Ribo-seq enlightens codon usage bias

Damien Paulet1,2, Alexandre David3, and Eric Rivals1,2*

1Department of Computer Science, Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier (LIRMM), CNRS et Université de Montpellier, 34095 Montpellier Cedex 5, France, 2Institut de Biologie
Computationnelle (IBC); Université de Montpellier, France, and 3Cancer Biology Department, Institut de
Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, F-34094 Montpellier, France

*To whom correspondence should be addressed. Tel. +0033 4 67 41 86 64. Fax. +0033 4 67 41 85 00.
Email: rivals@lirmm.fr

Abstract

Codon usage is biased between lowly and highly expressed genes in a genome-specific man-
er. This universal bias has been well assessed in some unicellular species, but remains prob-
lematic to assess in more complex species. We propose a new method to compute codon
usage bias based on genome wide translational data. A new technique based on sequencing of
ribosome protected mRNA fragments (Ribo-seq) allowed us to rank genes and compute codon
usage bias with high precision for a great variety of species, including mammals. Genes rank-
ing using Ribo-Seq data confirms the influence of the tRNA pool on codon usage bias and
shows a decreasing bias in multicellular species. Ribo-Seq analysis also makes possible to de-
tect preferred codons without information on genes function.

Key words: codon usage, high throughput sequencing, synonymous codon, evolution, translation

1. Introduction

Usage of synonymous codons is biased in genomes, as some codons
are favoured in highly expressed genes.1,2 This phenomenon, called
codon usage bias (CUB), has been observed in most genomes,
although it seems to vary according to the complexity of genomes.3
The choice of codons seems to depend mainly on tRNA pool: the
main hypothesis is that using codons that have the greatest number
of accepting tRNAs increases the efficiency or accuracy of translation
of highly expressed genes.3,4 In addition to its impact on mRNA
translation, CUB has an impact on protein folding.5,6 Despite its im-
portance, precise measures of CUB were, for years, difficult to obtain
at genome wide scale. Sharp et al.7 developed a clustering approach
from a set of sequenced genes: the RSCU for Relative Synonymous
Codon Usage. This measure is inferred with a statistical process: two
clusters of genes are determined based on expression levels, in order
to maximize the difference in RSCU between the two groups, then
the RSCU is computed using the codon frequencies within each
group. Consequently, RSCU accuracy relies on the number of
sequenced genes. Here, we propose a new method that permits to
directly compute CUB from all translated genes. A recent technique
named ribosome profiling (or Ribo-seq) has revolutionized the ana-
lysis of translation and permitted to refine the picture of global gene
expression control. Ribo-seq is based on deep sequencing of ribo-
some-protected mRNA fragments (RPF or “footprints”) and permits
genome-wide analysis of translated sequences at nucleotide reso-
lution. From a bioinformatic standpoint, Ribo-seq provides a new
type of data: indeed, RPF reveal codon occupancy of active ribo-
somes.8 This technique yields a precise picture of translation by
quantifying the number of ribosomes at every position in a genome.
Researchers often analyse jointly Ribo-seq data and RNA-seq data
and compare the number of mRNAs and the number of mRNAs
involved in translation, which allows them to measure the efficiency
of translation.9,10,11,12,13 We decided to use only Ribo-seq data to
measure CUB, based on a simple rationale: the more observed
footprints, the more ribosomes at this position. This means that genes with a high coverage are highly translated, and mutations that lead to a benefit in terms of translation are more prone to be fixed in those genes: as a consequence, Ribo-seq could indicate which genes have a strong CUB. Ribo-seq is often used to measure translation efficiency, as the number of ribosomes per copy of an mRNA species. Here highly translated (which differs from efficiently translated) means that all copies of one mRNA species yield, all together, a large number of proteins.

We ranked genes according to their number of footprints in a precise and limited region of their mRNA (from the 20th to the 200th codons from the start codon). We then split genes into two groups according to their number of footprints and measured codon bias within each group: this way, our two groups are not optimized for RSCU, but derived from translation experiments. Moreover, contrary to previous approaches, we used high-throughput data reflecting the number of ribosomes per sequence and use all translated genes. Therefore, our measure of CUB is directly computed from translational data.

