a block is related to the hitting set problem. Informally, we take all the
supporters of the query Q and for each supporter we get its attackers (i.e. range−(a))
then we look for those hitting sets (over all sets of attackers) that can be extended to
an extension, in other words those which belong to the same admissible set. Note that
while a block is necessarily a hitting set it is not necessarily a minimal one.

The last requirement is very important as the following example shows.

Example 16 (Example 14 cont’d). Consider again the queryQ1 = ∃x(animal(x)) and
let us compute its block(s):

– S(Q1) = {a3, a4, a5, a6}.
– range−(a3) = range−(a6) = {a1, a4}.
– range−(a4) = range−(a5) = {a2, a6}.

We get the following hitting sets: {a1, a6},{a1, a2},{a4, a6},{a4, a2}. Observe that
none of them is considered as a block, because none of them can be extended to form an
extension. In fact, they violate the conflict-freeness condition. WhileQ1 has no blocks,
the query Q2 = ∃x(animal(x) ∧ leopard(x)) has two blocks {a1} and {a4}.

Since the concept of a block characterizes exactly non-universal acceptance, we
obtain the following result.

Proposition 2. Suppose stable or preferred semantics. Then a query Q has a block if
and only if it has no proponent set.

1 This is to be distinguished from universal non-acceptance, as the latter means that from all
extensions the negation of the query is entailed.



Proof. Suppose that Q has a block B. Then, by definition, B attacks all the supporters
of Q. In addition, B is a subset of an admissible set, which means that there exists at
least one extension Ei ∈ Extx(H) such thatB ⊆ Ei. By conflict-freeness of extensions,
Ei does not contain any supporter of queryQ. Consequently, the reduct Ext(H)Q is not
complete. Hence, there is no proponent set for the query Q.

Suppose now that Q has a proponent set. Then, it has a complete reduct. Conse-
quently, for each extension there exists an argument ai ∈ Ei that supports the query Q.
Therefore, there exists no admissible set A that contains a set of arguments that attacks
all the supporters. This proves that there is no block for the query Q.

Proponent sets and blocks can be seen as causes describing why a query is uni-
versally accepted or not. They describe precisely the reasons behind the acceptance or
non-acceptance of the query. Moreover, if a query is (not) universally accepted then
there is always an explanation (block or proponent set) to explain its state, which is an
interesting feature.

In the next section we show the relation between the output of argumentation frame-
works of this instantiation and inconsistency-tolerant semantics studied in Section 2.2.

4 Equivalences with Inconsistency-Tolerant Semantics

Given an inconsistent knowledge base K = (F ,R,N ), a repair is a maximal (w.r.t ⊆)
consistent set of facts F ⊆ F . We show that there is a correspondence between repairs
of a knowledge base and the extensions of the corresponding argumentation framework.

Theorem 1. Let K be a knowledge base, H its corresponding argumentation frame-
work and x ∈ {s, p}. Then:

Extx(H) = {Args(P ′) | P ′ ∈ Repair(K)}

Proof. The plan of the proof is as follows:

1. We prove that {Args(P ′) | P ′ ∈ Repair(K)} ⊆ Exts(H).
2. We prove that Extp(H) ⊆ {Args(P ′) | P ′ ∈ Repair(K)}.
3. Since every stable extension is a preferred one [29], we can proceed as follows.

From the first item, we have that {Args(P ′) | P ′ ∈ Repair(K)} ⊆ Extp(H),
thus the theorem holds for preferred semantics. From the second item we have that
Exts(H) ⊆ {Args(P ′) | P ′ ∈ Repair(K)}, thus the theorem holds for stable se-
mantics.

1. We first show {Args(P ′) | P ′ ∈ Repair(K)} ⊆ Exts(H). Let P ′ ∈ Repair(K)
and let E = Args(P ′). Let us prove that E is a stable extension of (Args(F),X ).
We first prove that E is conflict-free. By means of contradiction we suppose the con-
trary, i.e. let a, b ∈ E such that (a, b) ∈ X . From the definition of attack, there exists
ϕ ∈ Supp(b) such that C`∗R({Conc(a), ϕ}) is inconsistent. Thus C`∗R(Supp(a) ∪
{ϕ}) is inconsistent; consequently P ′ is inconsistent, contradiction. Therefore E
must be conflict-free.



Let us prove that E attacks all arguments outside the set. Let b ∈ Args(F)\Args(P ′)
and let ϕ ∈ Supp(b), such that ϕ /∈ P ′. For a set X = {x1, . . . , xn}, let us denote by∧
X the formula x1 ∧ . . . ∧ xn. Let a = (P ′,

∧
P ′). We have ϕ /∈ P ′, so, due to the

set inclusion maximality of the repairs, C`∗R({
∧
P ′, ϕ}) is inconsistent. Therefore,

(a, b) ∈ X . Consequently, E is a stable extension.
2. We now need to prove that Extp(H) ⊆ {Args(P ′) | P ′ ∈ Repair(K)}. Let E ∈
Extp(H) and let us prove that there exists a repair P ′ such that E = Args(P ′). Let
S = Base(E). Let us prove that S is consistent. Aiming to a contradiction, suppose
that S is inconsistent. Let S′ ⊆ S be such that (1) S′ is inconsistent and (2) every
proper set of S′ is consistent. Let us denote S′ = {ϕ1, ϕ2, ..., ϕn}. Let a ∈ E be
an argument such that ϕn ∈ Supp(a). Let a′ = (S′ \ {ϕn}, ϕ1 ∧ . . . ∧ ϕn−1). We
have that (a′, a) ∈ X . Since E is conflict free, then a′ /∈ E . Since E is an admissible
set, there exists b ∈ E such that (b, a′) ∈ X . Since b attacks a′ then there exists i ∈
{1, 2, ..., n− 1} such that C`∗R({Conc(b), ϕi}) is inconsistent. Since ϕi ∈ Base(E),
then there exists c ∈ E such that ϕi ∈ Supp(c). Thus (b, c) ∈ X , contradiction. So it
must be that S is consistent.
Let us now prove that there exists no S′ ⊆ F such that S ( S′ and S′ is consistent.
We use the proof by contradiction. Thus, suppose that S is not a maximal consistent
subset of F . Then, there exists S′ ∈ Repair(K), such that S ( S′. We have that
E ⊆ Args(S), since S = Base(E). Denote E ′ = Args(S′). Since S ( S′ then
Args(S) ( E ′. Thus, E ( E ′. From the first part of the proof, E ′ ∈ Exts(H).
Consequently, E ′ ∈ Extp(H). We also know that E ∈ Extp(H). Contradiction, since
no preferred set can be a proper subset of another preferred set. Thus, we conclude
that Base(E) ∈ Repair(K).
Let us show that E = Args(Base(E)). It must be that E ⊆ Args(S). Also, we know
(from the first part) that Args(S) is a stable and a preferred extension, thus the case
E ( Args(S) is not possible.

3. Now we know that {Args(P ′) | P ′ ∈ Repair(K)} ⊆ Exts(H) and Extp(H) ⊆
{Args(P ′) | P ′ ∈ Repair(K)}. The theorem follows from those two facts, as ex-
plained at the beginning of the proof.

To prove Theorem 2, we first prove the following lemma which says that if there
are no rejected arguments under preferred semantics, then the grounded extension is
equal to the intersection of all preferred extensions. Note that this result holds for every
argumentation framework (not only for the one studied in this paper, where arguments
are constructed from an ontological knowledge base). Thus, we only suppose that we
are given a set and a binary relation on it (called attack relation).

Lemma 1. Let H = (A,X ) be an argumentation framework and GE its grounded ex-
tension.

If A ⊆
⋃

Ei∈Extp(H)

Ei then GE =
⋂

Ei∈Extp(H)

Ei.

Proof. Let
Iope =

⋂
Ei∈Extp(H)

Ei



denote the intersection of all preferred extensions. It is known [28] that GE ⊆ Iope.
Let us prove that in the case when there are no rejected arguments, it also holds that
Iope ⊆ GE. Let a ∈ Iope. Let us show that no argument b attacks a. This holds since
every argument b is in at least one preferred extension, say Ei, and a is also in Ei (since
a is in all preferred extensions) thus b does not attack a since both a and b are in Ei and
Ei is a conflict-free set (since it is a preferred extension). All this means that arguments
in Iope are not attacked. Consequently, they must all belong to the grounded extension.
In other words, Iope ⊆ GE.

We can now, using the previous result, prove the link between the intersection of
repairs and the grounded extension.

Theorem 2. Let K = (F ,R,N ) be a knowledge base and H = (A,X ) the corre-
sponding argumentation framework. Denote the grounded extension ofH = (A,X ) by
GE. Then:

GE = Args

 ⋂
P′∈Repair(K)

P ′


Proof. Denote the intersection of all repairs by

Ioar =
⋂

P′∈Repair(K)

P ′

and the intersection of all preferred extensions by

Iope =
⋂

Ei∈Extp(H)

Ei.

