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a b s t r a c t

A graph H is an immersion of a graph G if H can be obtained by
some subgraphG after lifting incident edges.We prove that there is
a polynomial function f : N×N → N, such that if H is a connected
planar sub-cubic graph on h > 0 edges, G is a graph, and k is a
non-negative integer, then either G contains k vertex/edge-disjoint
subgraphs, each containing H as an immersion, or G contains a set
F of f (k, h) vertices/edges such that G \ F does not contain H as an
immersion.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs in this paper are finite, undirected, loopless, and may have multi-edges. Whenever we
call a graph simple we also assume that it does not have multi-edges. Let C be a class of graphs. A
C-vertex/edge cover of G is a set S of vertices/edges such that each subgraph of G that is isomorphic to
a graph in C contains some element of S. A C-vertex/edge packing of G is a collection of vertex/edge-
disjoint subgraphs of G, each isomorphic to some graph in C.
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We say that a graph class C has the vertex/edge Erdős–Pósa property (shortly v/e-E &P property) for
some graph class G if there is a function f : N → N, called a gap function, such that, for every graph
G in G and every non-negative integer k, either G has a vertex/edge C-packing of size k or G has a
vertex/edge C-cover of size f (k). In the case where G is the class of all graphs we simply say that C has
the v/e-E &P property. An interesting topic in Graph Theory, related to the notion of duality between
graph parameters, is to detect instantiations of C and G such that C has the v/e-E &P property for G
and, optimize the corresponding gap. Certainly, the first result of this type was the celebrated result
of Erdős and Pósa in [11] who proved that the class of all cycles has the v-E &P property with gap
function O(k · log k). This result has triggered a lot of research on its possible extensions. One of the
most general ones was given in [24] where it was proven that the class of graphs that are contractible
to some graph H has the v-E &P property iff H is planar (see also [4,5,8] for improvements on the gap
function).

Other instantiations of C forwhich the v-E&P property has been proved concern odd cycles [18,21],
long cycles [2], and graphs containing cliques as minors [9] (see also [14,16,23] for results on more
general combinatorial structures).

As noticed in [8], cycles have the e-E&P property as well. Interestingly, only fewmore results exist
for the caseswhere the e-E&P property is satisfied. It is known for instance that graphs contractible to
θr (i.e. the graph consisting of two vertices and an edge ofmultiplicity r between them)have the e-E&P
property [3]. Moreover it was proven that odd cycles have the e-E &P property for planar graphs [19]
and for 4-edge-connected graphs [18].

Given two graphs G and H , we say that H is an immersion of G if H can be obtained from some
subgraph of G by lifting incident edges (see Section 2 for the definition of the lift operation). Given
a graph H , we denote by I(H) the set of all graphs that contain H as an immersion. Using this
terminology, the edge variant of the original result of Erdős and Pósa in [11] implies that the class
I(θ2) has the v-E &P property (and, according to [8], the e-E &P property as well). A natural question
is whether this can be extended for I(H), for other graphs H , different than θ2. This is the question
that we consider in this paper. A distinct line of research is to identify the graph classes G such that
for every graph H , I(H) has the e-E &P property for G. In this direction, it was recently proved in [20]
that for every graph H , I(H) has the e-E &P property for 4-edge-connected graphs.

In this paper we show that if H is non-trivial (i.e., has at least one edge), connected, planar, and
sub-cubic, i.e., each vertex is incident with at most 3 edges, then I(H) has the v/e-E&P property (with
polynomial gap in both cases). More concretely, our main result is the following.

Theorem 1. Let k ∈ N. If H is a connected planar sub-cubic graph and G is a graph without any
I(H)-vertex/edge packing of size greater than k then G has a I(H)-vertex/edge cover of size bounded by a
polynomial function of h and k, where h = |E(H)|.

The main tools of our proof are the graph invariants of tree-cut width and tree-partition width,
defined in [28] and [10] respectively (see Section 2 for the formal definitions). Our proof uses the
fact that every graph of polynomially (on k) big tree-cut width contains a wall of height k as an
immersion (as proved in [28]). This permits us to consider only graphs of bounded tree-cut width and,
by applying suitable reductions, we finally reduce the problem to graphs of bounded tree-partition
width (Theorem 2). The result follows as we next prove that for every H , the class I(H) has the e-E&P
property for graphs of bounded tree-partition width (Theorem 3).

One might conjecture that the result in Theorem 1 is tight in the sense that both being planar
and sub-cubic are necessary for H in order for I(H) to have the e-E &P property. In this direction,
in Section 7, we give counterexamples for the cases where H is planar but not sub-cubic and is sub-
cubic but not planar.

2. Definitions and preliminary results

We use N+ for the set of all positive integers and we set N = N+
∪ {0}. Given a function f : A → B

and a set C ⊆ A, we denote by f |C = {(x, f (x)) | x ∈ C}.
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Graphs

As alreadymentioned, we deal with loopless graphswheremulti-edges are allowed. Given a graph
G, we denote by V (G) its set of vertices and by E(G) its multiset of edges. The notation |E(G)| stands
for the total number of edges, that is, counting multiplicities. We use the term multi-edge to refer
to a 2-element set of adjacent vertices and the term edge to deal with one particular instantiation
of the multi-edge connecting two vertices. The function multG maps a set of two vertices of G to the
multiplicity of the edge connecting them, or zero if they are not adjacent. If multG({u, v}) = k for
some k ∈ N+, we denote by {u, v}1, . . . , {u, v}k the distinct edges connecting u and v. For the sake
of clarity, we identify a multi-edge of multiplicity one and its edge and write {u, v} instead of {u, v}1
when multG({u, v}) = 1.

