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Packing and covering immersion-expansions of

planar sub-cubic graphsa

Archontia C. Giannopouloub O-joung Kwonc

Jean-Florent Raymondd,e Dimitrios M. Thilikose,f

Abstract

A graph H is an immersion of a graph G if H can be obtained by some
subgraph G after lifting incident edges. We prove that there is a poly-
nomial function f : N × N → N, such that if H is a connected planar
sub-cubic graph on h > 0 edges, G is a graph, and k is a non-negative
integer, then either G contains k vertex/edge-disjoint subgraphs, each
containing H as an immersion, or G contains a set F of f(k, h) ver-
tices/edges such that G \ F does not contain H as an immersion.
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1 Introduction

All graphs in this paper are finite, undirected, loopless, and may have mul-
tiedges. Let C be a class of graphs. A C-vertex/edge cover of G is a set S of
vertices/edges such that each subgraph of G that is isomorphic to a graph in
C contains some element of S. A C-vertex/edge packing of G is a collection
of vertex/edge-disjoint subgraphs of G, each isomorphic to some graph in C.

We say that a graph class C has the vertex/edge Erdős–Pósa property
(shortly v/e-E&P property) for some graph class G if there is a function
f : N → N, called a gap function, such that, for every graph G in G and
every non-negative integer k, either G has a vertex/edge C-packing of size
k or G has a vertex/edge C-cover of size f(k). In the case where G is the
class of all graphs we simply say that C has the v/e-E&P property. An
interesting topic in Graph Theory, related to the notion of duality between
graph parameters, is to detect instantiations of C and G such that C has the
v/e-E&P property for G and, optimize the corresponding gap. Certainly,
the first result of this type was the celebrated result of Erdős and Pósa
in [11] who proved that the class of all cycles has the v-E&P property with
gap function O(k · log k). This result has triggered a lot of research on its
possible extensions. One of the most general ones was given in [24] where it
was proven that the class of graphs that are contractible to some graph H
has the v-E&P property iff H is planar (see also [4, 5, 8] for improvements
on the gap function).

Other instantiations of C for which the v-E&P property has been proved
concern odd cycles [18, 21], long cycles [2], and graphs containing cliques
as minors [9] (see also [14, 16, 23] for results on more general combinatorial
structures).

As noticed in [8], cycles have the e-E&P property as well. Interestingly,
only few more results exist for the cases where the e-E&P property is satis-
fied. It is known for instance that graphs contractible to θr (i.e. the graph
consisting of two vertices and an edge of multiplicity r between them) have
the e-E&P property [3]. Moreover it was proven that odd cycles have the
e-E&P property for planar graphs [19] and for 4-edge-connected graphs [18].

Given two graphs G and H, we say that H is an immersion of G if H can
be obtained from some subgraph of G by lifting incident edges (see Section 2
for the definition of the lift operation). Given a graph H, we denote by I(H)
the set of all graphs that contain H as an immersion. Using this terminology,
the edge variant of the original result of Erdős and Pósa in [11] implies that
the class I(θ2) has the v-E&P property (and, according to [8], the e-E&P
property as well). A natural question is whether this can be extended for
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I(H), for other graphs H, different than θ2. This is the question that we
consider in this paper. A distinct line of research is to identify the graph
classes G such that for every graph H, I(H) has the e-E&P property for G.
In this direction, it was recently proved in [20] that for every graph H, I(H)
has the e-E&P property for 4-edge-connected graphs.

In this paper we show that if H is non-trivial (i.e., has at least one edge),
connected, planar, and sub-cubic, i.e., each vertex is incident with at most
3 edges, then I(H) has the v/e-E&P property (with polynomial gap in both
cases). More concretely, our main result is the following.

Theorem 1. Let k, h ∈ N. If H is a connected planar sub-cubic graph of
h > 0 edges and G is a graph without any I(H)-vertex/edge packing of size
greater than k then G has a I(H)-vertex/edge cover of size bounded by a
polynomial function of h and k.

The main tools of our proof are the graph invariants of tree-cut width
and tree-partition width, defined in [28] and [10] respectively (see Section 2
for the formal definitions). Our proof uses the fact that every graph of
polynomially (on k) big tree-cut width contains a wall of height k as an
immersion (as proved in [28]). This permits us to consider only graphs
of bounded tree-cut width and, by applying suitable reductions, we finally
reduce the problem to graphs of bounded tree-partition width (Theorem 2).
The result follows as we next prove that for every H, the class I(H) has the
e-E&P property for graphs of bounded tree-partition width (Theorem 3).

One might conjecture that the result in Theorem 1 is tight in the sense
that both being planar and sub-cubic are necessary for H in order for I(H)
to have the e-E&P property. In this direction, in Section 7, we give coun-
terexamples for the cases where H is planar but not sub-cubic and is sub-
cubic but not planar.

2 Definitions and preliminary results

We use N+ for the set of all positive integers and we set N = N+∪{0}. Given
a function f : A→ B and a set C ⊆ A, we denote by f |C = {(x, f(x)) | x ∈
C}.

Graphs. As already mentioned, we deal with loopless graphs where mul-
tiedges are allowed. Given a graph G, we denote by V (G) its set of vertices
and by E(G) its multiset of edges. The notation |E(G)| stands for the total
number of edges, that is, counting multiplicities. We use the term multiedge
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to refer to a 2-element set of adjacent vertices and the term edge to deal with
one particular instanciation of the multiedge connecting two vertices. The
function multG maps a set of two vertices of G to the multiplicity of the edge
connecting them, or zero if they are not adjacent. If multG({u, v}) = k for
some k ∈ N+, we denote by {u, v}1, . . . , {u, v}k the distinct edges connecting
u and v. For the sake of clarity, we identify a multiedge of multiplicity one
and its edge and write {u, v} instead of {u, v}1 when multG({u, v}) = 1.