From Theorem 1, we know that Extp(H) = {Args(P ′) | P ′ ∈ Repair(K)}. Conse-
quently,

Iope =
⋂

P′∈Repair(K)

Args(P ′) (1)

Since every argument has a consistent support, then its support is in at least one repair.
From Theorem 1, that argument is in at least one preferred extension, (i.e. it is not
rejected). From Lemma 1,

Iope = GE (2)

From (1) and (2), we obtain that

GE =
⋂

P′∈Repair(K)

Args(P ′) (3)

Note that for every collection {S1, . . . , Sn} of sets of formulae, we have Args(S1) ∩
. . . ∩ Args(Sn) = Args(S1 ∩ . . . ∩ Sn). By applying this rule on the set of all repairs,
we obtain: ⋂

P′∈Repair(K)

Args(P ′) = Args(Ioar) (4)

From (3) and (4), we obtain GE = Args(Ioar) which ends the proof.



The previous two theorems allow us to show one of the main resutls of the paper: the
links between semantics from argumentation theory (stable, preferred, grounded) and
semantics from inconsistent ontology KB query answering (ICR, CQA, IAR). More
precisely, we show that:

– skeptical acceptance under stable and preferred semantics corresponds to ICR seman-
tics;

– universal acceptance under stable and preferred semantics corresponds to CQA se-
mantics;

– acceptance under grounded semantics corresponds to IAR semantics.

Theorem 3. Let K = (F ,R,N ) be a knowledge base, let H = (A,X ) be the corre-
sponding argumentation framework and let Q be a query. Let x ∈ {s, p} be stable or
preferred semantics. Then:

– K |=ICR Q iff Q is skeptically accepted under semantics x.
– K |=CQA Q iff Q is universally accepted under semantics x.

Proof. Theorem 1 implies Extx(H) = {Args(P ′) | P ′ ∈ Repair(K)}. In fact, the
restriction of function Args on Repair(K) is a bijection between Repair(K) and
Extx(H). Note also that for every queryQ, for every repairP ′, we have thatC`∗R(P ′) |=
Q if and only if Concs(Args(P ′)) |= Q. By using those two facts, the result of the the-
orem can be obtained as follows:

– For every query Q, we have: K |=ICR Q if and only if⋂
P′∈Repair(K)

C`∗R(P ′) |= Q

if and only if ⋂
Ei∈Extx(H)

Concs(Ei) |= Q

if and only if
Outputx(H) |= Q

if and only if
Q is skeptically accepted.

– For every query Q, we have: K |=CQA Q if and only if

for every P ′ ∈ Repair(K), C`∗R(P ′) |= Q

if and only if

for every Ei ∈ Extx(H), Concs(Ei) |= Q

if and only if

Q is universally accepted.



This ends the proof.

The next theorem shows the link between grounded argumentation semantics and
IAR semantics.

Theorem 4. Let K = (F ,R,N ) be a knowledge base, let H = (A,X ) be the corre-
sponding argumentation framework and let Q be a query. Then:

K |=IAR Q iff Q is accepted under grounded semantics.

Proof. Let us denote the grounded extension ofH = (A,X ) by GE and the intersection
of all repairs by

Ioar =
⋂

P′∈Repair(K)

P ′.

From Definition 14, we have:

Q is accepted under grounded semantics iff Concs(GE) |= Q. (5)

From Theorem 2, we have:
GE = Args(Ioar). (6)

Note also that for every set of facts {F1, . . . , Fn} and for every query Q, we have that
C`∗R({F1, . . . , Fn}) |= Q if and only if Concs(Args({F1, . . . , Fn})) |= Q. Thus,

C`∗R(Ioar) |= Q if and only if Concs(Args(Ioar)) |= Q. (7)

From (6) and (7) we have that:

C`∗R(Ioar) |= Q if and only if Concs(GE) |= Q. (8)

From Definition 5, we have that:

C`∗R(Ioar) |= Q if and only if K |=IAR Q. (9)

The theorem now follows from (5), (8) and (9).

5 Properties of the Instantiation

This section studies the properties and postulates from the literature [2, 19] that are
satisfied by our logic-based instantiation.

5.1 Basic properties

In this subsection we provide some important properties for the class of argumentation
we defined in this section. We investigate finiteness, non-triviality, coherence, relative
groundedness and well-foundedness.



Class Name Description

FINITE Finite H has a finite set of arguments.

NTRIVIAL Non-trivial ∀H, Extp(H) 6= {{}}.

COHERENT Coherent ∀H, Extp(H) = Exts(H).
RGROUNDED Relatively grounded GE =

⋂
Extp(H).

WFOUNDED Well-founded
∀H, Extc(H) = Extg(H) = Extp(H) = Exts(H)
and |Ext(H)| = 1 such that c refers to the complete
semantics.

Table 1: Classes of argumentation frameworks studied in the literature. Note that these
classes are with respect to those argumentation frameworks that contain at least one
argument. Recall that p and s refers to preferred and stable respectively, and that GE
denoted the grounded extension.

It is obvious that in the case of a consistent knowledge base, the corresponding
argumentation framework has exactly one extension, which contains all arguments, in-
dependently of the semantics used.

As we handle inconsistency in existential rules, in this paper we are interested in
the class of argumentation frameworks that are built over inconsistent knowledge bases
having at least one minimal conflict of size two or more. This class is denoted as ARG∃.

It turns out that the argumentation frameworks of ARG∃ enjoy the finiteness prop-
erty.

Definition 21 (Finite argument). An argument a is finite if and only if Conc(a) is
finite.

This means that the conclusion of the argument does not contain infinite conjunctions.
Note that, since Supp(a) is constructed from a finite set of facts F , it is finite.

Proposition 3 (Finiteness). ∀H ∈ ARG∃ the following holds: (i) ∀a ∈ A, a is finite;
and (ii)H ∈ FINITE.

Proof. (i) Let Conc(a) = α0∧α2∧. . . be infinite. By definition ∀αi ∈ {α0, α2, . . .}, αi ∈
C`∗R(Supp(a)). This means C`∗R(Supp(a)) is infinite. This is in contradiction with the
assumption we have made in the logical language section about the finiteness of the sat-
uration. (ii) IfA was not finite then we would have arguments with infinite conclusions,
which is not the case.

Let us now prove that maximal consistent sets give rise to admissible sets of argu-
ments. For a set X = {x1, . . . , xn}, notation

∧
X stands for x1 ∧ . . . ∧ xn.

Proposition 4 (Sentinel).
Let H ∈ ARG∃ and a = (A,

∧
A) ∈ A, if A is a repair then {a} is an admissible

set.



Proof. Assume that there exists an argument b that attacks a. That means that there
exists h ∈ Supp(a) such that C`∗R({Conc(b), h}) is inconsistent, consequently
C`∗R({Supp(b) ∪ {h}}) is inconsistent.

By means of contradiction, assume that a does not attack b. Then there exists no h′ ∈
Supp(b) such that C`∗R({Conc(a), h′}) is inconsistent. By maximality we conclude
that Supp(b) ⊆ A. But according to the conclusion above, C`∗R(Supp(b) ∪ {h}) is
inconsistent which is a contradiction with the fact that A is consistent.

As a result of this proposition we get the following result.

Proposition 5. Let a ∈ A be an argument of the form a = (A,
∧
A), where A is

a repair. Then, for every argument b such that Supp(b) ⊆ Supp(a) we have that a
defends b. Consequently, {a, b} is an admissible set.

Proof. If there exists an argument c such that c attacks b then there exists h ∈ Supp(b)
such that C`∗R({Conc(c), h}) is inconsistent. Since h ∈ Supp(a) then c also attacks b.
From Proposition 4 the argument a defends itself from all attacks, hence a attacks c.

We saw that argumentation frameworks over consistent knowledge bases always
had one non-empty extension. In what follows, we prove that every H ∈ ARG∃ is non-
trivial.

Proposition 6 (Non-triviality). Under preferred / stable semantics we have that

ARG∃ ⊆ NTRIVIAL

Proof. By means of contradiction, suppose that there exists H ∈ ARG∃ such that
Extp(H) = {∅}. This means that the only admissible set is the empty set. This is
in contradiction with Proposition 4 which states that the argument a = (A,

∧
A), such

that A is a repair, is an admissible set. Thus, there exists a non-empty admissible set.
Consequently, there exists a non-empty preferred extension. Since preferred and stable
semantics coincide, the result holds for stable semantics.

Note the curious fact that no framework in ARG∃ has rejected arguments.

Proposition 7 (Rejected arguments). For allH ∈ ARG∃, for all x ∈ {p, s}:

AH =
⋃

Ei∈Extx(H)

Ei

Proof. According to Proposition 5, for every argument b there exists an argument a =
(A,

∧
A) such that Supp(b) ⊆ Supp(a) and A is a repair and {a, b} is admissible.