For X ⊆ V (G), we denote by G \ X the graph obtained by removing X and all edges incident to a
vertex in X , and for x ∈ V (G), we simply use G \ x to refer to G \ {x}. Similarly, for F ⊆ E(G), we denote
by G \ F the graph obtained by removing edges in F , and for e ∈ E(G), we simply use G \ e to refer to
G \ {e}.

We denote by degG(v) the degree of a vertex v in a graph G, that is, the number of vertices that are
adjacent to v. The multidegree of v, that we write mdegG(v), is the number of edges (i.e. counting
multiplicities) incident with v. We drop the subscript when it is clear from the context. We also
set m δ(G) = minv∈V (G)mdegG(v). We say that a graph G is sub-cubic whenever mdegG(v) ≤ 3 for
every v ∈ V (G). Two paths are internally disjoint if they do not share internal vertices.

Immersions

LetH andG be graphs.We say thatG containsH as an immersion if there is a pair of functions (φ,ψ),
called an H-immersion model, such that φ is an injection of V (H) → V (G) andψ sends {u, v}i to a path
of G between φ(u) and φ(v), for every {u, v} ∈ E(H) and every i ∈ {1, . . . ,multH ({u, v})}, in a way
such that distinct edges are sent to edge-disjoint paths. This definition of an immersion correspond to
what is sometimes called a weak immersion. Every vertex in the image of φ is called a branch vertex.
We will make use of the following easy observation.

Observation 1. Let H and G be two graphs. If (φ,ψ) is an H-immersion model in G then for every vertex
x of H, we havemdegH (x) ≤ mdegG(φ(x)).

An H-immersion expansion M in a graph G is a subgraph of G defined as follows: V (M) = φ(V (H))∪⋃
e∈E(H)V (ψ(e)) and E(M) =

⋃
e∈HE(ψ(e)) for someH-immersionmodel (φ,ψ) of G. We call the paths

in ψ(E(H)) certifying paths of the H-immersion expansionM .
We say that two edges are incident if they share some endpoint. A lift of two incident edges

e1 = {x, y} and e2 = {y, z} of G is the operation that removes the edges e1 and e2 from the graph
and then, if x ̸= z, adds the edge {x, z} (or increases the multiplicity of {x, z} by 1 if this edge already
exists). Notice that H is an immersion of G if and only if a graph isomorphic to H can be obtained from
some subgraph of G after applying lifts of incident edges.1

The dissolution of a vertex of multidegree two of a graph is the operation that deletes this vertex
and, if it had two neighbors, adds an edge joining them. The subdivision of an edge is the operation
that adds a vertex of degree two adjacent to its endpoints and deletes this edge. We say that a graph
G is a subdivision of a graph H if G can be obtained from H by repeatedly subdividing edges.

Packings and coverings

An H-cover of G is a set C ⊆ E(G) such that G \ C does not contain H as an immersion. An
H-packing in G is a collection of edge-disjoint H-immersion expansions in G. We denote by packH (G)
the maximum size of an H-packing and by coverH (G) the minimum size of an H-cover in G.

1 While wementioned this definition in the introduction, in the rest of the paper, we adopt the more technical definition of
immersion in terms of immersion models as this will facilitate the presentation of the proofs.
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Rooted trees

A rooted tree is a pair (T , s) where T is a tree and s ∈ V (T ) is a vertex referred to as the root. Given a
vertex x ∈ V (T ), the set of descendants of x in (T , s), denoted by desc(T ,s)(x), is the set containing each
vertexw such that the unique path fromw to s in T contains x. If y is a descendant of x and is adjacent
to x, then it is a child of x. Two vertices of T are siblings if they are children of the same vertex. Given
a rooted tree (T , s) and a vertex x ∈ V (G), the height of x in (T , s) is the maximum distance between x
and a vertex in desc(T ,s)(x).

We now define two types of decompositions of graphs: tree-partitions (cf. [15,26]) and tree-cut
decompositions (cf. [28]).

Tree-partitions

We introduce, especially for the needs of our proof, an extension of the parameter of tree-partition
width defined in [15,26] to multigraphs, where we consider both the number of edges between the
bags and the number of vertices in the bags. A tree-partition of a graph G is a pairD = (T ,X ) where T
is a tree and X = {Xt}t∈V (T ) is a partition of V (G) such that either |V (T )| = 1 or for every {x, y} ∈ E(G),
there exists an edge {t, t ′} ∈ E(T ) where {x, y} ⊆ Xt ∪ Xt ′ . We call the elements of X bags of D. Given
an edge f = {t, t ′} ∈ E(T ), we define Ef as the set of edges with one endpoint in Xt and the other in Xt ′ .
Thewidth ofD is defined as max{|Xt |}t∈V (T ) ∪{|Ef |}f∈E(T ). The tree-partition width of G is the minimum
width over all tree-partitions of G and will be denoted by tpw(G). A rooted tree-partition of a graph G
is a triple D = ((T , s),X ) where (T , s) is a rooted tree and (T ,X ) is a tree-partition of G.

Tree-cut decompositions

A near-partition of a set S is a family of pairwise disjoint subsets S1, . . . , Sk ⊆ S (for some k ∈ N)
such that

⋃k
i=1Si = S. Observe that this definition allows some sets Si of the family to be empty. A

tree-cut decomposition of a graph G is a pair D = (T ,X ) where T is a tree and X = {Xt}t∈V (T ) is a
near-partition of V (G). As in the case of tree-partitions, we call the elements of X bags of D. A rooted
tree-cut decomposition of a graph G is a tripleD = ((T , s),X ) where (T , s) is a rooted tree and (T ,X ) is
a tree-cut decomposition of G. Given thatD = ((T , s),X ) is a rooted tree-partition or a rooted tree-cut

decomposition of G and given t ∈ V (T ), we set Gt = G
[⋃

u∈desc(T ,s)(t)
Xu

]
.