For X ⊆ V (G), we denote by G \X the graph obtained by removing X
and all edges incident to a vertex in X, and for x ∈ V (G), we simply use
G \ x to refer to G \ {x}. Similarly, for F ⊆ E(G), we denote by G \ F the
graph obtained by removing edges in F , and for e ∈ E(G), we simply use
G \ e to refer to G \ {e}.

We denote by degG(v) the degree of a vertex v in a graph G, that is,
the number of vertices that are adjacent to v. The multidegree of v, that we
write mdegG(v), is the number of edges (i.e. counting multiplicities) incident
with v. We drop the subscript when it is clear from the context. We also set
mδ(G) = minv∈V (G) mdegG(v). We say that a graph G is sub-cubic whenever
mdegG(v) ≤ 3 for every v ∈ V (G). Two paths are internally disjoint if they
do not share internal vertices.

Immersions. Let H and G be graphs. We say that G contains H as
an immersion if there is a pair of functions (φ, ψ), called an H-immersion
model, such that φ is an injection of V (H) → V (G) and ψ sends {u, v}i
to a path of G between φ(u) and φ(v), for every {u, v} ∈ E(H) and every
i ∈ {1, . . . ,multH({u, v})}, in a way such that distinct edges are sent to
edge-disjoint paths. This definition of an immersion correspond to what is
sometimes called a weak immersion. Every vertex in the image of φ is called
a branch vertex. We will make use of the following easy observation.

Observation 1. Let H and G be two graphs. If (φ, ψ) is an H-immersion
model in G then for every vertex x of H, we have mdegH(x) ≤ mdegG(φ(x)).

An H-immersion expansion M in a graph G is a subgraph of G defined as
follows: V (M) = φ(V (H)) ∪

⋃
e∈E(H) V (ψ(e)) and E(M) =

⋃
e∈H E(ψ(e))

for some H-immersion model (φ, ψ) of G. We call the paths in ψ(E(H))
certifying paths of the H-immersion expansion M .

We say that two edges are incident if they share some endpoint. A lift
of two incident edges e1 = {x, y} and e2 = {y, z} of G is the operation that
removes the edges e1 and e2 from the graph and then, if x 6= z, adds the edge
{x, z} (or increases the multiplicity of {x, z} by 1 if this edge already exists).
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Notice that H is an immersion of G if and only if a graph isomorphic to
H can be obtained from some subgraph of G after applying lifts of incident
edges1.

The dissolution of a vertex of multidegree two of a graph is the operation
that deletes this vertex and, if it had two neighbors, adds an edge joining
them. The subdivision of an edge is the operation that adds a vertex of
degree two adjacent to its endpoints and deletes this edge. We say that
a graph G is a subdivision of a graph H if G can be obtained from H by
repeteadly subdividing edges.

Packings and coverings. An H-cover of G is a set C ⊆ E(G) such that
G\C does not contain H as an immersion. An H-packing in G is a collection
of edge-disjoint H-immersion expansions in G. We denote by packH(G) the
maximum size of an H-packing and by coverH(G) the minimum size of an
H-cover in G.

Rooted trees. A rooted tree is a pair (T, s) where T is a tree and s ∈ V (T )
is a vertex referred to as the root. Given a vertex x ∈ V (T ), the set of
descendants of x in (T, s), denoted by desc(T,s)(x), is the set containing each
vertex w such that the unique path from w to s in T contains x. If y is a
descendant of x and is adjacent to x, then it is a child of x. Two vertices
of T are siblings if they are children of the same vertex. Given a rooted
tree (T, s) and a vertex x ∈ V (G), the height of x in (T, s) is the maximum
distance between x and a vertex in desc(T,s)(x).

We now define two types of decompositions of graphs: tree-partitions
(cf. [15, 26]) and tree-cut decompositions (cf. [28]).

Tree-partitions. We introduce, especially for the needs of our proof, an
extension of the parameter of tree-partition width defined in [15,26] to multi-
graphs, where we consider both the number of edges between the bags and
the number of vertices in the bags. A tree-partition of a graph G is a pair
D = (T,X ) where T is a tree and X = {Xt}t∈V (T ) is a partition of V (G)
such that either |V (T )| = 1 or for every {x, y} ∈ E(G), there exists an edge
{t, t′} ∈ E(T ) where {x, y} ⊆ Xt ∪ Xt′ . We call the elements of X bags
of D. Given an edge f = {t, t′} ∈ E(T ), we define Ef as the set of edges
with one endpoint in Xt and the other in Xt′ . The width of D is defined as

1While we mentioned this definition in the introduction, in the rest of the paper, we
adopt the more technical definition of immersion in terms of immersion models as this will
facilitate the presentation of the proofs.
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max{|Xt|}t∈V (T ) ∪ {|Ef |}f∈E(T ). The tree-partition width of G is the mini-
mum width over all tree-partitions of G and will be denoted by tpw(G). A
rooted tree-partition of a graph G is a triple D = ((T, s),X ) where (T, s) is
a rooted tree and (T,X ) is a tree-partition of G.

Tree-cut decompositions. A near-partition of a set S is a family of pair-
wise disjoint subsets S1, . . . , Sk ⊆ S (for some k ∈ N) such that

⋃k
i=1 Si = S.

Observe that this definition allows some sets Si of the family to be empty.
A tree-cut decomposition of a graph G is a pair D = (T,X ) where T is a
tree and X = {Xt}t∈V (T ) is a near-partition of V (G). As in the case of
tree-partitions, we call the elements of X bags of D. A rooted tree-cut de-
composition of a graph G is a triple D = ((T, s),X ) where (T, s) is a rooted
tree and (T,X ) is a tree-cut decomposition of G. Given that D = ((T, s),X )
is a rooted tree-partition or a rooted tree-cut decomposition of G and given

t ∈ V (T ), we set Gt = G
[⋃

u∈desc(T,s)(t)
Xu

]
.