Therefore all arguments are defended, hence there are no rejected arguments.

This means that all the arguments are credulously accepted under the preferred/stable
semantics. An argumentation framework is said to be coherent if its preferred and sta-
ble extensions coincide. The class of coherent argumentation frameworks is denoted by
COHERENT. Many algorithms and proof procedures have been developed for this class
[38]. In what follows we prove that ARG∃ is within the class of coherent argumentation
frameworks.



Proposition 8 (Coherence). ARG∃ ⊆ COHERENT.

Proof. The proof follows directly from Theorem 1, page 17.

From Lemma 1 and Proposition 7 we conclude that the grounded extension is equal
to the intersection of all preferred extensions:

Proposition 9 (Relative groundedness). ARG∃ ⊆ RGROUNDED.

Let us now show that no framework in ARG∃ is well founded. We start with a lemma.

Lemma 2. Let K be the knowledge base of an argumentation framework H ∈ ARG∃.
Let C be a minimal conflict of K, let C = S ∪ S′, such that S 6= ∅, S′ 6= ∅ and
|S| = |S′| = |C| − 1. Let a = (S,

∧
S) and b = (S′,

∧
S′). Then, (a, b) ∈ X and

(b, a) ∈ X .

Proof. We show that the two arguments are well defined and attack each other.

– It is clear that Supp(a) and Supp(b) are consistent because by definition any subset
of a minimal conflict is consistent.

– Let us prove that a attacks b. There exists h ∈ S′ such that C = S ∪ {h}. Con-
sequently, C`∗R(S ∪ {h}) is inconsistent, in other words C`∗R({Conc(a) ∪ h}) is
inconsistent, which means that a attacks b.

– For the same reasons, b attacks a.

Proposition 10 (Cyclicity). ∀H ∈ ARG∃,H has at least one cycle.

Proof. The proof follows from Lemma 2.

Dung [29] introduces the notion of well-foundedness. He shows [29] that if an argu-
mentation framework does not have an infinite sequence a0, a1, . . . such that for each i,
ai+1 attacks ai then it has a unique complete / preferred / stable / grounded extension.
The following result is immediate.

Proposition 11 (Well-foundedness). ARG∃ ∩ WFOUNDED = ∅.

5.2 Postulate satisfaction

In this chapter, we prove that our instantiation satisfies the rationality postulates [2],
namely Closure under C`, Consistency, Closure under sub-arguments, Strong consis-
tency, Exhaustiveness and Free precedence. We first prove that the set of conclusions of
every extension is closed under C`.

Proposition 12 (Closure under C`). Let K = (F ,R,N ) be a knowledge base, H =
(A,X ) the corresponding argumentation framework and x ∈ {s, p, g}. Then:

– for every Ei ∈ Extx(H), Concs(Ei) = C`∗R(Concs(Ei)).



Proof. From the definition of C`, we see that Concs(Ei) ⊆ C`∗R(Concs(Ei)). Let
us prove that C`∗R(Concs(Ei)) ⊆ Concs(Ei). Suppose that α ∈ C`∗R(Concs(Ei)).
Since Ei is a preferred, a stable or the grounded extension, Theorems 1 and 2 imply
that there exists a set of formulae S such that Ei = Args(S). Consequently, Ei =
Args(Base(Ei)). Since the supports of arguments of Ei contain only formulas from S,
we have that α ∈ C`∗R(S). Thus, there exists an argument a ∈ Ei s.t. Conc(a) = α.

We now prove that the set of conclusions of every extension is consistent.

Proposition 13 (Consistency). For every H ∈ ARG∃, for every E ∈ Extx(H) such
that x ∈ {s, p, g}, Concs(E) is consistent.

Proof. Let Ei be a stable or a preferred extension of H = (A,X ). From Theorem 1,
there exists a repair P ′ ∈ Repair(K) such that Ei = Args(P ′). Note that Concs(Ei) =
C`∗R(P ′). And since P ′ is a repair then C`∗R(P ′) is consistent. Therefore, Concs(Ei)
is consistent.

Let us now consider the case of grounded semantics. Denote GE the grounded ex-
tension of H = (A,X ). We have just seen that for every Ei ∈ Extp(H), it holds that
Concs(Ei) is a consistent set. Since the grounded extension is a subset of the intersec-
tion of all the preferred extensions, and since there is at least one preferred extension,
say E1, then GE ⊆ E1. Since Concs(E1) is consistent then Concs(GE) is also consistent.

An argument a′ = (H ′, C ′) is a sub-argument of another argument a = (H,C)
iff H ′ ⊆ H . We now show that every extension contains all sub-arguments of each
argument it contains.

Proposition 14 (Closure under sub-arguments). For every H ∈ ARG∃, for every
E ∈ Extx(H) such that x ∈ {s, p, g}, if a ∈ E then for every sub-argument a′ of a we
have that a′ ∈ E .

Proof.
– Preferred/stable: Let a ∈ E and let a′ be a sub-argument of a such that a′ /∈ E . Aiming

to a contradiction, suppose a′ /∈ E . Since E is a stable extension, there exists b ∈ E
such that b attacks a′. This means that ∃h ∈ Supp(a′) such thatC`∗R({Conc(b), h}) is
inconsistent. Since a′ is a sub-argument of a then by definition Supp(a′) ⊆ Supp(a),
consequently h ∈ Supp(a). Therefore, C`∗R({Conc(b), h}) which yields b attacks a.
This is clearly in contradiction with the fact that E is a stable extension that has to be
conflict free.

– Grounded: Denote the grounded extension by GE. From Proposition 7, we know that
there are no rejected arguments. From Lemma 1, the grounded extension is equal
to the intersection of preferred extensions. This means that if a ∈ GE, then a is not
attacked (since a and its attacker would be in the same preferred extension, which is
impossible). Let a ∈ GE and let a′ be one of its sub-arguments. Since Supp(a′) ⊆
Supp(a) then a′ is unattacked too. Observe that an unattacked argument must belong
to the groudned extension. Hence, a′ ∈ GE.

We now show that the base of every extension is consistent.



Corollary 1 (Strong consistency). For everyH ∈ ARG∃, for every E ∈ Extx(H) such
that x ∈ {s, p, g}, Base(E) is consistent.

Proof.
– Preferred/stable: Let S = Base(E). From Theorem 1, E = Args(S) and S is a repair.

Thus, S is consistent.
– Grounded: Let S = Base(E). From Theorem 2, E = Args(S) and there exist a repair
P such that S ⊆ P . Thus, S is consistent.

Roughly speaking, exhaustiveness says that if the support and the conclusion of
argument a belong to the conclusions of extension E , then a belongs to E .

Proposition 15 (Exhaustiveness). For everyH ∈ ARG∃, for every E ∈ Extx(H) such
that x ∈ {s, p, g}, for every a = (H,C) ∈ A, if H ∪ {C} ⊆ Concs(E), then a ∈ E .

Proof.
– Preferred and stable: Aiming to a contradiction, assume that there exists a = (H,C) ∈
A such that H ∪ {C} ⊆ Concs(E) and a /∈ E . This means that there exists an argu-
ment b ∈ E such that b attacks a because E is a stable extension. Consequently, there
exists h ∈ Supp(a) such that C`∗R({h, Conc(b)}) is inconsistent. However, we know
that Supp(a) ⊆ Concs(E) and Conc(b) ∈ Concs(E). This indicates that Concs(E) is
inconsistent which is in contradiction with the Proposition 13.

– Grounded: Aiming to a contradiction, assume that there exists a = (H,C) ∈ A,
such that H ∪ {C} ⊆ Concs(E) and a /∈ E . Recall that the grounded extension is the
intersection of preferred extensions. This means that there exists a preferred extension
E ′ such that a /∈ E ′. Therefore, there exists b ∈ E ′ such that b attacks a (as E ′ is also
a stable extension). Consequently, there exists h ∈ H such that C`∗R({Conc(b), h)})
is inconsistent. Therefore, C`∗R({Conc(b)} ∪ H) is inconsistent. Since the grounded
extension E is a subset of the preferred extension E ′ and H ⊆ Concs(E), we get
H ∪ {Conc(b)} ⊆ E ′. This yields the inconsistency of E ′, which is in contradiction
with Proposition 13.

We now show that if an argument is constructed from information that does not
appear in any minimal conflict, then it belongs to all extensions.