The torso of a tree-cut decomposition (T ,X ) at a node t is the graph obtained from G as follows. If
V (T ) = {t}, then the torso at t is G. Otherwise let T1, . . . , Tℓ be the connected components of T \ t .
The torso Ht at t is obtained from G by consolidating each vertex set

⋃
b∈V (Ti)

Xb into a single vertex
zi. The operation of consolidating a vertex set Z into z is to replace Z with z in G, and for each edge e
between Z and v ∈ V (G) \ Z , adding an edge {z, v} in the new graph. Given a graph G and X ⊆ V (G),
let the 3-center of (G, X) be the unique graph obtained from G by dissolving vertices in V (G) \ X of
multidegree two and deleting vertices of multidegree at most 1. For each node t of T , we denote by
H̃t the 3-center of (Ht , Xt ), where Ht is the torso of (T ,X ) at t .

Let D = ((T , s),X ) be a rooted tree-cut decomposition of G. The adhesion of a vertex t of T , that
we will denote by adhD(t), is the number of edges of G with exactly one endpoint in Gt . The width of
a tree-cut decomposition (T ,X ) of G is maxt∈V (T ){adhD(t), |V (H̃t )|}. The tree-cut width of G, denoted
by tcw(G), is the minimum width over all tree-cut decompositions of G.

A vertex t ∈ V (T ) is thin if adhD(t) ≤ 2, and bold otherwise. We also say that D is nice if for every
thin vertex t ∈ V (T ) we have N(V (Gt )) ∩

⋃
b is a sibling of tV (Gb) = ∅. In other words, there is no edge

from a vertex ofGt to a vertex ofGb, for any sibling b of t , whenever t is thin. The notion of nice tree-cut
decompositions has been introduced by Ganian et al. in [13]. Furthermore, they proved the following
result.

Proposition 1 ([13]). Every rooted tree-cut decomposition can be transformed into a nice one without
increasing the width.

We say that an edge of G crosses the bag Xt , for some t ∈ V (T ) if its endpoints belong to bags Xt1
and Xt2 , for some t1, t2 ∈ V (T ) such that t belongs to the interior of the (unique) path of T connecting
t1 to t2.
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3. From tree-cut decompositions to tree-partitions

The purpose of this section is to prove the following theorem. The graph H+ will be uniquely
defined from H later on.

Theorem 2. For every connected graph G, and every connected graph H with at least one edge, there is a
graph G′ and a graph H+ such that

• tpw(G′) ≤ (tcw(G) + 1)2/2,
• packH+ (G′) ≤ packH (G), and
• coverH (G) ≤ coverH+ (G′).

Theorem 2 will allow us in Section 4 to consider graphs of bounded tree-partition width instead
of graphs of bounded tree-cut width. Before we proceed with the proof of Theorem 2, we need some
definitions and a series of auxiliary results.

For every graphG, we defineG+ as the graph obtained fromG if, for every vertex v, we add two new
vertices v′ and v′′ and the edges {v′, v′′

} (of multiplicity 2), {v, v′
} and {v, v′′

} (both of multiplicity 1).
Observe that for every connected graph G with at least two vertices, we have m δ(G+) ≥ 3. We also
define G∗ as the graph obtained from G by adding, for every vertex v, the new vertices v′

1, . . . , v
′

mdeg(v)
and v′′

1 , . . . , v
′′

mdeg(v) and the edges {v′

i , v
′′

i } (of multiplicity 2), {v, v′

i}, and {v, v′′

i } (both of multiplicity
1), for every i ∈ {1, . . . ,mdeg(v)}. If v is a vertex of G then we denote by Zv,i the subgraph
G∗

[{v, v′

i , v
′′

i }], where i ∈
{
1, . . . ,mdegG(v)

}
.

Our first aim is to prove the following three lemmata.

Lemma 1. Let G be a graph, let H be a connected graph with at least one edge and let G′ be a subdivision
of G∗. Then we have

• packH+ (G∗) = packH+ (G′) and
• coverH+ (G∗) = coverH+ (G′).

Proof. We denote by S the set of subdivision vertices added during the construction of G′ from G∗. As
G′ is a subdivision of G∗, we have packH+ (G′) ≥ packH+ (G∗) and coverH+ (G′) ≥ coverH+ (G∗).

As a consequence of Observation 1 and the fact that m δ(H+) ≥ 3, if M is an H+-immersion
expansion in G′ then no branch vertex of M belongs to S. Indeed, every vertex of S has multidegree 2
in G′. Therefore, by dissolving inM the vertices of S that belong to V (M), we obtain an H+-immersion
expansion in G∗. It follows that packH+ (G∗) ≥ packH+ (G′), hence packH+ (G∗) = packH+ (G′).

On the other hand, let X be an H+-cover of G∗ and let X ′ be a set of edges constructed by taking,
for every e ∈ X , an edge of the path of G′ connecting the endpoints of e that has been created by
subdividing e. Assume that X ′ is not an H+-cover of G′. According to the remark above, this implies
that X is not anH+-cover of G∗, a contradiction. Hence X ′ is anH+-cover of G′ and thus coverH+ (G∗) =

coverH+ (G′). □

Lemma 2. For every two graphs H and G such that H is connected and has at least one edge, we have
packH+ (G∗) ≤ packH (G).

Proof. In G∗ (respectivelyH+), we say that a vertex is original if it belongs to V (G) (respectively V (H)).
Let (φ,ψ) be an H+-immersion model in G∗.