We applied our approach on a variety of genomes from a parasite, like Plasmodium falciparum, to multicellular eukaryotes like Caenorhabditis elegans and Homo sapiens. We corroborate Sharp’s results on yeast and C. elegans, but also detect preferred codons in every species. A preferred codon of an amino acid is defined as the codon with the highest frequency in highly expressed genes. Our analysis provides novel insights on the evolution of CUB.

2. Materials and methods

2.1. ORF selection

Sequences and annotations were collected from NCBI for all organisms. Positions of start codons are crucial in this study. Therefore, we first kept all genes with a unique isoform. Genes with multiple isoforms were rejected if they had different start codons. If all isoforms share the same start codon, we kept the longest common coding sequence. We excluded the mRNAs of mitochondrial genes. Finally, we collected all the spliced mRNA sequences of the selected genes.

2.2. Ribo-seq data and mapping

All Ribo-seq data come from already published data (Supplementary Table S1). We chose species belonging to opisthokonts (the Fungi/Metazoa group) for which Ribo-seq data were available and used P. falciparum as an outgroup because of its restricted set of tRNA genes compared to all other species considered in this study. When several datasets were available for one species, we selected datasets according to three conditions: 1/availability of a replicate, 2/ribosome profiling that closely follows the protocol of Ingolia et al., and 3/a sufficient sequencing depth after quality filtering. For each selected dataset, we plot the footprint position with respect to the start codon for all genes and determined the majority peak near the start. For all experiments, the peak turns out to be at -12 nucleotides upstream from start codon. As explained in the study by Ingolia et al., the “shift” applied to the positions of mapped reads was set to 12 nucleotides.

Reads were mapped with CRAC with a k-mer of length 25: this k-mer is longer than the recommended length for RNA-seq to better fit the short length of RPF. After mapping on mRNA, we took the first position of each read and applied a shift of 12 nucleotides to assign the read to the P-site position of ribosomes.

2.3. Categorizing genes into lowly and highly translated genes

For each gene, we computed the coverage by ribosome footprints from the 20th to the 200th codons from the start codon (and at least 20 codons before the stop codon). We computed the mean coverage on the selected region after removal all genes having less than 10 footprints. Then, we ranked genes according to this mean coverage. From this ranking, we create two groups that were made uniform in terms of total amount of footprints: the lowly and highly translated genes. To accentuate the contrast between those two groups, we excluded the top 5% of lowly translated genes and the bottom 5% of highly translated genes.

2.4. RSCU computing

Finally, we computed the RSCU as defined by Sharp et al. within each group (lowly and highly translated genes). Instead of computing the bias of codon usage over the whole ORF, we took sequences from the 20th to the 200th codons from the start codon, i.e. the same region as the one used for gene sorting. For clarity, when the RSCU is computed based on Ribo-seq data, we named it RSCU\text{RS}.

We developed a computer program in Java language to perform this computation (see the Availability section).

2.5. Copy number of tRNA genes and clustering

We use the number of tRNA genes of a species as a proxy for the size of its tRNA pool. We obtained the copy numbers of tRNA genes from the latest version (2.0 from 2016) of the Genomic tRNA Database (GtRNAdb) for all species, but Histoplasma capsulatum. For the latter, we used the Genbank annotation from NCBI database. To cluster species according to their tRNA copy number and according to their average RSCU\text{RS}, we perform hierarchical clustering with the R software using the Canberra distance with UPGMA algorithm (Unweighted Pair Group Method with Arithmetic Mean). Details are provided in Supplementary Material.

3. Results and discussion

Only amino acids that have multiple encoding codons are studied: only 59 codons were used as we excluded ATG (methionine), TGG (tryptophan), and stop codons.