Proposition 16 (Free precedence). For every H ∈ ARG∃, for every E ∈ Extx(H)
such that x ∈ {s, p, g}:

Args(Free(K)) ⊆ E ,

where

– K is the knowledge baseH was built from and
– Free(K) = F \

⋃
C is a minimal conflict C

Proof. Observe that Free(K) is consistent with every other consistent set of facts F ′ ⊆
F . Let us now suppose that a ∈ A is an argument such that Supp(a) ⊆ Free(K). We
claim that a is unattacked. By aiming to a contradiction, assume that there exists an
argument b ∈ A such that b attacks a. By definition, there exists h ∈ Supp(a) such
that C`∗R({Conc(b), h}) is inconsistent. Consequently, C`∗R(Free(K) ∪ Supp(b)) is
inconsistent. Recall that Supp(b) is consistent. Therefore, Free(K) is inconsistent with
the consistent set of facts Supp(b), which is a contradiction. So it must be that a is
unattacked. Therefore, it belongs to every extension.



6 Dialectical Proof Theory for Universal Acceptance

In this section we are interested by the problem of query acceptance in logic-based
argumentation frameworks, namely universal acceptance under preferred/stable seman-
tics. We show how this problem can be solved through a dialogue game between an
opponent and a proponent over a given query. This dialogue results in what is called a
dialectical proof. Note that in this section we limit ourselves to ground boolean con-
junctive queries (BCQ without variables). In what follows we describe an argument
game that we will explain on a detailed example in Subsection 6.1. Next, in Subsection
6.2 we prove its completeness and soundness and we study certain aspects concerning
its complexity.

Given a query Q and an argumentation framework H, the preferred universal di-
alectical proof theory is a two-person argument game between a proponent (PRO) and
an opponent (OPP). PRO takes the position of supporting the query Q while OPP takes
the opposite position. The proponent and the opponent are engaged in an argumentation
dialogue with precisely defined types of moves. The goal is to determine whether the
query is universally accepted or not at the end of the dialogue.

Let us formally define what a dialogue is.

Definition 22 (Dialogue). Let H = (A,X ) be an argumentation framework. A dia-
logue based on H is a finite non-empty sequence dn = (m1, . . . ,mn) of moves where
each mi is either:

– a support move: SUPPORT(a) such that a ∈ A.
– a counter move: COUNTER(A) such that A ⊆ A.
– a retrace move: RETRACE(A, i) such that A ⊆ A and i < n.

We denote by Player(mi) the player of the move. Player(mi) = OPP iff i is even,
Player(mi) = PRO iff i is odd. We denote by d · d′ and d ·m the concatenation of the
dialogues d and d′ and the dialogue d with the move m respectively.

Given a move m, we denote by Arg(m) and Sp(m) the content and the speech act
of the move as follows:

– m = SUPPORT(a), Arg(m) = a and Sp(m) = SUPPORT.
– m = COUNTER(A), Arg(m) = A and Sp(m) = COUNTER.
– m = RETRACE(A, i), Arg(m) = A, Sp(m) = RETRACE.

The retrace move has a special parameter i called the index and is denoted as Idx(m).
A dialogue is a sequence of moves with different types respecting a turn taking

mechanism. The turn taking mechanism is simple and deterministic where odd indexed
moves are advanced by PRO while even index moves are advanced by OPP. The moves
of the dialogue are defined in terms of speech acts and content which can express, sup-
port, counter attack or retrace. The move SUPPORT(a) advances an argument a which
supports an arbitrary query. The move COUNTER(A) counterattacks the position of PRO
by advancing a set of arguments. The move RETRACE(A, i) is used to retrace to earlier
stage in the dialogue and continue from there. The first move can only be played by
PRO, whereas COUNTER and RETRACE are only employed by OPP.



In this dialectical theory, any dialogue starts by PRO advancing a support move to
support the query in question. Then, OPP presents an argument (or a set) that attacks
the previously advanced argument. Next, PRO tries to avoid this attack and reinstate the
query using another argument which is not attacked by the already advanced attackers.
OPP in turn, tries to extend the previous set of attackers so that it attacks all the sup-
porters advanced so far. When OPP fails to extend the set, he retraces back and chooses
another set of arguments and continues the dialogue from thereafter. By doing so OPP

is somehow trying to construct a set of arguments that attack all the supporters of the
query Q. In other words, he is trying to build a block for the query Q.

Many questions can rise, for instance, what happens when OPP retraces? Would PRO
play the supporters which were attacked before retracing or not? What is the nature of
the advanced sets of arguments in COUNTER?

In order to answer these and other questions, we need to introduce a control structure
that keeps track of the state of the dialogue. This structure will be used in defining the
nature and legality of moves.

Definition 23 (Dialectical state). Let dk be a dialogue at stage k. The dialectical state
of dk is a tuple δk = (πk, hk, θk, βk, ∆k)

2. d0 is the empty dialogue and δ0 is its initial
dialectical state.

This state defines at any stage k of the dialogue dk the set of arguments πk available
to PRO that can be used to support the query Q. In the dialectical state, we find also
the set hk which shows the arguments that have been so far played by PRO. In addition,
it presents the set θk of arguments that can be used to attack the arguments previously
advanced by PRO. βk presents the currently constructed block. When OPP fails to extend
the current block to another that attacks all the previously played supporters, he uses
the RETRACE move. By doing so we need to keep track of the sets of arguments that
cannot be extended to a block. These are stored in ∆k.

Given a query Q, the initial state of the dialectical state is described as follows:

– π0 = S(Q).
– h0 = ∅, θ0 = ∅, β0 = ∅, ∆0 = ∅.

Since the dialogue d0 has not yet been started, the set of available arguments π0 for
PRO ranges over all the possible supporters of the query Q. The played arguments h0,
the available arguments θ0, current block β0 and ∆0 are empty since the first move has
not yet been uttered.

The advancement of moves within the dialogue is usually controlled by a legal
move function [38] which can be expressed in terms of rules, called dialogue rules.
Every move depends on certain preconditions about the actual dialectical state and the
previous move advanced by the other party. Every move also determines the next move
(postcondition).

Moves affect the dialectical states of the dialogue. In fact, we can see the moves as
transitions between possible dialectical states where a dialectical state δk for a dialogue

2 To be able to understand the terms think of π as the first letter of proponent, h as history, θ as
opponent and β as block.



dk and a move mk+1 define a new dialectical state δk+1. This is called the effect of the
move.

In what follows we recall for each move its informal description and we present the
preconditions that should be satisfied so that the move is considered legal to be played.
We then present its effect on the dialectical state and its postconditions.

Let dk be a dialogue and δk the current dialectical state of dk. Let mk+1 be a move
and δk+1 be the dialectical state of the dialogue dk+1 = dk · mk+1 after playing the
move mk+1. Note that for a given move we index preconditions (resp. effects) by the
first letter of the speech act of the move followed by P (resp. E) and subscripted by a
number.

Move:
mk+1 = SUPPORT(a).

Description:
this move advances an argument that supports the query in question.

Preconditions:
(SP1) k + 1 is odd.
(SP2) a ∈ πk.
Postconditions:

the next move can be either COUNTER or RETRACE.
Effects:
(SE1) πk+1 = πk \ {a}.
(SE2) hk+1 = hk ∪ {a}.
(SE3) θk+1 = range−(hk+1).
(SE4) βk+1 = βk.
(SE5) ∆k+1 = ∆k.

This move is advanced by PRO, therefore k + 1 should be odd (SP1). It advances
an argument a that supports the query Q which is not attacked by the current block βk
presented so far (SP2). To respond to this move, in the next turn OPP should either use
COUNTER or RETRACE.

As one may notice, the support move mk+1 changes the set of available arguments
πk+1 of PRO. In fact a supporting argument ceases to be available once it is played
(SE1). In contrast it is added to the history hk+1. The support move alters the set of
available arguments of OPP by adding all arguments that can be played in the future by
OPP (SE3).

As indicated in the postconditions of the support move, a counter move is allowed
to be played next.

Move:
mk+1 = COUNTER(A).

Description:
this move advances a set of arguments that attacks all the arguments presented so
far.

Preconditions:
(CP1) k + 1 is even.



(CP2) A = βk ∪ S such that S ⊆ θk.
(CP3) A attacks hk and belongs to (or is) an admissible set.
(CP4) there is no A′ ∈ ∆k such that A′ ⊆ A.
Postconditions:

the next move should be SUPPORT.
Effect:
(CE1) πk+1 = πk \ range+(A).
(CE2) hk+1 = hk.
(CE3) θk+1 = range−(πk+1).
(CE4) βk+1 = A.
(CE5) ∆k+1 = ∆k.

This move is advanced by OPP therefore k + 1 should be even (CP1). It tries to
extend the current block βk to another set of arguments that attacks all the supporters
presented so far (CP2 and CP3). OPP does so by incorporating arguments from θk. The
new current block (βk+1 = A) or one of its subsets should have not been already proven
to be not a block (CP4). After advancing mk+1, πk+1 contains all the arguments from
πk+1 except those which are attacked by A (CE1), thus they are spared from further
use. Note that the spared arguments may be readded afterwards, this is particularly the
case when we use retrace as we shall mention later.