We first show that if u is an original vertex of H+, then φ(u) is an original vertex of G∗. By
contradiction, let us assume that φ(u) is not original, for some original vertex u of H+. Then φ(u) = v′

i
or φ(u) = v′′

i , for some v ∈ V (G) and i ∈
{
1, . . . ,mdegG(v)

}
.

Observe that since H is connected and has at least one edge, every vertex of H+ has degree at least
three: let x, y, and z be the endpoints of threemulti-edges incident with u (notice that as the degree of
H+ is at least three we can assume that x, y, and z are distinct). Thenψ({u, x}),ψ({u, y}), andψ({u, z})
are edge-disjoint paths connecting φ(u) to three distinct vertices. This is not possible because there is
an edge cut of size two, {{v, v′

i}, {v, v
′′

i }}, separating the two vertices v′

i and v
′′

i (among which is φ(u))
from the rest of the graph. Consequently, if u ∈ V (H+) is original, then φ(u) is original.
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Let us now consider an edge {u, v} ∈ E(H). By the above remark, φ(u) and φ(v) are original vertices
of G∗. It is easy to see thatψ({u, v}) contains only original vertices of G∗. Indeed, if this path contained
a non-original vertex w′ or w′′ for some original vertex w of V (G∗), it would use w twice in order to
reach u and v, a contradiction to the fact that it is a path. Therefore, from the definition of H+, the pair
(φ|V (H), ψ |E(H)) is an H-immersion model of G.

We proved that every H+-immersion-expansion of G∗ contains an H-immersion-expansion that
belongs to the subgraph G of G∗. Consequently every H+-packing of G∗ contains an H-packing of the
same size that belongs to G, and the desired inequality follows. □

Lemma 3. For every two graphs H and G such that H is connected and has at least one edge, we have
coverH (G) ≤ coverH+ (G∗).

Proof. Similarly to the proof of Lemma 2, we say that an edge of G∗ is original if it belongs to E(G). Let
X ⊆ E(G∗) be a minimum cover of H+-immersion expansions in G∗.

First case: all the edges in X are original. In this case, X is an H-cover of G as well. Indeed, if G \ X
contains an H-immersion expansion M , then G∗

\ X contains M∗ that, in turn, contains H+. Hence in
this case, coverH (G) ≤ coverH+ (G∗).

Second case: there is an edge e ∈ X that is not original. Let v be the original vertex of G∗ such that
e ∈ Zv,l for some l ∈

{
1, . . . ,mdegG(v)

}
. Let us first show the following claim.

Claim. For every i ∈
{
1, . . . ,mdegG(v)

}
, there is an edge of Zv,i that belongs to X.

Proof of claim. Looking for a contradiction, let us assume that we have E(Zv,i) ∩ X = ∅, for some i ∈{
1, . . . ,mdegG(v)

}
. Clearly i ̸= l. Byminimality of X , the graphG∗

\(X\{e}) contains anH+-immersion
expansionM that uses e. Observe thatM ′

= M \E(Zv,l)∪E(Zv,i) contains anH+-immersion expansion
(since Zv,l and Zv,i are isomorphic). Hence, M ′ is a subgraph of G∗

\ (X \ {e}) that contains an
H+-immersion expansion. This is not possible as X is a cover, so we reach the contradiction we were
looking for and the claim holds. ⋄

We build a set Y as follows. For every edge f ∈ X , if f is original then we add it to Y . Otherwise, if
vf is the (original) vertex of G∗ such that f ∈ E(Zvf ,i) for some i ∈

{
1, . . . ,mdegG(vf )

}
, then we add to

Y all edges of G that are incident to vf .
The above claim ensures that when a non-original edge f of X is encountered, then X contains

an edge in each of Zvf ,1, . . . , Zvf ,mdegG(vf ). Therefore, the same set of edges, of size mdegG(vf ), will be
added to Y when encountering another edge from Zvf ,1, . . . , Zvf ,mdegG(vf ). Consequently, |X | ≥ |Y |.

Let us now show that Y is anH+-cover ofG∗. Suppose that there exists anH+-immersion expansion
M in G∗

\ Y . Observe that since H is connected and has at least one edge, M does not belong to⋃
i∈{1,...,mdegG(u)}

Zu,i, for every original vertex u of G∗. Let

Z =

⋃
u∈V (G)

⋃
i∈{1,...,mdegG(u)}

E(Zu,i).

ThenM is a subgraph of G \ (Y ∪ Z). As X ⊆ Y ∪ Z , this contradicts the fact that X is a cover. Therefore,
Y is an H+-cover. Moreover all the edges in Y are original. As this situation is treated by the first case
above, we are done. □

We are now ready to prove the main result of this section.

Proof of Theorem 2. Let k = tcw(G). We examine the nontrivial case where G is not a tree,
i.e., tcw(G) ≥ 2. Let us consider the graph G∗. We claim that tcw(G∗) = tcw(G). Indeed, starting
from an optimal tree-cut decomposition of G, we can, for every vertex v of G and for every i ∈{
1, . . . ,mdegG(v)

}
, create a bag that is a child of v and contains {v′

i , v
′′

i }. According to the definition
of G∗, this creates a tree-cut decompositionD = ((T , s), {Xt}t∈V (T )) of G∗. Observe that for every vertex
x that we introduced to the tree of the decomposition during this process, adhD(x) = 2 and the
corresponding bag has size two. This proves that tcw(G∗) ≤ max(tcw(G), 2) = tcw(G). As G is a
subgraph of G∗, we obtain tcw(G) ≤ tcw(G∗) and the proof of the claim is complete.
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According to Proposition 1, we can assume that G∗ has a nice rooted tree-cut decomposition of
width ≤ k. For notational simplicity we again denote it by D = ((T , s), {Xt}t∈V (T )) and, obviously, we
can also assume that all leaves of T correspond to non-empty bags.

