
HAL Id: lirmm-01610076
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01610076v1

Submitted on 4 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Linear Kernels for Edge Deletion Problems to
Immersion-Closed Graph Classes

Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond,
Dimitrios M. Thilikos, Marcin Wrochna

To cite this version:
Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos, Marcin
Wrochna. Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes. ICALP:
International Colloquium on Automata, Languages, and Programming, Jul 2017, Varsovie, Poland.
pp.1-15, �10.4230/LIPIcs.ICALP.2017.57�. �lirmm-01610076�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01610076v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Linear Kernels for Edge Deletion Problems to
Immersion-Closed Graph Classes∗†

Archontia C. Giannopoulou1, Michał Pilipczuk2,
Jean-Florent Raymond3, Dimitrios M. Thilikos4, and
Marcin Wrochna5

1 Technische Universität Berlin, Berlin, Germany
archontia.giannopoulou@tu-berlin.de

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland; and
AlGCo project team, CNRS, LIRMM, Montpellier, France
jean-florent.raymond@mimuw.edu.pl

4 AlGCo project team, CNRS, LIRMM, Montpellier, France; and
Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece
sedthilk@thilikos.info

5 Institute of Informatics, University of Warsaw, Warsaw, Poland
m.wrochna@mimuw.edu.pl

Abstract
Suppose F is a finite family of graphs. We consider the following meta-problem, called F-
Immersion Deletion: given a graph G and an integer k, decide whether the deletion of at most
k edges of G can result in a graph that does not contain any graph from F as an immersion. This
problem is a close relative of the F-Minor Deletion problem studied by Fomin et al. [FOCS
2012], where one deletes vertices in order to remove all minor models of graphs from F . We
prove that whenever all graphs from F are connected and at least one graph of F is planar and
subcubic, then the F-Immersion Deletion problem admits:

a constant-factor approximation algorithm running in time O(m3 · n3 · logm);
a linear kernel that can be computed in time O(m4 · n3 · logm); and
a O(2O(k) +m4 · n3 · logm)-time fixed-parameter algorithm,

where n,m count the vertices and edges of the input graph. Our findings mirror those of Fomin
et al. [FOCS 2012], who obtained similar results for F-Minor Deletion, under the assumption
that at least one graph from F is planar. An important difference is that we are able to obtain
a linear kernel for F-Immersion Deletion, while the exponent of the kernel of Fomin et al. de-
pends heavily on the family F . In fact, this dependence is unavoidable under plausible complexity
assumptions, as proven by Giannopoulou et al. [ICALP 2015]. This reveals that the kernelization
complexity of F-Immersion Deletion is quite different than that of F-Minor Deletion.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

∗ The full version of this paper can be found as an arxiv preprint [19], https://arxiv.org/abs/1609.
07780.

† This work was done while A. C. Giannopoulou was holding a post-doc position at Warsaw Center
of Mathematics and Computer Science and she has also been supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC
consolidator grant DISTRUCT, agreement No 648527). Mi. Pilipczuk and M. Wrochna are supported
by the Polish National Science Center grant UMO-2013/11/D/ST6/03073. J-F. Raymond is supported
by the Polish National Science Center grant UMO-2013/11/N/ST6/02706. D. Thilikos is supported by
project DEMOGRAPH (ANR-16-CE40-0028).

EA
T

C
S

© Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent, Dimitrios M. Thilikos,
and Marcin Wrochna;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1609.07780
https://arxiv.org/abs/1609.07780
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

Keywords and phrases Kernelization, Approximation, Immersion, Protrusion, Tree-cut width

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.57

1 Introduction

On the F-Minor Deletion problem. Let us fix a finite family of graphs F . A graph is
called F-minor-free if it does not contain any graph from F as a minor. Given a class of
graphs G, we denote by obsmn(G) the set of minor-minimal graphs not in G. The celebrated
Graph Minors Theorem [32] states that for G closed under taking minors, the set obsmn(G) is
finite. In other words, G is characterized by a finite set of minor-obstructions, as G is exactly
the class of F -minor-free graphs, for F = obsmn(G). Hence, studying classes of F -minor-free
graphs for finite families F is the same as studying general minor-closed properties of graphs.

Fomin et al. [14] performed an in-depth study of the following parameterized1 problem,
named F-Minor Deletion2: Given a graph G and an integer parameter k, decide whether
one can remove at most k vertices from G to obtain an F-minor-free graph. By considering
different families F , the F-Minor Deletion problem generalizes a number of concrete prob-
lems of prime importance in parameterized complexity, such as Vertex Cover, Feedback
Vertex Set, or Planarization. It is easy to see that, for every fixed k, the graph class
Gmn
k,F consisting of the graphs in the YES-instances (G, k) of F-Minor Deletion, is closed

under taking of minors. By the meta-algorithmic consequences of the Graph Minors series of
Robertson and Seymour [32, 30], it follows (non-constructively) that F-Minor Deletion
admits an FPT-algorithm. The optimization of the running time of such FPT-algorithms for
several instantiations of F has been a stimulating project in parameterized algorithm design.
So far, it has been focused on problems generated by minor-closed graph classes.