3.1. CUB computation

Given a set of mRNA sequences, Sharp has proposed to compute the RSCU for each synonymous codon j of each amino acid i using the formula

$$\frac{n_i \times x_{ij}}{\sum_{j=1}^n x_{ij}}$$

where \(n_i\) denotes the number of synonymous codons for amino acid \(i\), and \(x_{ij}\) denotes the number of occurrences of codon \(j\) in the set of sequences. Sharp has selected a subset of mRNAs that were known to be highly expressed. Our proposal is to automatically select mRNAs that are highly translated according to their coverage by ribosomes, which is determined by mapping Ribo-seq reads. Then, we use the formula above with counts of codons limited to a range comprised between the 20th and the 200th codons. The choice of this range is explained below.
Sharp and Bradnam14 have computed RSCU for \textit{C. elegans}, and we compared his results with our method (RSCU\textsubscript{RS} for RSCU by Ribo-seq) as illustrated in Fig. 1A. The two methods split genes in two categories: highly and lowly expressed genes, but with completely different inputs: Sharp et al. computed codon bias with a statistical model based on gene sequences, while we used only Ribo-seq footprints. Nevertheless, we obtained a high correlation (>0.97) between Sharp’s measure and ours. This correlation is even higher within replicates. In 1992, Lloyd and Sharp50 published RSCU values for highly expressed genes in \textit{Candida albicans}. Here again, the comparison with RSCU values is shown in Fig. 1B, and we observed a very high correlation between RSCU and RSCU\textsubscript{RS} (>0.98). In both experiments, we used a larger set of genes (Supplementary Table S1A).

We question whether our method, RSCU\textsubscript{RS}, is robust with respect to the range of codons used—by default [20, 200] codons. The lower limit of 20 avoids counting the accumulation of RPF due to translation initiation.8 The upper limit of 200 was chosen as a minimum length for including sufficient counts and to maximize the number of mRNAs taken into account. Clearly, the upper limit choice is somehow arbitrary. We computed the RSCU\textsubscript{RS} for eight different upper limits ranging from 50 to 400 codons. The RSCU\textsubscript{RS} curves for each range are shown on a single graph in Fig. 1B for \textit{C. elegans} and Fig. 1C for \textit{C. albicans}. The agreement among all eight curves is striking for both species. Only the curves of two shortest ranges—[20-50] and [20,100]—depart slightly from the other curves, indicating that a minimum number of codons is necessary to capture a stable signal. All other curves are very close to each other, showing the robustness of with respect to the range of codons taken into account. One observes that RSCU\textsubscript{RS} values reach higher values in the yeast species than in the worm species. Refer to the online version for colors.

3.2. CUB exists in all species

As a first step, we computed the Euclidean distance of RSCU\textsubscript{RS} between highly and lowly translated genes (Fig. 2A) as a mean to evaluate the intensity of CUB for each organism: if this distance is close to 0, it means there are very few differences in codon usage between highly and lowly translated genes. Results gave two clearly distinct species groups. The first group corresponds to species with a lower CUB and comprises mammals, Drosophila, \textit{P. falciparum}, and \textit{H. capsulatum}. The second group of species exhibiting a higher CUB contains three yeasts and \textit{C. elegans}.

![Figure 1](image_url)
For these species, we compare the RSCU_{RS} of all codons between lowly and highly translated genes (ltg vs htg; Fig. 2B). One notices the asymmetry of the diagram with respect to the diagonal: The part of the diagram beyond a RSCURS of two is populated above the diagonal and almost empty below it. This confirms the existence of favoured codons in htg, and their absence in ltg. Codons located far above the diagonal indicate strongly favoured codons in htg. This illustrates the impact of selection pressure linked to the gene expression level. There also exist codons far below the diagonal (which are disfavoured in htg), but their RSCU_{RS} remains low (<2); those are either disfavoured or slightly favoured in ltg. Some codons even exhibit a nearly null RSCU_{RS} in htg, meaning these are almost forbidden in htg. Apart from the global asymmetry, the difference between the codons of the two groups is striking. All codons far apart from the diagonal belong to group 2 and very few codons of these species lie near the diagonal: in a species like yeast, the difference of usage between htg and ltg is strong for most codons. Note also that in group 2, some codons are disfavoured in htg and favoured in ltg, suggesting there could be some selection pressure also in ltg, albeit weaker than in htg. In species of group 1, most codons lie around the diagonal, but the bias changes with the RSCU_{RS} value: most codons that are disfavoured in htg (dots lying below the horizontal line, i.e. with a RSCU_{RS} in htg <1) lie below the diagonal, while most codons favoured in htg (i.e. a RSCU_{RS} in htg > 1) lie above the diagonal. This suggests that codon usage preference in htg is small, but is detectable with Ribo-seq data, and thus do exist also in these species.