The torso of a tree-cut decomposition (T,X ) at a node t is the graph
obtained from G as follows. If V (T ) = {t}, then the torso at t is G. Oth-
erwise let T1, . . . , T` be the connected components of T \ t. The torso Ht

at t is obtained from G by consolidating each vertex set
⋃

b∈V (Ti)
Xb into a

single vertex zi. The operation of consolidating a vertex set Z into z is to
replace Z with z in G, and for each edge e between Z and v ∈ V (G) \ Z,
adding an edge {z, v} in the new graph. Given a graph G and X ⊆ V (G), let
the 3-center of (G,X) be the unique graph obtained from G by dissolving
vertices in V (G) \X of multidegree two and deleting vertices of multidegree

at most 1. For each node t of T , we denote by H̃t the 3-center of (Ht, Xt),
where Ht is the torso of (T,X ) at t.

Let D = ((T, s),X ) be a rooted tree-cut decomposition of G. The adhe-
sion of a vertex t of T , that we will denote by adhD(t), is the number of edges
of G with exactly one endpoint in Gt. The width of a tree-cut decomposi-
tion (T,X ) of G is maxt∈V (T ){adhD(t), |V (H̃t)|}. The tree-cut width of G,
denoted by tcw(G), is the minimum width over all tree-cut decompositions
of G.

A vertex t ∈ V (T ) is thin if adhD(t) ≤ 2, and bold otherwise. We also
say that D is nice if for every thin vertex t ∈ V (T ) we have N(V (Gt)) ∩⋃

b is a sibling of t V (Gb) = ∅. In other words, there is no edge from a vertex of
Gt to a vertex of Gb, for any sibling b of t, whenever t is thin. The notion of
nice tree-cut decompositions has been introduced by Ganian et al. in [13].
Furthermore, they proved the following result.
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Proposition 1 ([13]). Every rooted tree-cut decomposition can be trans-
formed into a nice one without increasing the width.

We say that an edge of G crosses the bag Xt, for some t ∈ V (T ) if its
endpoints belong to bags Xt1 and Xt2 , for some t1, t2 ∈ V (T ) such that t
belongs to the interior of the (unique) path of T connecting t1 to t2.

3 From tree-cut decompositions to tree-partitions

The purpose of this section is to prove the following theorem. The graph
H+ will be uniquely defined from H later on.

Theorem 2. For every connected graph G, and every connected graph H
with at least one edge, there is a graph G′ and a graph H+ such that

• tpw(G′) ≤ (tcw(G) + 1)2/2,

• packH+(G′) ≤ packH(G), and

• coverH(G) ≤ coverH+(G′).

Theorem 2 will allow us in Section 4 to consider graphs of bounded tree-
partition width instead of graphs of bounded tree-cut width. Before we
proceed with the proof of Theorem 2, we need some definitions and a series
of auxiliary results.

For every graph G, we define G+ as the graph obtained from G if, for
every vertex v, we add two new vertices v′ and v′′ and the edges {v′, v′′}
(of multiplicity 2), {v, v′} and {v, v′′} (both of multiplicity 1). Observe that
for every connected graph G, we have mδ(G+) ≥ 3. We also define G∗ as
the graph obtained from G by adding, for every vertex v, the new vertices
v′1, . . . , v

′
mdeg(v) and v′′1 , . . . , v

′′
mdeg(v) and the edges {v′i, v′′i } (of multiplicity 2),

{v, v′i}, and {v, v′′i } (both of multiplicity 1), for every i ∈ {1, . . . ,mdeg(v)}.
If v is a vertex of G then we denote by Zv,i the subgraph G∗[{v, v′i, v′′i }],
where i ∈ {1, . . . ,mdegG(v)}.

Our first aim is to prove the following three lemmata.

Lemma 1. Let G be a graph, let H be a connected graph with at least one
edge and let G′ be a subdivision of G∗. Then we have

• packH+(G∗) = packH+(G′) and

• coverH+(G∗) = coverH+(G′).
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Proof. We denote by S the set of subdivision vertices added during the con-
struction of G′ from G∗. As G′ is a subdivision of G∗, we have packH+(G′) ≥
packH+(G∗) and coverH+(G′) ≥ coverH+(G∗).

As a consequence of Observation 1 and the fact that mδ(H+) ≥ 3, if M
is an H+-immersion expansion in G′ then no branch vertex of M belongs
to S. Indeed, every vertex of S has multidegree 2 in G′. Therefore, by
dissolving in M the vertices of S that belong to V (M), we obtain an H+-
immersion expansion in G∗. It follows that packH+(G∗) ≥ packH+(G′),
hence packH+(G∗) = packH+(G′).

On the other hand, let X be an H+-cover of G∗ and let X ′ be a set
of edges constructed by taking, for every e ∈ X, an edge of the path of
G′ connecting the endpoints of e that has been created by subdividing e.
Assume that X ′ is not an H+-cover of G′. According to the remark above,
this implies that X is not an H+-cover of G∗, a contradiction. Hence X ′ is
an H+-cover of G′ and thus coverH+(G∗) = coverH+(G′).

Lemma 2. For every two graphs H and G such that H is connected and
has at least one edge, we have packH+(G∗) ≤ packH(G).

Proof. In G∗ (respectively H+), we say that a vertex is original if it belongs
to V (G) (respectively V (H)). Let (φ, ψ) be an H+-immersion model in G∗.