The set of available moves θk+1 of OPP contains all the arguments that attack the
supporting arguments that can be played by PRO (CE3). Since A attacks all the support-
ing arguments so far provided, it is considered the current block (CE4). The sets ∆k+1

and hk+1 are left unchanged (CE2 and CE5).
After a support move, OPP can also play a retrace move. This is particularly needed

when he is unable to play a counter move. The formal details about the retrace move
are presented hereafter:

Move:
mk+1 = RETRACE(A, i).

Description:
this move retraces to the recent stage i from which it can extend the block of stage
i− 1.

Preconditions:
(RP1) k + 1 is even, i < k + 1 and i is odd.
(RP2) there is no S ⊆ θk such that βk ∪S is or belongs to an admissible set and attacks

hk.
(RP3) A = βi ∪ S such that S ⊆ θi.
(RP4) A attacks hi and belongs to (or is) an admissible set.
(RP5) there is no A′ ∈ ∆k such that A′ ⊆ A.
Postconditions:

the next move should be SUPPORT.
Effect:
(RE1) πk+1 = πi \ range+(A).
(RE2) hk+1 = hi.
(RE3) θk+1 = range−(hk+1).



(RE4) βk+1 = A.
(RE5) ∆k+1 = ∆k ∪ βk.

When OPP cannot extend the current block βk with arguments from θk (RP2), he
should retrace back and choose other arguments. The index i (which should be odd)
determines the point of a support move from which OPP can mount another line of
attack. By starting a new line of attack, OPP should opt for a new block that attacks all
the supporters from Stage i up to the Stage 1 (RP3) by extending βi from θi. The new
block βk+1 = A or one of its subsets should have not been already proven to be not a
block (CP5).

When the retrace move is advanced, πk+1 is reset to its ancient state i in addition
to excluding all the arguments that can be attacked afterwards (RE1). The current block
βk+1 is set to A (RE4), while ∆k+1 is set to ∆k ∪ βk (RE5), i.e. the block of stage k
which OPP could not extend.

If one of the preconditions is not satisfied, OPP goes further and look for other stages
where he can mount a new attack. OPP follows the following procedure:

Procedure 1 Let dn be a dialogue andmn be the last played move such that Sp(mn) =
SUPPORT. If OPP cannot play a counter movemn+1 then it plays the retrace movemn+1

as follows: 3

1. do y = y − 1 until my = RETRACE(A, x) or my = SUPPORT(a) or y = 0.
2. if my = RETRACE(A, x) then:

(a) If there does not exist a move mn+1 = RETRACE(A′, x) that respects the pre-
conditions then set y = x and goto 1 else play mn+1 and exit.

3. if my = SUPPORT(a) then:
(b) If there does not exist a move mn+1 = RETRACE(A′, y) that respects the pre-

conditions then goto 1 else play mn+1 and exit.

OPP starts by looking for the most recent retrace or support move (line 1). If a
retrace move is found (line 2) then it tries to play a retrace to stage x that respects the
preconditions (line a) by looking exhaustively for all possible sets A′ that make the
move respect the preconditions. If he succeeds to play such move, the procedure exits.
Otherwise it continues the search by setting y to x. If a support move my is found (line
3) then it plays a retrace with index to y. Otherwise, it continues the search for other
moves from which OPP can play.

To better illustrate the point let us apply the procedure on an example.

Example 17. Consider the dialogue example in the table of Figure 3. Let us see how
OPP has played the retrace move at stage (8). Note that this is just an illustrative example
and does not correspond to a real dialogue.

At stage (7), PRO played the argument c. OPP tried to play a counter move but
he failed to do so. Now, OPP will follow Procedure 1 to play a retrace move. At this
moment n = 7, y = n. OPP gets into the loop at line (1). When y = 6, OPP en-
counters the retrace move m6 = RETRACE({p, r}, 3), he tries to play a retrace move

3 Note that y is initialized to n and x < y, and a,A are arbitrary (set of) arguments respectively.



i Move
1 SUPPORT(a)
2 COUNTER({p})
3 SUPPORT(b)
4 COUNTER({p, q})
5 SUPPORT(c)
6 RETRACE({p, r}, 3)
7 SUPPORT(c)
8 RETRACE({s}, 1)
9 SUPPORT(d)
10 COUNTER({s, t})
11 SUPPORT(e)
12 RETRACE({s, v}, 9)

Fig. 3: The left table presents the dialogue, the right figure shows its associated dialogue
tree.

m8 = RETRACE(A′, 3) but it seems that he couldn’t play such move because there is no
A′ that makes the retrace move respect the preconditions. OPP continues this time from
2 (y is set to 3 in line (b) and it gets decreased at line (1)) where he skips the counter
move and stops at stage (1) where a support move m1 = SUPPORT(a) is found. At
this point, OPP plays the retrace move m8 = RETRACE({s}, 1) which seems to respect
the preconditions. Afterwards, the dialogue continues normally by PRO until it stops at
stage (12) with OPP playing the last move.

In fact, the sequence of moves represents a dialogical representation of a tree where
retrace moves represent branching points. This tree is called the associated dialogue
tree and it is defined as follows.

Definition 24 (Dialogue tree). Given a dialogue dn = (m1, . . . ,mn), its dialogue tree
is a labeled tree T (dn) = (V,D) such that V is a set of nodes andD is a binary relation
over V defined as follows:

– V = {Arg(mi) |mi ∈ dn}.
– D = {(Arg(mi−1), Arg(mi)) | i 6 n and mi 6= RETRACE(A, j)} ∪
{(Arg(mj), Arg(mn)) | i 6 n and mi = RETRACE(A, j)}.

Arg(m1) is the root node of the tree. Note that |T (dn)| = |V| refers to the size of
the tree which is equal to the number of its nodes.



It is a tree where nodes are arguments or set of arguments played by both parties.
Odd-level nodes are played by PRO and even-level nodes are played by OPP.

Fact 1 Let dn be a dialogue, T (dn) its associated dialogue tree. The following holds:

1. T (dn) is unique.
2. |dn| = |T (dn)|.

The dialogue terminates when no one can further the dialogue with moves.

Definition 25 (Termination and wining). Let dk be a dialogue and δk the current
dialectical state of dk. The dialogue dk is a terminated dialogue if and only if the player
to play has run out of moves. The winner of the dialogue is Player(mk) (the player of
the last move).

It is easy to determine the winner of a dialogue from its tree.

Fact 2 Le dn be a terminated dialogue, T (dn) its associated dialogue tree. The follow-
ing statements are equivalent:

– The length of the right-most path is odd.
– PRO is the winner of dn.

It is clear that the last move corresponds to the leaf node in the right-most path of the
tree. If the length of the path is odd then PRO is the last one who played, consequently
PRO is the winner.

After having defined the theory, let us define the concept of a dialectical proof.

Definition 26 (Dialectical proof). LetQ be a querry and dn a terminated dialogue dn.
We call dn a dialectical proof for the universal acceptance ofQ if and only if PRO is the
winner, otherwise it is called a dialectical proof for universal non-acceptance of Q.

In the next subsection we give a detailed example of universal acceptance and non-
universal acceptance on a real argumentation framework.

6.1 Dialogue example

Consider the argumentation framework H of Figure 4(a). This argumentation frame-
work is coherent. Suppose that the gray-colored arguments supports a query Q (i.e.
S(Q) = {a, d, e, l, h}). In what follows, we show how the query Q is universally ac-
cepted by providing a dialectical proof.

The dialectical proof is presented in Table 2 and its associated dialogue tree is shown
in Figure 4(b).

At stage (0) the dialectical state is initialized as defined previously. The dialogue
starts at stage (1) by PRO playing the supporter a from the available supporters in π0.
When PRO plays a, the argument a is moved from the available supporters π1 to the
history of advanced arguments by PRO h1. The set of available attackers θ1 becomes
the set of all attackers of π1 ∪ h1. This means when the turn of OPP comes at stage (2)



(a) The argumentation framework.
(b) The dialogue tree.

Fig. 4: The circles are the extensions presented in an increasing order with E1 being the
inner circle.

he shall choose from this set. At stage (2) OPP advances a counter move with argument
g that attacks all the advanced supporters (i.e. h1 = {a}). After advancing such move,
the argument d is removed from the set of available arguments π2 since g attacks d, thus
PRO will not be able to play d. Observe that j is removed also from θ2 because it does
not attack any argument in π2 ∪ h2. Since {g} attacks all the supporters advanced so
far, it becomes the current block, i.e. β2 = {g}. At stage (3), PRO responds by a support
move with the argument l that is not attacked by the current block. At stage (4), OPP
extends the current block β3 = {g} by the argument c which attacks l. Note that {g, c}
is a subset of the admissible set {g, c, e}. Now, β4 = {g, c} attacks all the presented
supporters. At stage (5), PRO presents another unattacked supporter (i.e. e). Note that
the choice of the supporters is arbitrary.