3.3. Patterns of codon preferences

Then, we compared the frequency of codons in highly translated genes. Higher eukaryotes have few strongly preferred codons while yeasts show marked differences (Fig. 3A): some yeasts present a highly preferred codon for Arginine, Glutamic acid and Cysteine, whereas mammals and Drosophila do not. Glutamine follows remarkable patterns: both mammals and Drosophila strongly prefer CAG, yeasts favour CAA, while H. capsulatum and C. elegans use CAA/CAG in an equivalent fashion.

Our analysis revealed that some preferred codons are well conserved (Table 1): all species, but P. falciparum, have the same preferred codon for phenylalanine, histidine, tyrosine (that is, all aromatic amino acids that can be studied), and asparagine. On the opposite, Leucine has five different preferred codons. Indeed, unique preferred codons are rare: Schizosaccharomyces pombe has one only for proline (CCT), and P. falciparum has the highest number of unique features with seven unique preferred codons.

3.4. Preferred codons and tRNA copy number

It is assumed that a codon with the highest copy number of corresponding tRNAs is prone to be the preferred codon. This result is confirmed in all species, but H. capsulatum (Table 2). Nevertheless, species do not equally observe this tendency: in S. pombe 15 out 18 amino acids prefer the codon with the highest copy number of tRNA, while only 9-12 amino acids behave the same in mammals. Non-majority preferred codons are shared among species, like species preferring GGT for glycine (S. pombe, Saccharomyces cerevisiae and C. albicans) or preferring GCC for Alanine (H. sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, C. elegans and H. capsulatum).

We inferred two species trees based on the species’ proximity either in terms of tRNA copy number, or in terms of average RSCU_{RS} over highly translated genes (Fig. 3B and C). These trees are similar, but not equal. tRNA copy number groups the mammals with
Drosophila and S. cerevisiae, and makes a clade with C. albicans, S. pombe and C. elegans, while both H. capsulatum and P. falciparum form an outgroup (which reflects their small tRNA gene copy numbers; see Table 2). With CUB (Fig. 3C), the clade grouping the mammals and Drosophila remains opposed to the branches containing the yeast species and P. falciparum. The striking feature is the position of H. capsulatum, which, due to its low tRNA gene number, is located at the base of the tRNA-tree, but it is grouped with the mammals in the CUB-tree. Despite its basal position in the tree, H. capsulatum is closer to the group of yeasts (Euclidian distance = 29.9) than to the group of mammals (Euclidian distance = 86.5).

3.5. Preferred codons, codons lacking tRNA and GC content
Wobbling corresponds to a codon that is decoded without following Watson–Crick base pair rules. Wobbling is complex to study, but codons lacking tRNA are necessarily subject to it. In Fig. 3D, we compared the numbers of codons lacking tRNA, and of preferred codons lacking tRNA for all species ordered by the size of their tRNA pool. As expected, when the tRNA pool increases, the number of codons lacking tRNA decreases steeply (slope equals −0.026), while the regression line for preferred codons remains flat (slope equals −0.002). Refer to the online version for colors.
The last base of a codon is supposed to correlate with the GC content of a genome. This result is partially confirmed in Fig. 4. On one extremity, *P. falciparum* has a very low GC content and no preferred codon ending with a G or C. At the other extremity, all species with a high GC content strongly prefer codons ending with a G or C. For intermediate values of GC content, results are more puzzling: *C. elegans* has an intermediate GC content compared to *C. albicans*, *S. pombe* and *S. cerevisiae*, but has a much stronger preference for codons ending with a G or C.

4. Conclusion and discussion

CUB measures the difference in the frequency of translation of each possible codon for an amino acid. CUB is detected in highly expressed genes because the selection pressure to choose optimal codons is stronger in those genes. First, it is known that numerous mRNAs are finally not translated and have thus no impact on fitness. Hence, to measure CUB, Ribo-seq seems more appropriate to select highly expressed genes than RNA-seq data. Second, various forces and processes (such as mutation bias) impact the nucleotidic composition of a gene. Because it captures the presence of ribosomes, Ribo-seq allows to measure the sole translational advantage of a codon rather than the impact of evolutionary forces unrelated to translation.