Our next step is to transform the rooted tree-cut decomposition D into a rooted tree-partition
D′

= ((T , s), {X ′
t }t∈V (T )) of a subdivision G′ of G∗. Notice that the only differences between the

two decompositions are that, in a tree-cut decomposition, empty bags are allowed as well as edges
connecting vertices of bags corresponding to non-adjacent vertices of T .

We proceed as follows: if X is a bag crossed by edges, we subdivide every edge crossing X and
add the obtained subdivision vertex to X . By repeating this process we decrease at each step the
number of bags crossed by edges, that eventually reaches zero. Let G′ be the obtained graph and
observe that G′ is a subdivision of G. As G is connected, the obtained rooted tree-cut decomposition
D′

= ((T , s), {X ′
t }t∈V (T )) is a rooted tree partition of G′.

Notice that the adhesion of any bag of T in D is the same as in D′. However, the bags of D′ may
grow during the construction of G′. Let t be a vertex of T and let {t1, . . . , tm} be the set of children of
t . We claim that |X ′

t | ≤ (k + 1)2/2.
Let Et be the set of edges crossing Xt in G. Let Ht be the torso ofD at t , and let H ′

t = Ht \Xt . Observe
that |Et | is the same as the number of edges in H ′

t . Let zp be the vertex of H ′
t corresponding to the

parent of t , and similarly for each i ∈ {1, . . . ,m} let zi be the vertex of H ′
t corresponding to the child ti

of t . Notice that if ti is a thin child of t , then zi can be adjacent to only zp as D is a nice rooted tree-cut
decomposition. Thus the sum of the number of incident edges with zi inH ′

t for all thin children ti of t is
at most adhD(t) ≤ k. On the other hand, if ti is a bold child of t , then zi is incident with at least 3 edges
in Ht (none of which is a child of t), and thus it is contained in the 3-center of (Ht , Xt ). Therefore, the
number of all bold children of t is bounded by k−|Xt |. Since each vertex in H ′

t is incident with at most
k edges, the total number of edges in H ′

t is at most (k − |Xt | + 1)k/2 + k. As |E(H ′
t )| = |Et | = |X ′

t \ Xt |,
it implies that |X ′

t | ≤ |Xt | + k · (k − |Xt | + 2)/2 ≤ max{2k, k(k + 2)/2} ≤ (k + 1)2/2. We conclude
that G′ has a rooted tree-partition of width at most (tcw(G) + 1)2/2.

Recall that G′ is a subdivision of G∗. By the virtue of Lemma 3, Lemma 2, and Lemma 1, we
obtain that packH+ (G′) ≤ packH (G) and coverH (G) ≤ coverH+ (G′). Hence G′ satisfies the desired
properties. □

4. Erdös–Pósa in graphs of bounded tree-partition width

Before we proceed, we require the following lemma and an easy observation.

Lemma 4. Let G and H be two graphs such that H has no isolated vertices and let X ⊆ V (G). Let C be
the collection of connected components of G \ X. If M is an H-immersion expansion of G then M contains
vertices from at most (|X | + 1) · |E(H)| graphs of C.

Proof. Let P be a certifying path ofM connecting two branch vertices ofM . Since P is a path, it cannot
use twice the same vertex of X . Besides, as X is a separator, P must go through a vertex of X in order
to go from one graph of C to another one. Therefore, P contains vertices from at most |X | + 1 graphs
of C. The desired bound follows as E(M) is partitioned into |E(H)| certifying paths. □

Observation 2. Let G and H be graphs and let F ⊆ E(G). Then it holds that coverH (G) ≤ coverH (G\F )+
|F |.

For a graph H , we define ωH : N → N so that ωH (r) =
⌈
r ·

3r+1
2 · |E(H)|

⌉
. The next theorem is

an important ingredient of our results. It essentially states that I(H) has the Erdős–Pósa property in
graphs of bounded tree-partition width, for every connected graph H .

Theorem 3. Let H be a connected graph with at least one edge. Then for every graph G it holds that
coverH (G) ≤ ωH (tpw(G)) · packH (G).

Proof. Let us show by induction on k that if packH (G) ≤ k and tpw(G) ≤ r then coverH (G) ≤ ωH (r) ·k.
The case k = 0 is trivial. Let us now assume that k ≥ 1 and that for every graph G of tree-partition

width at most r and such that packH (G) = k − 1, we have coverH (G) ≤ ωH (r)(k − 1). Let G be a
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graph such that packH (G) = k and tpw(G) ≤ r . Let also D = ((T , s), {Xt}t∈V (T )) be an optimal rooted
tree-partition of G. We say that a vertex t ∈ V (T ) is infected if Gt contains an H-immersion expansion.
Recall that the height of a vertex in a rooted tree is the maximum distance to a descendant. Let t be
an infected vertex of T of minimum height.

Claim. If some of the H-immersion expansions of G shares a vertex with Gt ′ for some child t ′ of t, then it
also shares an edge with E{t,t ′}.

Proof of claim. LetM be someH-immersion expansions of G. Notice that, by the choice of t ,M cannot
be entirely inside Gt ′ . This fact, together with the connectivity ofM , implies that E(M)∩E{t,t ′} ̸= ∅. ⋄

Suppose thatM is anH-immersion expansion of Gt and letU be the set of children of t correspond-
ing to bagswhich share vertices withM . We define themultisets A = E(G[Xt ])∩E(M), B =

⋃
t ′∈UE{t,t ′}

and C =
⋃

t ′∈UE(Gt ′ ). We also set D = A ∪ B. By the definition of U , it follows that

E(M) ⊆ C ∪ D. (1)

Let us upper-bound the size of |D|. Applying Lemma4 forGt ,H , andXt , we have |U | ≤ (r+1)·|E(H)|,
hence |B| ≤ r(r + 1) · |E(H)|. Besides, every path of M connecting two branch vertices meets
every vertex of Xt at most once (as it is a path), thus E(M) does not contain an edge of G[Xt ] with
a multiplicity larger than |E(H)|. It follows that |A| ≤

r(r−1)
2 · |E(H)| and finally we obtain that

|D| = |A| + |B| ≤ r ·
3r+1
2 · |E(H)| ≤ ωH (r).