We first show that if u is an original vertex of H+, then φ(u) is an original
vertex of G∗. By contradiction, let us assume that φ(u) is not original, for
some original vertex u of H+. Then φ(u) = v′i or φ(u) = v′′i , for some
v ∈ V (G) and i ∈ {1, . . . ,mdegG(v)}.

Observe that since H is connected and has at least one edge, every vertex
of H+ has degree at least three: let x, y, and z be the endpoints of three
multiedges incident with u (notice that as the degree of H+ is at least three
we can assume that x, y, and z are distinct). Then ψ({u, x}), ψ({u, y}), and
ψ({u, z}) are edge-disjoint paths connecting φ(u) to three distinct vertices.
This is not possible because there is an edge cut of size two, {{v, v′i}, {v, v′′i }},
separating the two vertices v′i and v′′i (among which is φ(u)) from the rest
of the graph. Consequently, if u ∈ V (H+) is original, then φ(u) is original.

Let us now consider an edge {u, v} ∈ E(H). By the above remark,
φ(u) and φ(v) are original vertices of G∗. It is easy to see that ψ({u, v})
contains only original vertices of G∗. Indeed, if this path contained a non-
original vertex w′ or w′′ for some original vertex w of V (G∗), it would use
w twice in order to reach u and v, a contradiction to the fact that it is a
path. Therefore, from the definition of H+, the pair (φ|V (H), ψ|E(H)) is an
H-immersion model of G.
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We proved that every H+-immersion-expansion of G∗ contains an H-
immersion-expansion that belongs to the subgraph G of G∗. Consequently
every H+-packing of G∗ contains an H-packing of the same size that belongs
to G, and the desired inequality follows.

Lemma 3. For every two graphs H and G such that H is connected and
has at least one edge, we have coverH(G) ≤ coverH+(G∗).

Proof. Similarly to the proof of Lemma 2, we say that an edge of G∗ is
original if it belongs to E(G). Let X ⊆ E(G∗) be a minimum cover of
H+-immersion expansions in G∗.

First case: all the edges in X are original. In this case, X is an H-cover
of G as well. Indeed, if G \ X contains an H-immersion expansion M ,
then G∗ \ X contains M∗ that, in turn, contains H+. Hence in this case,
coverH(G) ≤ coverH+(G∗).

Second case: there is an edge e ∈ X that is not original. Let v be the
original vertex of G∗ such that e ∈ Zv,l for some l ∈ {1, . . . ,mdegG(v)}. Let
us first show the following claim.

Claim: For every i ∈ {1, . . . ,mdegG(v)}, there is an edge of Zv,i that belongs
to X.

Proof of claim: Looking for a contradiction, let us assume that we have
E(Zv,i) ∩X = ∅, for some i ∈ {1, . . . ,mdegG(v)}. Clearly i 6= l. By mini-
mality of X, the graph G∗ \ (X \ {e}) contains an H+-immersion expansion
M that uses e. Observe that M ′ = M \ E(Zv,l) ∪ E(Zv,i) contains an H+-
immersion expansion (since Zv,l and Zv,i are isomorphic). Hence, M ′ is a
subgraph of G∗ \ (X \ {e}) that contains an H+-immersion expansion. This
is not possible as X is a cover, so we reach the contradiction we were looking
for and the claim holds. �

We build a set Y as follows. For every edge f ∈ X, if f is original then
we add it to Y . Otherwise, if vf is the (original) vertex of G∗ such that
f ∈ E(Zvf ,i) for some i ∈ {1, . . . ,mdegG(vf )}, then we add to Y all edges
of G that are incident to vf .

The above claim ensures that when a non-original edge f of X is encoun-
tered, then X contains an edge in each of Zvf ,1, . . . , Zvf ,mdegG(vf ). Therefore,
the same set of edges, of size mdegG(vf ), will be added to Y when encoun-
tering an other edge from Zvf ,1, . . . , Zvf ,mdegG(vf ). Consequently, |X| ≥ |Y |.
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Let us now show that Y is an H+-cover of G∗. Suppose that there exists
an H+-immersion expansion M in G∗\Y . Observe that since H is connected
and has at least one edge, M does not belong to

⋃
i∈{1,...,mdegG(u)} Zu,i, for

every original vertex u of G∗. Let

Z =
⋃

u∈V (G)

⋃
i∈{1,...,mdegG(u)}

E(Zu,i)

Then M is a subgraph of G \ (Y ∪ Z). As X ⊆ Y ∪ Z, this contradicts the
fact that X is a cover. Therefore, Y is an H+-cover. Moreover all the edges
in Y are original. As this situation is treated by the first case above, we are
done.

We are now ready to prove the main result of this section.

Proof of Theorem 2. Let k = tcw(G). We examine the nontrivial case
where G is not a tree, i.e., tcw(G) ≥ 2. Let us consider the graph G∗.
We claim that tcw(G∗) = tcw(G). Indeed, starting from an optimal
tree-cut decomposition of G, we can, for every vertex v of G and for ev-
ery i ∈ {1, . . . ,mdegG(v)}, create a bag that is a child of v and con-
tains {v′i, v′′i }. According to the definition of G∗, this creates a tree-cut
decomposition D = ((T, s), {Xt}t∈V (T )) of G∗. Observe that for every ver-
tex x that we introduced to the tree of the decomposition during this pro-
cess, adhD(x) = 2 and the corresponding bag has size two. This proves
that tcw(G∗) ≤ max(tcw(G), 2) = tcw(G). As G is a subgraph of G∗, we
obtain tcw(G) ≤ tcw(G∗) and the proof of the claim is complete.

According to Proposition 1, we can assume that G∗ has a nice rooted
tree-cut decomposition of width ≤ k. For notational simplicity we again
denote it by D = ((T, s), {Xt}t∈V (T )) and, obviously, we can also assume
that all leaves of T correspond to non-empty bags.