At stage (6), OPP could not extend the current block β5 into another that attacks e
too. Therefore OPP plays a retrace move R({i}, 1) that can be read as “retrace to stage
(1) and play a counter move with {i}”. By doing so, OPP creates another line of dialogue
and rolls back all the changes that have been made on the dialectical state up to the stage
(1). That is why at stage (6) the sets π6, h6 and θ6 are set to π1, h1 and θ1 respectively.
The current block is changed to {i} and the ancient block β5 is moved to ∆6 = {β5}.
The former means that this set or any of its supper sets will never form a block. This
is important to avoid unnecessary moves. The same happens at stage (12) where OPP

retraces to stage (7) because he cannot retrace to the stage (9). The current block β12 is
set to {i, j} which extends β7.

The dialogue continues until stage (15) where PRO plays a support move with ar-
gument l against which OPP could neither attack nor retrace to previous stages. At this
stage the dialogue ends and PRO is declared as the winner.



i Move πi hi θi βi ∆i

0 - {a, d, e, l, h} ∅ ∅ ∅ ∅
1 S(a) {d, e, l, h} {a} {g, i} ∅ ∅
2 C({g}) {e, l, h} {a} {g, i} {g} ∅
3 S(l) {e, h} {a, l} {g, i, c, b} {g} ∅
4 C({g, c}) {e, h} {a, l} {g, i, c, b} {g, c} ∅
5 S(e) {h} {a, l, e} {g, i, c, b, k} {g, c} ∅
6 R({i}, 1) {d, e, l, h} {a} {g, i} {i} {β5}
7 S(d) {e, l, h} {a, d} {g, i, f, j, b} {i} {β5}
8 C({i, f}) {l, h} {a, d} {g, i, f, j, b} {i, f} {β5}
9 S(h) {l} {a, d, h} {g, i, f, j, b, k} {i, f} {β5}
10 C({i, f, k}) {l} {a, d, h} {g, i, f, j, b, k} {i, f, k} {β5}
11 S(l) ∅ {a, d, h, l} {g, i, f, j, b, k, c} {i, f, k} {β5}
12 R({i, j}, 7) {e, l, h} {a, d} {g, i, f, j, b} {i, j} {β5, β11}
13 S(h) {e, l} {a, d, h} {g, i, f, j, b, k} {i, j} ∆12

14 C({i, j, k}) {l} {a, d, h} {g, i, f, j, b, k} {i, j, k} ∆12

15 S(l) ∅ {a, d, h, l} {g, i, f, j, b, k, c} {i, j, k} ∆12 ∪ {β14}
Table 2: A dialectical proof for the query Q. For space reasons S(), C() and R() denote
SUPPORT(), COUNTER() RETRACE() respectively.

The associated tree in Figure 4(b) shows clearly the relation between the advanced
arguments played by both parties. The tree in Figure 5(b) is another dialogue tree for
another dialogue where PRO is the winner. This can be easily observed since all leaf
nodes are within an odd layer.

Let us now use the same argumentation framework, but consider another query
Q′, which is not universally accepted. The supporters are S(Q′) = {a, d, e, h}. The
dialogue is presented in Table 3 and its associated dialogue tree is shown in Figure 5(a).
In this example, OPP has been able to construct the block β6 = {k, i, j} in the last
move which attacks all the supporters. This made PRO unable to continue the dialogue.
Note that we do not allow retracing for PRO because one block is sufficient to prove the
unacceptability of the query.

i Move πi hi θi βi
0 - {a, d, e, h} ∅ ∅ ∅
1 S(h) {a, d, e} {h} {k, f, b} ∅
2 C({k}) {a, d} {h} {k, f, b} {k}
3 S(a) {d} {a, h} {k, f, b, g, i} {k}
4 C({k, i}) {d} {a, h} {k, f, b, g, i} {k, i}
5 S(d) ∅ {d, a, h} {k, f, b, g, i, j} {k, i}
6 C({k, i, j}) ∅ {d, a, h} {k, f, b, g, i, j} {k, i, j}

Table 3: A dialectical proof for the non-universal acceptance of Q′. Note that we omit
∆i as it is always empty in this example.



(a) Non-universal acceptance.
(b) Universal acceptance

Fig. 5: The associated dialogue tree.

In the next section we show that OPP the winner if the query is not universally
accepted and that PRO is the winner if the query is universally accepted. We also show
some other properties.

6.2 Properties

In this section we show that our dialectical proof theory satisfies finiteness, sound-
ness and completeness. Next we shift to studying the dispute complexity of dialectical
proofs, defined by Dunne and Bench-Capon [30].

Termination is an important property for any dialogue [4, 35]. In what follows we
show how our dialectical theory produces always finite dialogues. To establish such a
property we need to show that for any dialogue d, its associated dialogue tree is finite.
Such result can be established by showing that the height of the tree is finite and that
for each node the number of its children is finite. Given a tree, we denote by Height(.)
the number of edges from the root to the farthest leaf. For a node v, we denote by C(v)
the set of all child nodes of v.

Lemma 3. Let H be an argumentation framework and D be the set of all possible
dialogues overH. Given T (d) = (V,D) of any d ∈ D the following holds:

1. Height(T (d)) is finite
2. ∀ v ∈ V,∃l ∈ N such that |C(v)| 6 l.

Proof. Let us suppose that Height(T (d)) is infinite, and let P be the longest path in
T (d) starting from the root node. This means either there are infinitely many supporting



arguments used in P , or there are some infinite repetitions in supporting arguments
used in P . The first one is impossible since we are dealing with finite argumentation
framework (the set of all arguments is finite). The second is impossible since once
an argument is played it cannot be advanced afterwards in the same path (see SE1 of
SUPPORT move).

Let us suppose that |C(v)| is infinite. This means that v is a supporting argument and
it has infinitely many attackers, which is impossible since the argumentation framework
is finite.

Amgoud et al. [4] introduced another constraint, called finiteness of the moves’ con-
tents. This constraint insures that the arguments advanced within the dialogue are finite.
In our context we distinguish tow cases, (i) the argument in a support moves should be
finite, and (ii) the set of arguments advanced in a counter move should be finite too. For-
tunately, the two cases are verified in our argumentation framework because as shown
in Proposition 3 the set of arguments A for any argumentation framework over a possi-
bly inconsistent knowledge base is finite and the set of attacker for a given argument is
finite. We get the following result on finiteness.

Theorem 5 (Finiteness). Let H be an argumentation framework and D be the set of
all possible dialogues overH. Then, for every d ∈ D, ∃k ∈ N such that |d| 6 k.

Proof. Let us suppose that d is infinite. This means, either (i) Height(T (d)) is infinite;
or (ii) there is a node in T (dn) with infinitely many child nodes. From Lemma 3, the
two cases are impossible.

Finiteness is not sufficient alone. After all, if a dialectical proof theory gives finite
dialogues but incorrect results then such proof theory is useless. Soundness is the prop-
erty that insures that the proof theory gives only correct results. In other words, if one
has a dialectical proof for universal acceptance (resp. non-universal acceptance) of a
query then the query is universally accepted (resp. not universally accepted).

Let us show that the dialectical proof theory is consistent in the sense that there are
no two dialogues about a query Q such that PRO wins one and loses the other.

Proposition 17. Let Ω(H,Q) be the set of all terminated dialogues about Q inH and
let d ∈ Ω(H,Q). If d is won by PRO (resp. OPP) then every d′ ∈ Ω(H,Q) is won by
PRO (resp. OPP).

Proof. Suppose that d is won by OPP and there exists another dialogue d′ that is won
by PRO. This means that OPP has failed to construct a block in d′′. This means that
either (i) there is no block, or (ii) the Procedure 1 is not exhaustive. The former is in
contradiction with the fact that OPP has won d therefore a block does exist. The latter is
in contradiction with the evident fact that the procedure indeed tries all possible moves.

This property is very important since we do not want to have a dialectical proof
theory that is contradictory. It turns out that this property is important for soundness. In
what follows soundness is characterized by the existence of one winning dialogue (by
PRO or OPP).



Theorem 6 (Soundness). Given a dialogue dn about the queryQ, if dn is won by PRO
then Q is universally accepted.

Proof. Let us proceed by contradiction. Suppose that dn is won by PRO but Q is not
universally accepted. On the one hand, recall that if Q is not universally accepted then
there exists a block B against all Q’s supporters. On the other hand, if PRO has won
dn then OPP could not find any block that attacks all supporters advanced in dn. This
means that either (i) OPP search was not exhaustive or (ii) there is no such block. As
one can see, (ii) is in contradiction with the assumption and (i) is in contradiction with
the fact that the Procedure 1 is exhaustive.

If the dialectical proof theory is sound but does not provide dialectical proofs for
all universally (resp. not universally) accepted queries then it is incomplete. In what
follows we provide a completeness proof.