Let G′
= G \ D. We now show that packH (G′) ≤ k − 1. Let us consider an H-immersion expansion

M ′ in G′. As E(M ′) ⊆ E(G) \ D, it follows that

E(M ′) ∩ D = ∅. (2)

Recall that B ⊆ D, which together with (2) implies that E(M ′) ∩ B = ∅. This fact, combined with
the claim above, implies that

E(M ′) ∩ C = ∅. (3)

From (2) and (3), we obtain that E(M ′) ∩ (C ∪ D) = ∅, which, combined with (1), implies that
E(M) ∩ E(M)′ ̸= ∅. Consequently, every maximum packing of H-immersion expansions in G′ is edge-
disjoint fromM . If such a packing had size ≥ k, it would form, together withM , a packing of size k+1
in G, a contradiction. Thus packH (G′) ≤ k − 1, as desired. By the induction hypothesis applied on G′,
coverH (G′) ≤ ωH (r) · (k − 1) edges. Therefore, from Observation 2, coverH (G) ≤ |D| + coverH (G′) ≤

|D| + ωH (r) · (k − 1) ≤ ωH (r) · k edges as required. □

We set σ : N → Nwhere σ (r) =
⌈ 1

8 (3(r + 1)4 + 2(r + 1)2)
⌉
.

Theorem4. Let H be a connected graphwith at least one edge, r ∈ N, and G be a graphwhere tcw(G) ≤ r.
Then coverH (G) ≤ σ (r) · (4 · |V (H)| + |E(H)|) · packH (G).

Proof. Clearly, we can assume that G is connected, otherwise we work on each of its connected
components separately. By Theorem 2, there is a graph G′ where tpw(G′) ≤ (r + 1)2/2, packH+ (G′) ≤

packH (G) and coverH (G) ≤ coverH+ (G′). The result follows as, from Theorem 3, coverH+ (G′) ≤

ωH+ ((r + 1)2/2) · packH+ (G′) and ωH+ ((r + 1)2/2) = σ (r) · |E(H+)| ≤ σ (r) · (4 · |V (H)| + |E(H)|). □

5. Erdös–Pósa for immersions of sub-cubic planar graphs

Grids and walls

Let k and r be positive integers where k, r ≥ 2. The (k × r)-grid Γk,r is the graph with vertex
set {1, . . . , k} × {1, . . . , r} and edge set {{(i, j), (i′, j′)}, |i − i′| + |j − j′| = 1}. We denote by Γk the
(k×k)-grid. The k-wallWk (also calledwall of height k) is the graph obtained from a ((k+1)×(2k+2))-
grid with vertices (x, y), x ∈ {1, . . . , k + 1}, y ∈ {1, . . . , 2k + 2}, after the removal of the ‘‘vertical’’
edges {(x, y), (x + 1, y)} for odd x + y, and then the removal of all vertices of degree 1.
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Fig. 1. The graph Ŵ5 .

Let Wk be a wall. We denote by P (v)
j the shortest path connecting vertices (1, 2j) and (k + 1, 2j),

j ∈ {1, . . . , k} and call these paths the vertical paths of Wk, with the assumption that P (v)
j contains

only vertices (x, y) with y ∈ {2j, 2j − 1}. Note that these paths are vertex-disjoint. Similarly, for
every i ∈ {1, . . . , k + 1} we denote by P (h)

i the shortest path connecting vertices (i, 1) and (i, 2k + 2)
(or (i, 2k + 1) if (i, 2k + 2) has been removed) and call these paths the horizontal paths of Wk. Let
E = {e | e ∈ E(P (v)

j ) ∩ E(P (h)
i ), j ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , k + 1}}. We obtain Ŵk from Wk by

adding a second copy of every edge in E (cf. Fig. 1).

Strong immersions

If we additionally require in the definition of the immersion containment that no branch vertex is
an internal vertex of any certifying path, then the function (φ,ψ) is an H-strong-immersion model. We
then say that G contains H as a strong immersion, what we denote by H ≤sim G.

Topological minors

If we additionally require in the definition of the immersion containment that certifying paths are
pairwise internally disjoint, then (φ,ψ) is an H-topological model. We then say that G contains H as a
topological minor, what we denote by H≤tmG.

Observe that in a graph, every topological minor is a strong immersion of G, and every strong
immersion is an immersion. The expansion of a strong immersion or topological model is defined
as the one of an immersion model.

The next observation is a formal statement of what is depicted in Fig. 2: Ŵn contains Γn as a strong
immersion. Branch vertices are depicted by white nodes and horizontal (respectively vertical) paths
use the color green (respectively red).

Observation 3. Let k ≥ 2 be an integer. If we define φ andψ with domains V (Γn) and E(Γn), respectively,
as follows:

φ((i, j)) = (i, 2j − 1)
ψ({(i, j), (i, j + 1)}) = (i, 2j − 1)(i, 2j)(i, 2(j + 1) − 1)
ψ({(i, j), (i + 1, j)}) = (i, 2j − 1)(i + 1, 2j − 1) for odd i
ψ({(i, j), (i + 1, j)}) = (i, 2j − 1)(i, 2j)(i + 1, 2j)(i + 1, 2j − 1) for even i,

then (φ,ψ) is a Γk-strong-immersion model in Ŵk (where we assume that Γk has vertex set {1, . . . , k}2).