Our next step is to transform the rooted tree-cut decomposition D into
a rooted tree-partition D′ = ((T, s), {X ′t}t∈V (T )) of a subdivision G′ of G∗.
Notice that the only differences between the two decompositions are that, in
a tree-cut decomposition, empty bags are allowed as well as edges connecting
vertices of bags corresponding to non-adjacent vertices of T .

We proceed as follows: if X is a bag crossed by edges, we subdivide every
edge crossing X and add the obtained subdivision vertex to X. By repeating
this process we decrease at each step the number of bags crossed by edges,
that eventually reaches zero. Let G′ be the obtained graph and observe that
G′ is a subdivision of G. As G is connected, the obtained rooted tree-cut
decomposition D′ = ((T, s), {X ′t}t∈V (T )) is a rooted tree partition of G′.
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Notice that the adhesion of any bag of T in D is the same as in D′.
However, the bags of D′ may grow during the construction of G′. Let t be
a vertex of T and let {t1, . . . , tm} be the set of children of t. We claim that
|X ′t| ≤ (k + 1)2/2.

Let Et be the set of edges crossing Xt in G. Let Ht be the torso of D
at t, and let H ′t = Ht \Xt. Observe that |Et| is the same as the number of
edges in H ′t. Let zp be the vertex of H ′t corresponding to the parent of t, and
similarly for each i ∈ {1, . . . ,m} let zi be the vertex of H ′t corresponding to
the child ti of t. Notice that if ti is a thin child of t, then zi can be adjacent
to only zp as D is a nice rooted tree-cut decomposition. Thus the sum of
the number of incident edges with zi in H ′t for all thin children ti of t is
at most adhD(t) ≤ k. On the other hand, if ti is a bold child of t, then zi
is incident with at least 3 edges in Ht (none of which is a child of t), and
thus it is contained in the 3-center of (Ht, Xt). Therefore, the number of
all bold children of t is bounded by k − |Xt|. Since each vertex in H ′t is
incident with at most k edges, the total number of edges in H ′t is at most
(k − |Xt|+ 1)k/2 + k. As |E(H ′t)| = |Et| = |X ′t \Xt|, it implies that |X ′t| ≤
|Xt|+ k · (k− |Xt|+ 2)/2 ≤ max{2k, k(k+ 2)/2} ≤ (k+ 1)2/2. We conclude
that G′ has a rooted tree-partition of width at most (tcw(G) + 1)2/2.

Recall that G′ is a subdivision of G∗. By the virtue of Lemma 3,
Lemma 2, and Lemma 1, we obtain that packH+(G′) ≤ packH(G) and
coverH(G) ≤ coverH+(G′). Hence G′ satisfies the desired properties.

4 Erdős–Pósa in graphs of bounded tree-partition
width

Before we proceed, we require the following lemma and an easy observation.

Lemma 4. Let G and H be two graphs such that H has no isolated vertices
and let X ⊆ V (G). Let C be the collection of connected components of G\X.
If M is an H-immersion expansion of G then M contains vertices from at
most (|X|+ 1) · |E(H)| graphs of C.

Proof. Let P be a certifying path of M connecting two branch vertices of
M . Since P is a path, it cannot use twice the same vertex of X. Besides,
as X is a separator, P must go through a vertex of X in order to go from
one graph of C to an other one. Therefore, P contains vertices from at most
|X|+ 1 graphs of C. The desired bound follows as E(M) is partitioned into
|E(H)| certifying paths.
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Observation 2. Let G and H be graphs and let F ⊆ E(G). Then it holds
that coverH(G) ≤ coverH(G \ F ) + |F |.
For a graph H, we define ωH : N → N so that ωH(r) =

⌈
r · 3r+1

2 · |E(H)|
⌉
.

The next theorem is an important ingredient of our results. It essentially
states that I(H) has the Erdős–Pósa property in graphs of bounded tree-
partition width, for every connected graph H.

Theorem 3. Let H be a connected graph with at least one edge. Then for
every graph G it holds that coverH(G) ≤ ωH(tpw(G)) · packH(G).

Proof. Let us show by induction on k that if packH(G) ≤ k and tpw(G) ≤ r
then coverH(G) ≤ ωH(r) · k.

The case k = 0 is trivial. Let us now assume that k ≥ 1 and that for
every graph G of tree-partition width at most r and such that packH(G) =
k − 1, we have coverH(G) ≤ ωH(r)(k − 1). Let G be a graph such that
packH(G) = k and tpw(G) ≤ r. Let also D = ((T, s), {Xt}t∈V (T )) be an
optimal rooted tree-partition of G. We say that a vertex t ∈ V (T ) is infected
if Gt contains an H-immersion expansion. Recall that the height of a vertex
in a rooted tree is the maximum distance to a descendant. Let t be an
infected vertex of T of minimum height.
Claim: If some of the H-immersion expansions of G shares a vertex with
Gt′ for some child t′ of t, then it also shares an edge with E{t,t′}.

Proof of claim: Let M be some H-immersion expansions of G. Notice that,
by the choice of t, M cannot be entirely inside Gt′ . This fact, together with
the connectivity of M , implies that E(M) ∩ E{t,t′} 6= ∅. �

Suppose that M is an H-immersion expansion of Gt and let U be the
set of children of t corresponding to bags which share vertices with M . We
define the multisets A = E(G[Xt]) ∩ E(M), B =

⋃
t′∈U E{t,t′} and C =⋃

t′∈U E(Gt′). We also set D = A∪B. By the definition of U , it follows that

E(M) ⊆ C ∪D. (1)

Let us upper-bound the size of |D|. Applying Lemma 4 for Gt, H, and
Xt, we have |U | ≤ (r + 1) · |E(H)|, hence |B| ≤ r(r + 1) · |E(H)|. Besides,
every path of M connecting two branch vertices meets every vertex of Xt at
most once (as it is a path), thus E(M) does not contain an edge of G[Xt]

with a multiplicity larger than |E(H)|. It follows that |A| ≤ r(r−1)
2 · |E(H)|

and finally we obtain that |D| = |A|+ |B| ≤ r · 3r+1
2 · |E(H)| ≤ ωH(r).