Our method based on Ribo-seq—rather than RNA-seq—data allows us to compute a precise and direct measure of CUB. Although Ribo-seq was not originally designed for CUB studies, we show that...
The most striking results were obtained for the pathogenic yeast, *H. capsulatum*. Its tRNA pool is closer to that of other yeasts, but its CUB much closer to that of mammals. This suggests that its CUB is prediction, and Ribo-seq data on a larger set of species would help to get a better understanding of CUB evolution, but to date, only very few species have been subjected to Ribo-seq experiments. Nevertheless, comparison of codon bias between species seems to reveal a common story that is partially adapted by every organism. In yeast, the level of ribosome occupancy measured using an adequate protocol was found to be negatively correlated with tRNA copy numbers, which is used as a proxy of cognate tRNA abundances. Our results suggest that the tRNA pool is the key factor for every amino acid in a wide range of species, and that some preferred codons are conserved across the tree of life. However, we clearly distinguished two species groups when comparing the intensities of CUB. The low-intensity group contains mammals and drosophila (plus *P. falciparum* that has a very restricted tRNA pool, which may be due to the difficulty of tRNA gene prediction, and *H. capsulatum* which we discussed later) versus a three-time higher CUB intensity group formed by *C. elegans*, *S. pombe*, *C. albicans* and *S. cerevisiae*. Surprisingly, *C. elegans* does not belong to the low intensity group, while mammals and drosophila do. It has common features with both groups: some amino acids with a yeast-like preferences (like valine or proline), some with a mammals-like preferences (like glutamic acid or aspartic acid) and some with a unique profile (glycine and leucine). A possible scenario could be a decreasing intensity of CUB in multicellular species: nonetheless, this evolution would be achieved progressively, amino acid by amino acid (often through a substitution at the third base of a codon)—see examples below). Highly translated genes are more subjected to CUB than lowly translated genes and, as shown in Table 1, a general pattern appears from yeasts to mammals: an evolution CAT to CAC for Histidine, from GCT to GCC in Alanine, for example. This general pattern admits some exceptions: for instance, some with a unique profile (glycine and leucine). A possible scenario could be a decreasing intensity of CUB in multicellular species: nonetheless, this evolution would be achieved progressively, amino acid by amino acid (often through a substitution at the third base of a codon) see examples below). Highly translated genes are more subjected to CUB than lowly translated genes and, as shown in Table 1, a general pattern appears from yeasts to mammals: an evolution CAT to CAC for Histidine, from GCT to GCC in Alanine, for example. This general pattern admits some exceptions: for instance, some with a unique profile (glycine and leucine). A possible scenario could be a decreasing intensity of CUB in multicellular species: nonetheless, this evolution would be achieved progressively, amino acid by amino acid (often through a substitution at the third base of a codon).
quite independent of its tRNA pool. As *H. capsulatum* is a pathogen of mammals, it is tempting to say that it adapts to its host, but we lack information to conclude. Is *H. capsulatum* able to use the translational machinery of its host (ribosomes and/or tRNAs) or do more tRNA genes remain to be annotated in its genome? Including other pathogenic species in the comparison, such as the fungi Aspergillus, would help to determine whether this feature is specific to *H. capsulatum* or widespread in pathogens. Nevertheless, pathogens could represent an exception in which the CUB depends more on the host’s tRNA pool than on their own tRNA pool.

Availability

The program for computing the codon usage bias from Ribo-seq is freely available at: http://www.lirmm.fr/~rivals/rscu

Acknowledgements

The authors want to thank France Genomique and the ATGC platform for the logistic support they provided. We thank Nicolas Galtier for his insightful comments on the manuscript.

Conflict of interest

None declared.

Supplementary data

Supplementary data are freely available at: http://www.lirmm.fr/

Funding

This work is supported by the Fondation pour la Recherche Médicale, grant DBI20131228574, ANR grant (ANR-11-BINF-0002).

References