ViewpointS: capturing formal data and informal contributions into an adaptive knowledge graph

Abstract : Formal data is supported by means of specific languages from which the syntax and semantics have to be mastered, which represents an obstacle for collective intelligence. In contrast, informal knowledge relies on weak/ambiguous contributions e.g., I like. Reconciling the two forms of knowledge is a big challenge. We propose a brain-inspired knowledge representation approach called ViewpointS where formal data and informal contributions are merged into an adaptive knowledge graph which is then topologically, rather than logically, explored and assessed. We firstly illustrate within a mock-up simulation, where the hypothesis of knowledge emerging from preference dissemination is positively tested. Then we use a real-life web dataset (MovieLens) that mixes formal data about movies with user ratings. Our results show that ViewpointS is a relevant, generic and powerful innovative approach to capture and reconcile formal and informal knowledge and enable collective intelligence.
Type de document :
Article dans une revue
International Journal of Knowledge and Learning, Inderscience, In press, 〈10.1504/IJKL.2017.10012219〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01605411
Contributeur : Clement Jonquet <>
Soumis le : vendredi 11 mai 2018 - 16:03:01
Dernière modification le : jeudi 24 mai 2018 - 15:59:23

Fichier

IJKL-2016_Viewpoints_Lemoisson...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Philippe Lemoisson, Guillaume Surroca, Clement Jonquet, Stefano A. Cerri, Stefano Cerri. ViewpointS: capturing formal data and informal contributions into an adaptive knowledge graph. International Journal of Knowledge and Learning, Inderscience, In press, 〈10.1504/IJKL.2017.10012219〉. 〈lirmm-01605411〉

Partager

Métriques

Consultations de la notice

133

Téléchargements de fichiers

34