Let G′ = G \D. We now show that packH(G′) ≤ k− 1. Let us consider
an H-immersion expansion M ′ in G′. As E(M ′) ⊆ E(G) \D, if follows that

E(M ′) ∩D = ∅. (2)
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Recall that B ⊆ D, which together with (2) implies that E(M ′)∩B = ∅.
This fact, combined with the claim above, implies that

E(M ′) ∩ C = ∅. (3)

From (2) and (3), we obtain that E(M ′) ∩ (C ∪ D) = ∅, which, combined
with (1), implies that E(M) ∩ E(M)′ 6= ∅. Consequently, every maximum
packing of H-immersion expansions in G′ is edge-disjoint from M . If such a
packing had size ≥ k, it would form, together with M , a packing of size k+1
in G, a contradiction. Thus packH(G′) ≤ k−1, as desired. By the induction
hypothesis applied on G′, coverH(G′) ≤ ωH(r) · (k − 1) edges. Therefore,
from Observation 2, coverH(G) ≤ |D|+coverH(G′) ≤ |D|+ωH(r)·(k−1) ≤
ωH(r) · k edges as required.

We set σ : N→ N where σ(r) =
⌈
1
8(3(r + 1)4 + 2(r + 1)2)

⌉
.

Theorem 4. Let H be a connected graph with at least one edge, r ∈ N, and
G be a graph where tcw(G) ≤ r. Then coverH(G) ≤ σ(r) · (4 · |V (H)| +
|E(H)|) · packH(G).

Proof. Clearly, we can assume that G is connected, otherwise we work
on each of its connected components separately. By Theorem 2, there
is a graph G′ where tpw(G′) ≤ (r + 1)2/2, packH+(G′) ≤ packH(G)
and coverH(G) ≤ coverH+(G′). The result follows as, from Theorem 3,
coverH+(G′) ≤ ωH+((r + 1)2/2) · packH+(G′) and ωH+((r + 1)2/2) =
σ(r) · |E(H+)| ≤ σ(r) · (4 · |V (H)|+ |E(H)|).

5 Erdős–Pósa for immersions of sub-cubic planar
graphs

Grids and Walls. Let k and r be positive integers where k, r ≥ 2. The
(k×r)-grid Γk,r is the graph with vertex set {1, . . . , k}×{1, . . . , r} and edge
set {{(i, j), (i′, j′)}, |i − i′| + |j − j′| = 1}. We denote by Γk the (k × k)-
grid. The k-wall Wk (also called wall of height k) is the graph obtained
from a ((k + 1) × (2k + 2))-grid with vertices (x, y), x ∈ {1, . . . , k + 1},
y ∈ {1, . . . , 2k+2}, after the removal of the “vertical” edges {(x, y), (x+1, y)}
for odd x+ y, and then the removal of all vertices of degree 1.

Let Wk be a wall. We denote by P
(v)
j the shortest path connecting

vertices (1, 2j) and (k+1, 2j), j ∈ {1, . . . , k} and call these paths the vertical

paths of Wk, with the assumption that P
(v)
j contains only vertices (x, y) with

13



Figure 1: The graph Ŵ5.

y = (2j, 2j − 1). Note that these paths are vertex-disjoint. Similarly, for

every i ∈ {1, . . . , k + 1} we denote by P
(h)
i the shortest path connecting

vertices (i, 1) and (i, 2k + 2) (or (i, 2k + 1) if (i, 2k + 2) has been removed)

and call these paths the horizontal paths of Wk. Let E = {e | e ∈ E(P
(v)
j )∩

E(P
(h)
i ), j ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , k + 1}}. We obtain Ŵk from Wk by

adding a second copy of every edge in E (cf. Figure 1).

Strong immersions. If we additionally require in the definition of the
immersion containment that no branch vertex is an internal vertex of any
certifying path, then the function (φ, ψ) is an H-strong-immersion model.
We then say that G contains H as a strong immersion, what we denote
by H ≤sim G.

Topological minors. If we additionally require in the definition of the
immersion containment that certifying paths are pairwise internally disjoint,
then (φ, ψ) is an H-topological model. We then say that G contains H as a
topological minor, what we denote by H ≤tm G.

Observe that in a graph, every topological minor is a strong immersion of
G, and every strong immersion is an immersion. The expansion of a strong
immersion or topological model is defined as the one of an immersion model.

The next observation is a formal statement of what is depicted on Fig-
ure 2: Ŵn contains Γn as a strong immersion. Branch vertices are depicted
by white nodes and horizontal (respectively vertical) paths use the color
green (respectively red).

Observation 3. Let k ≥ 2 be an integer. If we define φ and ψ with domains
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Figure 2: Finding Γ5 as a strong immersion in Ŵ5.

V (Γn) and E(Γn), respectively, as follows:

φ((i, j)) = (i, 2j − 1)

ψ({(i, j), (i, j + 1)}) = (i, 2j − 1)(i, 2j)(i, 2(j + 1)− 1)

ψ({(i, j), (i+ 1, j)}) = (i, 2j − 1)(i+ 1, 2j − 1) for odd i

ψ({(i, j), (i+ 1, j)}) = (i, 2j − 1)(i, 2j)(i+ 1, 2j)(i+ 1, 2j − 1) for even i,

then (φ, ψ) is a Γk-strong-immersion model in Ŵk (where we assume that
Γk has vertex set {1, . . . , k}2).