The goal of Fomin et al. [14] was to obtain results of general nature for F-Minor
Deletion, which would explain why many concrete problems captured as its subcases are
efficiently solvable using parameterized algorithms and kernelization. This has been achieved
under the assumption that F contains at least one planar graph. More precisely, for any class
F that contains at least one planar graph, the work of Fomin et al. [14] gives the following:

a randomized constant-factor approximation running in time O(nm);
a polynomial kernel for the problem; that is, a polynomial-time algorithm that, given
an instance (G, k) of F-Minor Deletion, outputs an equivalent instance (G′, k′) with
k′ ≤ k and |G′| ≤ O(kc), for some constant c that depends on F ;
an FPT-algorithm for F-Minor Deletion in time 2O(k) ·n (note this originally required
that all graphs from F be connected; Kim et al. [24] showed how to lift this assumption);
a proof that every graph in obsmn(Gmn

k,F) has at most kcF vertices, for some constant cF
that depends (non-constructively) on F .

The assumption that F contains at least one planar graph is crucial for the approach
of Fomin et al. [14]. Namely, from the Excluded Grid Minor Theorem of Robertson and
Seymour [31] it follows that for such families F , F -minor-free graphs have treewidth bounded
by a constant depending only of F . Therefore, a YES-instance of F-Minor Deletion

1 A parameterized problem can be seen as a subset of Σ∗ × N. For graph problems, the string x in an
instance (x, k) ∈ Σ∗ × N usually encodes a graph G. An FPT-algorithm for the problem is then an
algorithm working in f(k) · |x|O(1) time. See [12, 8, 29] for more on parameterized algorithms and
complexity.

2 Fomin et al. used the name F-Deletion. We write F-Minor Deletion instead for clarity.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.57

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:3

roughly has to look like a constant-treewidth graph plus k additional vertices that can have
arbitrary connections. Having exposed this structure, Fomin et al. [14] apply protrusion-based
techniques that originate in the work on meta-kernelization [3, 15]. Roughly speaking, the
idea is to identify large parts of the graphs that have constant treewidth and a small interface
towards the rest of the graph (so-called protrusions), which can then be replaced by smaller
gadgets with the same combinatorial behaviour. Such preprocessing based on protrusion
replacement is the base of all three aforementioned results for F-Minor Deletion. In the
absence of a constant bound on the treewidth of an F -minor-free graph, the technique breaks
completely. In fact, the kernelization complexity of Planarization, that is, F-Minor
Deletion for F = {K5,K3,3}, is a notorious open problem.

An interesting aspect of the work of Fomin et al. [14] is that the exponent of the
polynomial bound on the size of the kernel for F-Minor Deletion grows quite rapidly
with the family F . Recently, it has been shown by Giannopoulou et al. [17] that in general
this growth is unavoidable: unless NP ⊆ coNP/poly, for every constant η, the Treewidth-η
Deletion problem (delete k vertices to get a graph of treewidth at most η) has no kernel with
O(kη/4−ε) vertices for any ε > 0. Since graphs of treewidth η can be characterized by a finite
set of forbidden minors Fη, at least one of which is planar, this refutes the hypothesis that
all F-Minor Deletion problems admit polynomial kernels with a uniform bound on the
degree of the polynomial. However, as shown by Giannopoulou et al. [17], such bounds can
be achieved for some specific problems, like vertex deletion to graphs of constant tree-depth.

Immersion problems. Recall that a graph H can be immersed into a graph G (or that H is
an immersion of G) if there is a mapping from vertices of H to pairwise different vertices of G
and from edges of H to pairwise edge-disjoint paths connecting the images of its endpoints3.
Such a mapping is called an immersion model. Just like the minor relation, the immersion
relation imposes a partial order on the class of graphs. Alongside with the minor order,
Robertson and Seymour [33] proved that graphs are well-quasi-ordered under the immersion
order as well. This implies that for every graph class G that is closed under taking immersions,
the set obsim(G) containing immersion minimal graphs that do not belong in G, is finite (we
call obsim(G) the immersion obstruction set of G). Therefore G can be characterized by a
finite set of forbidden immersions. The general intuition is that immersion is a containment
relation that corresponds to edge cuts, whereas the minor relation corresponds to vertex cuts.
Also, the natural setting for immersions is the setting of multigraphs. Hence, all the graphs
considered in this paper may have parallel edges connecting the same pair of endpoints.