Theorem 7 (Completeness). If a queryQ is universally accepted then PRO wins every
dialogue about Q.

Proof. By contradiction, if Q is universally accepted and PRO loses then OPP has con-
structed a block βn for Q. This means that Q is not universally accepted, which is a
contradiction.

Given a queryQ, what is the shortest dialogue allowing to establish universal accep-
tance (universal non-acceptance) of Q? Dunne and Bench-Capon [30] introduced the
so-called dispute complexity for a given argument in a given argumentation framework.
We adapt this definition to our context as follows.

Definition 27 (Dispute complexity). LetH be an argumentation framework andQ be
a query. The dispute complexity δ(H,Q) is defined as follows:

δ(H,Q) = min(|d| : d is a terminated dialogue about Q inH)

It is read as the dispute complexity of the query Q in the argumentation frameworkH.

The dispute complexity is the minimal number of moves that must be used to prove
that Q is universally accepted or not universally accepted. Dunne and Bench-Capon
[30] provided an exact characterization of such complexity for credulous acceptance by
considering as an input the argumentation framework and all admissible sets. Our goal
in what follows is to propose some bounds for such complexity in universal (or non-
universal) acceptance. These bounds will be studied with respect to the size of blocks
and proponent sets defined in page 16.

Recall that a block of a given query is necessarily a hitting set. A minimum block is
the smallest block w.r.t cardinality. Similarly, a minimum proponent set is the smallest
proponent set w.r.t cardinality.

Notation 3 Let Q be a query, H an argumentation framework such that Q is not uni-
versally accepted inH and C = {range−(x) | x ∈ S(Q)}:

– HS(H,Q) denotes the set of all hitting sets of C.



– MHS(H,Q) denotes the set of all minimal hitting sets of C.
– BS(H,Q) denotes the set of all blocks of Q.
– MinBS(H,Q) denotes the set of all minimum blocks of Q.
– The block number of Q inH is the size of the minimum block:
τ(H,Q) = min(|B| : B ∈ MinBS(H,Q)).

– The hitting set number is the size of the minimum hitting set of C:
α(H,Q) = min(|S| : S ∈ MHS(H,Q)).

The block number corresponds to the minimum block which is the smallest block
(w.r.t set-cardinality) among all blocks. Note that it is not necessary that every minimum
hitting set of C is a minimum block, because a minimum block imposes that its members
have to belong to the same admissible set (see Example 18 below). Therefore it is
possible to have a block which is minimum but does not correspond to any minimum
hitting set. In contrast, a minimum block has to be a hitting set. We get the following
straightforward relations:

Fact 3 The following statement holds:

– BS(H,Q) ⊆ HS(H,Q).

From this fact we can easily deduce that the block number can be equal or greater
than the hitting set number of a query in an argumentation framework.

Fact 4 τ(H,Q) > α(H,Q).

Note that, given a queryQ, the complexity of the dispute in an argumentation frame-
work is equal to the double of the block number. Indeed, if the size of the minimum
block B equals n then OPP extends his current block by advancing one attacker at each
stage. Therefore, for each SUPPORT move we have a COUNTER move that extends the
current block by one argument. When the current block reaches the size n, that means
OPP has played all the arguments of the minimum block; PRO will have no supporting
argument to advance, thus the dialogue will terminate after 2× n moves.

Fact 5 For any terminated dialogue d about Q in an argumentation framework H
where Q is not universally accepted:

δ(H,Q) = 2× τ(H,Q).

Example 18. Consider the example in Table 3, page 35.

– S(Q) = {a, d, e, h}.
– the set of all sets of attackers C is as follows:

1. range−(a) = {i, j}.
2. range−(d) = {b, j, g, f}.
3. range−(e) = {b, k}.
4. range−(h) = {b, k, f}.
The following minimum hitting sets are candidate blocks:
1. B1 = {b, i}.
2. B2 = {b, j}.



These minimum hitting sets do not belong to any admissible set since they are not
conflict-free. Hence the minimum blocks will have sizes of at least 3. Therefore, the
following are minimum blocks (among others):
1. B3 = {i, j, k}.
2. B4 = {f, j, k}.
3. B5 = {f, i, k}.
In the dialogue d6, from Table 3, block B3 has been constructed. We can see clearly
that:
δ(H,Q) = 2× 3 = 6.

A direct consequence of Fact 5 is the following.

Fact 6 Let d be the shortest dialogue for the non-universal acceptance ofQ. The asso-
ciated dialogue tree T (d) is a chain.

This result is straightforward since OPP will attack all supporters without any need
to retrace, hence there will be no branching in the associated dialogue tree.

Let us turn to the dispute complexity for universal acceptance. As we have seen in
Subsection 3.2, proponent sets also have a strong relation with minimal hitting sets, in
fact they are minimal hitting set over the reduct of extensions. We define similarly the
proponent number and the attack degree of a query in an argumentation framework to
be able to bound the dispute complexity of its universal acceptance.

Notation 4 Let Q be a query and H an argumentation framework such that Q is uni-
versally accepted inH.

– the proponent number is the size of the minimum proponent set:
ρ(H,Q) = min(|S| : S is a proponent set of Q inH).

– the attack degree of Q in H: deg(H,Q) = max(|range−(a)| : a ∈ P(Q)), where
P(Q) is the set of all arguments that belong to at least one minimum proponent set.

When PRO is engaged in a dialogue he always uses the set of all supporters S(Q). It
is obvious that a proponent set (minimum or not) can replace S(Q) since it represents
all what PRO needs to establish the universal acceptance of Q.

Proposition 18. Let P be a proponent set of a given query Q in an argumentation
framework H. Let us change the rules of the dialogue described earlier so that PRO
plays only from P instead of S(Q). Then, the soundness and completeness are pre-
served.

The proposition is straightforward, because if there is no proponent set, the dialogue
will not start and the query will not be accepted. If there exists a proponent set, then
there is no block that can attack all members of P . This result is important to determine
the smallest dialogue to prove Q, consequently to bound the dispute complexity.

It is obvious that dialogues where PRO plays with minimum proponent sets are
shorter than all other dialogues, because in the former dialogues PRO will play only
the support moves that are needed to terminate the dialogue.



Proposition 19. Let δ(H,Q) be the dispute complexity of the queryQ inH. LetΘ(H,Q)
be the size of the shortest dialogue where PRO plays only with a minimum proponent set.
Then,

δ(H,Q) 6 Θ(H,Q).

But this claim is not precise enough to serve as an upper bound. Actually, we need
to bound the quantity Θ(H,Q). To do so, one has to see what would be the worst-case
size of such quantity.

If we imagine the associated dialogue tree of the shortest dialogue, the worst-case
for such quantity would be that at each support node we have k children with k being
the worst-case number of attackers, which corresponds to the attack degree of the query
Q in H. This tree is similar to the one in Figure 6 (called the worst-case associated
dialogue tree). The proponent number is 4 (number of gray nodes) and k = 3, therefore
every support node has exactly 3 children, whereas every counter move has exactly
one child. It is clear that to compute the worst-case quantity that bounds Θ(H,Q) one
needs to compute the number of nodes of the worst-case optimal associated dialogue
tree. Therefore, we get the following theorem:

Fig. 6: A worst-case associated dialogue tree with k = 3. Gray-colored nodes are sup-
port move nodes while black-colored nodes are counter move nodes.

Theorem 8. Let d be a dialogue about Q in an argumentation framework H where Q
is universally accepted, and let k = deg(H,Q). Then:

δ(H,Q) 6 2 · k
ρ(H,Q) − 1

k − 1
− 1

By applying the previous formula with k = 3 and ρ = 4, we conclude that there are
79 nodes in the tree from Figure 6.

Example 19. Consider again the example of Figure 5(a), but let us now consider an-
other query Q′′ such that S(Q′′) = {a, d, e, l, h} ∪ {k}. Query Q′′ has two minimum



proponent sets: P = {P1, P2} and P1 = {k, h}, P2 = {k, e}. Let us compute the upper
bound for the dispute complexity of Q′′. The query has two minimum proponent sets
P = {{k, h}, {k, e}}. We have that k = 3 and ρ(H,Q′′) = 2. Therefore,

δ(H,Q) 6 7.

The worst-case associated dialogue tree is presented in Figure 7(a). The shortest
dialogue is presented in Figure 7(b).

(a) The worst-case associated dialogue tree for
Q.
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(b) The associated dialogue tree for the shortest
dialogue.

Fig. 7: The two associated dialogue trees.

7 Discussion

This paper presents the first instantiation of Dung’s abstract argumentation framework
with the logical language expressed using existential rules. The benefit of using argu-
mentation is that it allows to represent the data in a format that is easier to grasp by a
user. It allows (by examining the support of an argument) to track the provenance of
different pieces of information used to conclude a given formula and to see (by exam-
ining the attacks between arguments) which pieces of information are not compatible
together.