We also need the following result.

Lemma 5 ([17]). Every simple planar sub-cubic graph of n vertices is a topological minor of the
⌊ n

2

⌋
-grid.



A.C. Giannopoulou et al. / European Journal of Combinatorics 65 (2017) 154–167 163

Fig. 2. Finding Γ5 as a strong immersion in Ŵ5 . (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

The next result is mentioned in [27] but its proof is not provided.

Lemma 6. Every planar sub-cubic graph on n-vertices is a topological minor, and hence also a strong
immersion, of the wall Wn.

Proof. Let H be a graph on n vertices. The proof goes as follows: we first construct a topological
expansion H ′ of H that is a simple graph. Then we prove that H ′ is a strong-immersion of Ŵn and
obtain the following ordering:

H≤tmH ′
≤tmΓn ≤sim Ŵn. (4)

Finally, we construct a topological model of H ′ in Ŵn. The expansion of this model is simple, hence it
will be a subgraph ofWn, as required.

Let H be a planar sub-cubic graph and let H ′ be the simple sub-cubic planar graph obtained from
H by subdividing all but one edges of every multi-edge. Notice that the first inequality of Eq. (4) is
satisfied. Let us count how many vertices are added during the construction of H ′. As H is sub-cubic,
among the edges incident to a given vertex, at most two are being subdivided. That way we count
each subdivided edge twice (once for each of its endpoints), hence we get:

|V (H ′)| ≤ 2|V (H)|.

According to Lemma 5,H ′ is a topologicalminor ofΓn: this gives the second inequality of the equation.
Observation 3 gives the third inequality.

Let (φ1, ψ1) be anH ′-topologicalmodel inΓn and let (φ2, ψ2) be theΓn-strong-immersionmodel in
Ŵn given by Observation 3. These twomodels can be used to construct anH ′-strong immersionmodel
(φ,ψ) in Ŵn, as the composition of (φ1, ψ1) and (φ2, ψ2): for every v ∈ V (H ′), φ(v) = φ2(φ1(v)) and
for every e ∈ E(H ′),ψ(e) is the concatenation of the paths obtained by applyingψ2 to the edges of the
path ψ1(e) (taken in the same order as they appear in this path). Observe that this model satisfies the
following properties:

• the expansion of (φ,ψ) is a subgraph of the expansion of (φ2, ψ2); and
• the branch vertices of (φ,ψ) are branch vertices of (φ2, ψ2).

We provide the following diagram to recall the roles of the different models we use (topological
models are indicated by double arrows and strong immersion models by simple ones).

H ′ Γn

Ŵn

(φ1, ψ1)

(φ2, ψ2)
(φ,ψ)
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Fig. 3. Swapping branch vertices.

Let us show the following claim.

Claim 1. Let e, f ∈ E(H ′). If v is an internal vertex of both ψ(e) and ψ(f ), then these paths also share an
endpoint, which is adjacent to v.

If ψ(e) and ψ(f ) share an internal vertex v, there are two edges a ∈ ψ1(e) and b ∈ ψ1(f )
such that both ψ2(a) and ψ2(b) contain v. By definition of (φ2, ψ2), such a situation occurs only if
a = {(i, j), (i + 1, j)} (for even i) and b = {(i, j), (i, j + 1)} or b = {(i + 1, j), (i + 1, j + 1)}, for some
even i ∈ {1, . . . , n} and some j ∈ {1, . . . , n} (see Fig. 2). Observe that in both cases a and b share
an endpoint. As (φ1, ψ1) is a topological minor model, ψ1(e) and ψ1(f ) may meet on endpoints only.
Therefore the common endpoint of a and b is an endpoint of both ψ1(e) and ψ1(f ), hence ψ(e) and
ψ(f ) have a common endpoint. This proves the first part of the claim. The second part is now clear
from the definition of (φ2, ψ2), as we know that the pathsψ1(e) andψ1(f ) start from the same vertex,
one with a ‘‘vertical’’ edge, the other with a ‘‘horizontal’’ edge (see Fig. 2). ⋄

If (φ,ψ), which is a strong immersion model, is a topological model, then we can directly jump to
the next step. Otherwise, according to Claim 1, there are two edges e = {u, v}, f = {u, w} of H and
vertices x, y ∈ Ŵn such that ψ(e) and ψ(f ) both start with x = φ(u) followed by y. Hence {x, y} is a
double edge of Ŵn. As (φ,ψ) is a strong immersion model of a sub-cubic graph, x has degree at most
three in the expansion of (φ,ψ). We can therefore modify (φ,ψ) as follows: we set φ(u) = x and we
shorten ψ({u, v}) and ψ({u, w}) by removing the edge {x, y} from each of them. In the case where
there is a third vertex t ∈ V (H) \ {v,w} adjacent to u, we also extend the pathψ({t, u}) by adding the
edge {x, y}. See Fig. 3 for an example.

It is easy to see that by applying these changes we still get an H ′-strong immersion model, with
less crossings of certifying paths. By repeatedly applying these steps we eventually obtain an H ′-
topologicalmodel in Ŵ+

n . Notice that its expansion is a simple graph, asH ′ is a simple graph. Therefore
this expansion is also a subgraph ofWn. We proved thatH ′ is a topological minor ofWn. It follows that
the same holds for H and we are done. □

By combining [28] with the main result of [6] (see also [7]) we can readily obtain the following.

Theorem 5. There is a function f : N+
→ N such that the following holds: for every graph G and r ∈ N+,

if tcw(G) ≥ f (r) then Wr is an immersion of G. Moreover, f (r) = O(r29polylog(r)).