Recently, there has been a growing interest in immersion-related problems [28, 10, 16, 25,
18, 20, 36, 4, 9, 1, 21, 11] both from the combinatorial and the algorithmic point of view.
Most importantly for us, Wollan proved in [36] an analogue of the Excluded Grid Minor
Theorem, which relates the size of the largest wall graph that is contained in a graph as
an immersion with a new graph parameter called tree-cut width. By a subcubic graph we
mean a graph of maximum degree at most 3. The following theorem follows from the work
of Wollan [36].

I Theorem 1 ([18]). For every planar subcubic graph H, there exists a constant aH such
that every graph not containing H as an immersion has tree-cut width bounded by aH .

In other words, for any family F of graphs that contains some planar subcubic graph,
the tree-cut width of F -immersion-free graphs is bounded by a universal constant depending

3 In this paper we consider weak immersions only, as opposed to strong immersions where the paths are
forbidden to traverse images of vertices other than the endpoints of the corresponding edge.

ICALP 2017

57:4 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

on F only. In Section 2 we discuss the precise definition of tree-cut width and how exactly
Theorem 1 follows from the work of Wollan [36]. Also, note that if a family of graphs F
does not contain any planar subcubic graph, then there is no uniform bound on the tree-cut
width of F-immersion-free graphs. Indeed, wall graphs are then F-immersion-free, because
all their immersions are planar and subcubic, and they have unbounded tree-cut width.

After the introduction of tree-cut width by Wollan [36], the new parameter gathered
substantial interest from the algorithmic and combinatorial community [16, 28, 18, 25]. It
seems that tree-cut width serves the same role for immersion-related problems as treewidth
serves for minor-related problems and, in a sense, it can be seen as an “edge-analogue” of
treewidth. In particular, given the tree-cut width bound of Theorem 1 and the general
approach of Fomin et al. [14] to F-Minor Deletion, it is natural to ask whether the same
kind of results can be obtained for immersions where the edge removals are considered instead
of vertex removals. More precisely, fix a finite family of graphs F containing some planar
subcubic graph and consider the following F-Immersion Deletion problem: given a graph
G and an integer k, determine whether it is possible to delete at most k edges of G in order
to obtain a graph that does not admit any graph from F as an immersion. Notice that when
F = {K2} and F = {K3}, the problem of computing the minimum size of such a set of edges
can be solved in polynomial time, while it is NP-hard when F = {K−4 } (see e.g. [5]).

Parallel to the case of F-Minor Deletion, for every fixed k, the graph class Gim
k,F

consisting of the graphs in the YES-instances (G, k) of F-Immersion Deletion is closed
under taking of immersions4, therefore Oim

k = obsim(Gim
k,F) is a finite set, by the well-quasi-

ordering of graphs under immersions [33]. Together with the immersion-testing algorithm of
Grohe et al. [22], this implies that F-Immersion Deletion admits (non-constructively) an
FPT-algorithm. This naturally induces the parallel project of optimizing the performance of
such FPT-algorithms for various instantiations of F . More concretely, is it possible to extend
the general framework of Fomin et al. [14] to obtain efficient approximation, kernelization,
and FPT algorithms also for F-Immersion Deletion? Theorem 1 suggests that the suitable
analogue of the assumption from the minor setting that F contains a planar graph should be
the assumption that at least one graph from F is planar and subcubic.

Our results. In this work we give a definitive positive answer to this question. The following
two theorems gather our main results; for a graph G, by |G| and ‖G‖ we denote the
cardinalities of the vertex and edge sets of G, respectively.

I Theorem 2 (Constant factor approximation). Let F be a finite family of connected graphs
with at least one member being planar and subcubic. Given a graph G, in O(‖G‖3 log ‖G‖·|G|3)
time one can output a subset of edges F ⊆ E(G) such that G− F is F-immersion-free and
the size of F is at most capx times larger than the optimum size of a subset of edges with this
property, for some constant capx depending on F only.

The constant-factor approximation can be generalized to work when F contains discon-
nected graphs as well, using the approach of Fomin et al. [14, 13].

4 Notice that if we consider deletion of vertices instead of edges, then the graph class Gim
k is not closed

under taking immersions (for example, in a star on 7 vertices with duplicated edges, deleting one vertex
makes it K3-immersion-free, but this ‘duplicated’ star immerses 2K3, which has no such vertex). This
is the main reason why we believe that edge deletion gives a more suitable counterpart to F-Minor
Deletion for the case of immersions.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:5

I Theorem 3 (Linear kernelization and obstructions). Let F be a finite family of connected
graphs with at least one member being planar and subcubic. Given an instance (G, k) of F-
Immersion Deletion, in time O(‖G‖4 log ‖G‖ · |G|3) one can output an equivalent instance
(G′, k) with ‖G′‖ ≤ cker · k, for some constant cker depending on F only. Moreover, every
graph in Oim

k has at most cF · k edges (for a constant cF non-constructively depending on F).