We also need the following result.

Lemma 5 ([17]). Every simple planar sub-cubic graph of n vertices is a
topological minor of the

⌊
n
2

⌋
-grid.

The next result is mentioned in [27] but its proof is not provided.

Lemma 6. Every planar sub-cubic graph on n-vertices is a topological mi-
nor, and hence also a strong immersion, of the wall Wn.

Proof. Let H be a graph on n vertices. The proof goes as follows: we first
construct a topological expansion H ′ of H that is a simple graph. Then we
prove that H ′ is a strong-immersion of Ŵn and obtain the following ordering:

H ≤tm H ′ ≤tm Γn ≤sim Ŵn. (4)

Finally, we construct a topological model of H ′ in Ŵn. The expansion of
this model is simple, hence it will be a subgraph of Wn, as required.

Let H be a planar sub-cubic graph and let H ′ be the simple sub-cubic
planar graph obtained from H by subdividing all but one edges of every

15



multiedge. Notice that the first inequality of equation (4) is satisfied. Let
us count how many vertices are added during the construction of H ′. As H
is sub-cubic, among the edges incident to a given vertex, at most two are
being subdivided. That way we count each subdivided edge twice (once for
each of its endpoints), hence we get:

|V (H ′)| ≤ 2|V (H)|.

According to Lemma 5, H ′ is a topological minor of Γn: this gives the second
inequality of the equation. Observation 3 gives the third inequality.

Let (φ1, ψ1) be an H ′-topological model in Γn and let (φ2, ψ2) be the Γn-

strong-immersion model in Ŵn given by Observation 3. These two models
can be used to construct an H ′-strong immersion model (φ, ψ) in Ŵn, as the
composition of (φ1, ψ1) and (φ2, ψ2): for every v ∈ V (H ′), φ(v) = φ2(φ1(v))
and for every e ∈ E(H ′), ψ(e) is the concatenation of the paths obtained
by applying ψ2 to the edges of the path ψ1(e) (taken in the same order as
they appear in this path). Observe that this model satisfies the following
properties:

• the expansion of (φ, ψ) is a subgraph of the expansion of (φ2, ψ2); and

• the branch vertices of (φ, ψ) are branch vertices of (φ2, ψ2).

We provide the following diagram to recall the roles of the different
models we use (topological models are indicated by double arrows and strong
immersion models by simple ones).

H ′ Γn

Ŵn

(φ1, ψ1)

(φ2, ψ2)
(φ, ψ)

Let us show the following claim.

Claim 1. Let e, f ∈ E(H ′). If v is an internal vertex of both ψ(e) and ψ(f),
then these paths also share an endpoint, which is adjacent to v.

If ψ(e) and ψ(f) share an internal vertex v, there are two edges a ∈ ψ1(e)
and b ∈ ψ1(f) such that both ψ2(a) and ψ2(b) contain v. By definition of
(φ2, ψ2), such a situation occurs only if a = {(i, j), (i + 1, j)} (for even i)
and b = {(i, j), (i, j + 1)} or b = {(i + 1, j), (i + 1, j + 1)}, for some even
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i ∈ {1, . . . , n} and some j ∈ {1, . . . , n} (see Figure 2). Observe that in
both cases a and b share an endpoint. As (φ1, ψ1) is a topological minor
model, ψ1(e) and ψ1(f) may meet on endpoints only. Therefore the common
endpoint of a and b is an endpoint of both ψ1(e) and ψ1(f), hence ψ(e) and
ψ(f) have a common endpoint. This proves the first part of the claim. The
second part is now clear from the definition of (φ2, ψ2), as we know that
the paths ψ1(e) and ψ1(f) start from the same vertex, one with a “vertical”
edge, the other with a “horizontal” edge (see Figure 2). �

If (φ, ψ), which is a strong immersion model, is a topological model, then
we can directly jump to the next step. Otherwise, according to Claim 1,
there are two edges e = {u, v}, f = {u,w} of H and vertices x, y ∈ Ŵn

such that ψ(e) and ψ(f) both start with x = φ(u) followed by y. Hence

{x, y} is a double edge of Ŵn. As (φ, ψ) is a strong immersion model of
a sub-cubic graph, x has degree at most three in the expansion of (φ, ψ).
We can therefore modify (φ, ψ) as follows: we set φ(u) = x and we shorten
ψ({u, v}) and ψ({u,w}) by removing the edge {x, y} from each of them. In
the case where there is a third vertex t ∈ V (H) \ {v, w} adjacent to u, we
also extend the path ψ({t, u}) by adding the edge {x, y}. See Figure 3 for
an example.

Figure 3: Swapping branch vertices.

It is easy to see that by applying these changes we still get an H ′-strong
immersion model, with less crossings of certifying paths. By repeatedly ap-
plying these steps we eventually obtain a H ′-topological model in Ŵ+

n . No-
tice that its expansion is a simple graph, as H ′ is a simple graph. Therefore
this expansion is also a subgraph of Wn. We proved that H ′ is a topological
minor of Wn. It follows that the same holds for H and we are done.

By combining [28, Theorem 17] with the main result of [7] (see also [6])
we can readily obtain the following.

Theorem 5. There is a function f : N+ → N such that the following holds:
for every graph G and r ∈ N+, if tcw(G) ≥ f(r) then Wr is an immersion
of G. Moreover, f(r) = O(r29polylog(r)).
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Lemma 7. Let G be a graph and let H be an h-vertex graph that is con-
nected, planar, and sub-cubic. Then tcw(G) = O(h29 · (packI(H)(G))14.5 ·
(polylog(h) + polylog(packI(H)(G))).