Lemma 7. Let G be a graph and let H be an h-vertex graph that is connected, planar, and sub-cubic. Then
tcw(G) = O(h29

· (packI(H)(G))14.5 · (polylog(h) + polylog(packI(H)(G)))).

Proof. Let packH (G) ≤ k. Let g(h, k) = f ((h + 1) · ⌈(k + 1)1/2⌉), where f is the function of Theorem 5.
Suppose that tcw(G) ≥ g(h, k). Then, from Theorem 5, we obtain that G contains the wallW of height
(h+1)·⌈(k+1)1/2⌉ as an immersion. Notice thatW contains k+1 vertex-disjointwalls of height h. From
Lemma 6, each one of these walls contains H as an immersion and thus an H-immersion expansion.
Since, these walls are vertex-disjoint they are also edge-disjoint. Hence, we have found a packing of
H of size k + 1 > k, a contradiction. Therefore, tcw(G) ≤ g(h, k). Notice now that, from Theorem 5,
g(h, k) = O(h29k14.5(polylog(h) + polylog(k))) as required. □

The edge version of Theorem 1 follows as a corollary of Theorem 4 and Lemma 7.
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6. The vertex case

Proving the vertex version of Theorem 1 is a much easier task. For this, we follow the same
methodology but use the graph parameter of treewidth instead of tree-cut width, and topological
minors instead of immersions.

Treewidth

We call a graph H k-chordal if it does not contain any induced cycle of length at least 4 and every
clique has atmost k+1 vertices. The treewidth of a graphG is theminimum k for whichG is a subgraph
of a k-chordal graph.

For the proof of the vertex case of Theorem 1, we require the following two ‘‘vertex counterparts’’
of Theorem 4 and Lemma 7 respectively.

Proposition 2. Let H be a class of connected graphs and let t be a non-negative integer. Then H has the
v-E&P property for the graphs of treewidth at most t with a gap that is a polynomial function on t.

Lemma 8. Let G be a graph and let H be a connected planar graph on h vertices, without any I(H)-vertex
packing of size greater than k. Then tw(G) = (h · k)O(1).

Proposition 2was proven by Thomassen in [27] (see also [4,12]). For Lemma8,weneed the fact that
there is a polynomial function λ : N+

→ N such that for every r ∈ N+, every graph with treewidth at
least λ(r) containsWr as a topological minor. The existence of such a function λ follows from the grid
exclusion theorem of Robertson and Seymour in [24] (see also [8,25]) and the polynomiality of λ was
proved recently by Chekuri and Chuzhoy in [5] (see also [6,7] for improvements). Then Lemma 8 can
be proved using the same arguments as in Lemma 7, taking into account Lemma 6.

The vertex version of Theorem 1 follows from Proposition 2 and Lemma 8 if, in Proposition 2, we
set H = I(H) and t = (h · k)O(1).

7. Discussion

Notice that in Theorem 1 we demand that H is a connected graph. It is easy to extend this result
if instead of H we consider some finite collection H of connected graphs, at least one of which is
planar sub-cubic, and where we define I(H) as the class of all graphs containing some graph in H as
an immersion. Moreover, it is possible to drop the connectivity condition for the vertex variant using
arguments from [24], to the price of a slight increase of the gap. However it remains open whether
this can be done for the edge variant as well.

Naturally, the most challenging problem on the Erdős–Pósa properties of immersions is to charac-
terize the graph classes:

Hv/e
= {H | I(H) has the v/e − E&P property}.

In this paper we prove that bothHv andHe contain all planar sub-cubic graphs. It is an interesting
question whether Hv/e are wider than this. Using arguments similar to [22,24] it is possible to prove
the following.

Lemma 9. No graph of Hv and He is sub-cubic and not planar.

Actually, the arguments of [22,24] permit to exclude all non-planar graphs from Hv. For the
non-sub-cubic case, we can first observe that K1,4, which is planar and non-sub-cubic belongs to both
Hv andHe. However, this is not the case for all planar and non-sub-cubic graphs as is indicated in the
following observation.

Observation 4. There is a graph H that is 3-connected, non-sub-cubic, planar, and does belong neither to
Hv nor to He.

Proof. Thomassen in [27] provided an example of a tree that does not belong in Hv (the same graph
does not belong in He either). Inspired by the construction of [27], we consider first the graph H



166 A.C. Giannopoulou et al. / European Journal of Combinatorics 65 (2017) 154–167

Fig. 4. A biconnected graph H for which I(H) does not have the v/e-E&P property.

Fig. 5. The host graph G.

depicted in Fig. 4. To see that H ̸∈ Hv and H ̸∈ He, consider as host graph G the graph in Fig. 5. This
graph consists of amain body that is awall of height 3 and three triples of graphs attached at its upper,
leftmost, and lower paths. Each of these triples consists of three copies of some of the 3-connected
components of H . Notice that G does not contain more than one H-immersion expansion. However,
in order to cover all H-immersion expansions of G one needs to remove at least 3 edges/vertices. By
increasing the height of the wall of G, we may increase the minimum size of an I(H)-vertex/edge
cover while no I(H)-vertex/edge packing of size greater than 1 will appear. It is easy to modify H so
to make it 3-connected: just add a new vertex and make it adjacent with the tree vertices of degree
4. The resulting graph H ′ remains planar. The same arguments, applied to an easy modification of the
host graph, can prove that H ′ is not a graph in Hv or He. □

Providing an exact characterization of Hv and He is an insisting open problem. A first step to

deal with this problem could be the cases of θ4 = and the 4-wheel = . Especially for the
4-wheel, the structural results in [1] might be useful.
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