We studied the properties of our system and showed that it satisfied rationality
postulates from the literature. We also showed the link between the argumentation se-
mantics and inconsistency-tolerant semantics. Those results show that the two theories,
which were developed independently, yield very similar results.

We then focused on universal acceptance for which we provided a precise charac-
terization with respect to the state of the art. We used the explanatory power of dialec-
tical proofs to give an alternative dialectical proof procedure for universal acceptance.
Important properties for this proof theory have been given: finiteness, completeness,
soundness and dispute complexity.

Related work wrt existential rule based argumentation frameworks. The link
between maximal consistent subsets of a knowledge base and stable extensions of the



corresponding argumentation system was shown by Cayrol [20]. That was the first work
showing this type of connection between argument-based and non argument-based rea-
soning. This result was generalized [46] by studying the whole class of argumentation
systems corresponding to maximal consistent subsets of the propositional knowledge
base. The link between the ASPIC system [40] and the Argument Interchange Format
(AIF) ontology [24] has recently been studied [13]. Another related paper comprises
constructing an argumentation framework with ontological knowledge allowing two
agents to discuss the answer to queries concerning their knowledge (even if it is incon-
sistent) without one agent having to copy all of their ontology to the other [15]. While
those papers are in the area of our paper, none of them is related to the study of the
links between different semantics for inconsistent ontological KB query answering and
different argumentation semantics.

Related work wrt universal acceptance dialectical proofs. After the introduction
of abstract argumentation framework by Dung [28], many attempts have been made to
provide formal proof theories for abstract argumentation. They are often referred to as
dialectical proof theories where the adjective “dialectical” is due to the conversational
aspect of the proof. Jakobovits and Vermeir [34] and Prakken [42] define, similarly to
dialogical logic, a dialectical proof theory as an argument game with a winning criterion
alongside with a legal move function that decides the allowed moves to be played. Given
an argumentation framework, a semantics x and an argument a, the objective is to prove
whether the argument a is skeptically/credulously accepted under the semantics x.

The TPI (Two party Immediate Response) procedure [47, 30] is used for credulous
and skeptical games in finite and coherent argumentation frameworks where two play-
ers exchange arguments (moves) until one of them cannot play. The justification status
of the argument (skeptical/credulous) is decided with respect to the wining criterion. In
TPI-disputes each move attacks the previous one. Their dialectical proof theories are
shown to be sound and complete. Cayrol et al. [21] follow the same guideline but with
a refinement on the size of the proof, thus producing shorter proofs than in the approach
by Dunne and Bench-Capon [30]. Modgil and Caminada [38] proposed another dialec-
tical proof theory for skeptical acceptance where, instead of exchanging arguments the
proponent and the opponent exchange whole admissible sets. The goal is to construct
a block, which is an admissible set of arguments that conflicts with all admissible sets
around the argument in question [38]. Following the same idea, Doutre and Mengin
[27] construct such a block in a meta-argumentation framework within a meta-dialogue
where admissible sets are considered as moves, then the classical credulous proof the-
ory [21] is used as a sub-procedure to proof skeptical acceptance. Thank et al. [45]
defined a more general framework, which is sound for any argumentation frameworks
and is complete for general classes of finitary argumentation frameworks (including
the class of finite argumentation frameworks). Skeptical and grounded acceptance have
also been studied by the authors [6] for existential rules.

To the best of our knowledge no existing work addressed the problem of dialectical
approaches for universal acceptance.

Future work. It is important to point out that this dialectical proof theory can also
be used in abstract settings like the one by Amgoud et al. [3]. In that work, Dung’s
abstract framework [28] is used in decision-support systems where arguments support



different options (or decisions) and the final decision is computed using Dung’s seman-
tics. The authors introduced the concept of universal acceptance for a given option and
shown that skeptical and universal acceptance differ. In fact, the distinction is impor-
tant and practical since in certain decision making situations we may opt for an option
that is supported by different arguments from different extensions but not supported by
skeptical arguments (as there may be none). It would be interesting to investigate how
to change our dialectical theory so that it corresponds to the abstract setting.

We would like to investigate other argumentation semantics and inconsistency-
tolerant semantics and to establish more links. Actually the recent work by Baget
[9] provided a unified framework for inconsistency-tolerant semantics in ontological
knowledge bases. Providing a representation theorem between all semantics proposed
in this work and those of argumentation would be of big impact. This endeavor follows
the general line of examining how the knowledge representation community could ben-
efit from other results from argumentation theory and whether the argumentation com-
munity could use some open problems in the knowledge representation as inspiration
for future work.
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A Appendix

Example 20 (Pick two!). Complete set of arguments of Example 12.



a1 = ({project(P ), isfast(P ), ischeap(P )}, project(P ) ∧ isfast(P ) ∧ ischeap(P ))

a2 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isfast(P ) ∧ isgood(P ))

a3 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ isgood(P ) ∧ ischeap(P ))

a4 = ({project(P ), isfast(P ), ischeap(P )}, project(P ) ∧ isfast(P ))

a5 = ({project(P ), isfast(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a6 = ({project(P ), isfast(P ), ischeap(P )}, isfast(P ) ∧ ischeap(P ))

a7 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ isgood(P ))

a8 = ({project(P ), isgood(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a9 = ({project(P ), isgood(P ), ischeap(P )}, isgood(P ) ∧ ischeap(P ))

a10 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isfast(P ))

a11 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isgood(P ))

a12 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ))

a13 = ({project(P ), isfast(P ), isgood(P )}, project(P ))

a14 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ))

a15 = ({project(P ), isfast(P ), isgood(P )}, isgood(P ))

a16 = ({project(P ), isgood(P ), ischeap(P )}, project(P ))

a17 = ({project(P ), isgood(P ), ischeap(P )}, isgood(P ))

a18 = ({project(P ), isgood(P ), ischeap(P )}, ischeap(P ))

a19 = ({project(P ), isfast(P ), ischeap(P )}, project(P ))

a20 = ({project(P ), isfast(P ), ischeap(P )}, isfast(P ))

a21 = ({project(P ), isfast(P ), ischeap(P )}, ischeap(P ))

a22 = ({project(P ), isfast(P )}, project(P ) ∧ isfast(P ))

a23 = ({project(P ), isgood(P )}, project(P ) ∧ isgood(P ))

a24 = ({isgood(P ), ischeap(P )}, isgood(P ) ∧ ischeap(P ))

a25 = ({project(P ), ischeap(P )}, project(P ) ∧ ischeap(P ))

a26 = ({isfast(P ), ischeap(P )}, isfast(P ) ∧ ischeap(P ))

a27 = ({isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ))

a28 = ({project(P ), isgood(P )}, project(P ))

a29 = ({project(P ), isgood(P )}, isgood(P ))

a30 = ({isgood(P ), ischeap(P )}, isgood(P ))

a31 = ({isgood(P ), ischeap(P )}, ischeap(P ))

a32 = ({project(P ), isfast(P )}, project(P ))

a33 = ({project(P ), isfast(P )}, isfast(P ))

a34 = ({project(P ), ischeap(P )}, project(P ))

a35 = ({project(P ), ischeap(P )}, ischeap(P ))

a36 = ({isfast(P ), ischeap(P )}, isfast(P ))

a37 = ({isfast(P ), ischeap(P )}, ischeap(P ))

a38 = ({isfast(P ), isgood(P )}, isfast(P ))

a39 = ({isfast(P ), isgood(P )}, isgood(P ))

a40 = ({project(P )}, project(P ))

a41 = ({isfast(P )}, isfast(P ))

a42 = ({ischeap(P )}, ischeap(P ))

a43 = ({isgood(P )}, isgood(P ))

a44 = ({isfast(P )}, isfast(P ))

a45 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isfast(P ) ∧ isgood(P ) ∧
isexpensive(P ))

a46 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ) ∧ isexpensive(P ))

a47 = ({project(P ), isfast(P ), isgood(P )}, project(P ) ∧ isexpensive(P ))

a48 = ({project(P ), isfast(P ), isgood(P )}, isfast(P ) ∧ isexpensive(P ))

a49 = ({project(P ), isfast(P ), isgood(P )}, isgood(P ) ∧ isexpensive(P ))

a50 = ({isfast(P ), isgood(P )}, isfast(P ) ∧ isgood(P ) ∧ isexpensive(P ))

a51 = ({project(P ), isfast(P ), isgood(P )}, isexpensive(P ))

a52 = ({isfast(P ), isgood(P )}, isfast(P ) ∧ isexpensive(P ))

a53 = ({isfast(P ), isgood(P )}, isgood(P ) ∧ isexpensive(P ))

a54 = ({isfast(P ), isgood(P )}, isexpensive(P ))

Table 4: All arguments of Example 12.