Proof. Let packH(G) ≤ k. Let g(h, k) = f((h + 1) · d(k + 1)1/2e), where
f is the function of Theorem 5. Suppose that tcw(G) ≥ g(h, k). Then,
from Theorem 5, we obtain that G contains the wall W of height (h + 1) ·
d(k + 1)1/2e as an immersion. Notice that W contains k + 1 vertex-disjoint
walls of height h. From Lemma 6, each one of these walls contains H as
an immersion and thus an H-immersion expansion. Since, these walls are
vertex-disjoint they are also edge-disjoint. Hence, we have found a packing
of H of size k+1 > k, a contradiction. Therefore, tcw(G) ≤ g(h, k). Notice
now that, from Theorem 5, g(h, k) = O(h29k14.5(polylog(h) + polylog(k)) as
required.

The edge version of Theorem 1 follows as a corollary of Theorem 4
and Lemma 7.

6 The vertex case

Proving the vertex version of Theorem 1 is a much easier task. For this, we
follow the same methodology but using the graph parameter of treewidth
instead of tree-cut width, and topological minors instead of immersions.

Treewidth. We call a graph H k-chordal if it does not contain any induced
cycle of length at least 4 and every clique has at most k + 1 vertices. The
treewidth of a graph G is the minimum k for which G is a subgraph of a
k-chordal graph.

For the proof of the vertex case of Theorem 1, we require the following
two “vertex counterparts” of Theorem 4 and Lemma 7 respectively.

Proposition 2. Let H be a class of connected graphs and let t be a non-
negative integer. Then H has the v-E&P property for the graphs of treewidth
at most t with a gap that is a polynomial function on t.

Lemma 8. Let G be a graph and let H be a connected planar graph on
h vertices, without any I(H)-vertex packing of size greater than k. Then
tw(G) = (h · k)O(1).

Proposition 2 was proven by Thomassen in [27] (see also [4, 12]). For
Lemma 8, we need the fact that there is a polynomial function λ : N+ → N
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such that for every r ∈ N+, every graph with treewidth at least λ(r) contains
Wr as a topological minor. The existence of such a function λ follows from
the grid exclusion theorem of Robertson and Seymour in [24] (see also [8,25])
and the polynomiality of λ was proved recently by Chekuri and Chuzhoy
in [5] (see also [6,7] for improvements). Then Lemma 8 can be proved using
the same arguments as in Lemma 7, taking into account Lemma 6.
The vertex version of Theorem 1 follows from Proposition 2 and Lemma 8
if, in Proposition 2, we set H = I(H) and t = (h · k)O(1).

7 Discussion

Notice that in Theorem 1 we demand that H is a connected graph. It is
easy to extend this result if instead of H we consider some finite collection
H of connected graphs, at least one of which is planar sub-cubic, and where
we define I(H) as the class of all graphs containing some graph in H as an
immersion. Moreover, it is possible to drop the connectivity condition for
the vertex variant using arguments from [24], to the price of a slight increase
of the gap. However it remains open whether this can be done for the edge
variant as well.

Naturally, the most challenging problem on the Erdős–Pósa properties
of immersions is to characterize the graph classes:

Hv/e = {H | I(H) has the v/e-E&P property}

In this paper we prove that both Hv and He contain all planar sub-cubic
graphs. It is an interesting question whether Hv/e are wider than this. Using
arguments similar to [22,24] it is possible to prove the following.

Lemma 9. No graph of Hv and He is sub-cubic and not planar.

Actually, the arguments of [22, 24] permit to exclude all non-planar
graphs from Hv. For the non-sub-cubic case, we can first observe that K1,4,
which is planar and non-sub-cubic belongs to both Hv and He. However,
this is not the case for all planar and non-sub-cubic graphs as is indicated
in the following observation.

Observation 4. There is a graph H that is 3-connected, non-sub-cubic,
planar, and does belong neither to Hv nor to He.

Proof. Thomassen in [27] provided an example of a tree that does not belong
in Hv (the same graph does not belong in He either). Inspired by the
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Figure 4: A biconnected graph H for which I(H) does not have the v/e-E&P
property.

construction of [27], we consider first the graph H depicted in Figure 4. To
see thatH 6∈ Hv andH 6∈ He, consider as host graphG the graph in Figure 5.
This graph consists of a main body that is a wall of height 3 and three triples
of graphs attached at its upper, leftmost, and lower paths. Each of these
triples consists of three copies of some of the 3-connected components of
H. Notice that G does not contain more than one H-immersion expansion.
However, in order to cover all H-immersion expansions of G one needs to
remove at least 3 edges/vertices. By increasing the height of the wall of G,
we may increase the minimum size of an I(H)-vertex/edge cover while no
I(H)-vertex/edge packing of size greater than 1 will appear. It is easy to
modify H so to make it 3-connected: just add a new vertex and make it
adjacent with the tree vertices of degree 4. The resulting graph H ′ remains
planar. The same arguments, applied to an easy modification of the host
graph, can prove that H ′ is not a graph in Hv or He.

Providing an exact characterization of Hv and He is an insisting open
problem. A first step to deal with this problem could be the cases of θ4 =

and the 4-wheel = . Especially for the 4-wheel, the structural results
in [1] might be useful.
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circuits. J. Comb. Theory Ser. B, 99(2):407–419, March 2009.

[15] Rudolf Halin. Tree-partitions of infinite graphs. Discrete Mathematics,
97(1–3):203 – 217, 1991.

[16] Naonori Kakimura and Ken-ichi Kawarabayashi. Fixed-parameter
tractability for subset feedback set problems with parity constraints.
Theor. Comput. Sci., 576:61–76, 2015.

[17] Goos Kant. Drawing planar graphs using the canonical ordering. Al-
gorithmica, 16(1):4–32, 1996.

[18] Ken-Ichi Kawarabayashi and Atsuhiro Nakamoto. The erdős–pósa
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