Thus, Theorems 2 and 3 mirror the approximation and kernelization results and the
obstruction bounds of Fomin et al. [14]. However, this mirroring is not exact as we show that,
in the immersion setting, a stronger kernelization procedure can be designed. Namely, the size
of the kernel given by Theorem 3 is linear , with only the multiplicative constant depending
on the family F , whereas in the minor setting, the exponent of the polynomial bound on the
kernel size provably must depend on F (under plausible complexity assumptions). This shows
that the immersion and minor settings behave quite differently and in fact stronger results can
be obtained in the immersion setting. Observe that using Theorem 3 it is trivial to obtain a
decision algorithm for F-Immersion Deletion working in time O(ckfpt +‖G‖4 log ‖G‖ · |G|3)
for some constant cfpt depending on F only: one simply computes the kernel with a linear
number of edges and checks all the subsets of edges of size k.

Our techniques. Our approach to proving Theorems 2 and 3 roughly follows the general
framework of protrusion replacement of Fomin et al. [14] (see also [3]). We first define
protrusions suited for the problem of our interest. In fact, our protrusions can be seen as the
edge-analogue of those introduced in [14] (as in [5]). A protrusion for us is simply a vertex
subset X that induces an F-immersion-free subgraph (which hence has constant tree-cut
width, by Theorem 1), and has a constant number of edges to the rest of the graph. When
a large protrusion is localized, it can be replaced by a smaller gadget similarly as in the
work of Fomin et al. [14]. However, we need to design a new algorithm for searching for
large protrusions, mostly in order to meet the condition that the exponent of the polynomial
running time of the algorithm does not depend on F . For this, we employ the important
cuts technique of Marx [27] and the randomized contractions technique of Chitnis et al. [6].
All of these yield an algorithm that exhaustively reduces all large protrusions.

Unfortunately, exhaustive protrusion replacement is still not sufficient for a linear kernel.
However, we prove that in the absence of large reducible protrusions, the only remaining
obstacles are large groups of parallel edges between the same two endpoints (called thetas),
and, more generally, large “bouquets” of constant-size graphs attached to the same pair of
vertices. Without these, the graph is already bounded linearly in terms of the optimum
solution size. The approximation algorithm can thus delete all edges except for the copies
included in bouquets and thetas, reducing the optimum solution size by a constant fraction
of the deleted set. It then exhaustively reduces protrusions in the remaining edges, and
repeats the process until the graph is F-immersion-free.

To obtain a linear kernel we need more work, as we do not know how to reduce bouquets
and thetas directly. Instead, we apply the following strategy based on the idea of amortization.
After reducing exhaustively all larger protrusions, we compute a constant-factor approximate
solution Fapx. Then we analyze the structure of the graph G − Fapx, which has constant
tree-cut width. It appears that every bouquet (and theta) in G can be reduced up to size
bounded linearly in the number of solution edges Fapx that “affect” it. After applying this
reduction, we can still have large bouquets in the graph, but this happens only when they
are affected by a large number of edges of Fapx. However, every edge of Fapx can affect only
a constant number of bouquets and hence a simple amortization arguments shows that the
total size of bouquets is linear in |Fapx|, so also linear in terms of the optimum.

ICALP 2017

57:6 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

We remark that this part of the reasoning (the above amortization argument in particular)
are fully new contributions of this work. These deviate significantly from arguments by Fomin
et al. [14], which aimed at a obtaining a polynomial kernel only, instead of linear. Also, we
remark that, contrary to the work of Fomin et al. [14], all our algorithms are deterministic.

For the second part of Theorem 3, we show that protrusion replacements can be realized
as immersions of the original graph. This implies that, in the equivalent instance (G′, k)
produced by our kernelization algorithm, the graph G′ is an immersion of G. Therefore any
immersion-obstruction of Gim

k−1,F must already have a linear, in k, number of edges.

Application: immersion-closed parameters. We would like to highlight one meta-algorithmic
application of our results, which was our original motivation. Suppose p is a graph parameter,
that is, a function that maps graphs to N. We shall say that p is closed under immersion
if p(H) ≤ p(G) whenever H is an immersion of G; p is closed under disjoint union if
p(G1]G2) = max(p(G1),p(G2)) for any graphs G1, G2; here,] denotes disjoint union.

For a parameter p and a constant r, define the p-at-most-r Edge Deletion problem as
follows: given a graph G and an integer k, determine whether at most k edges can be deleted
from G to obtain a graph with the value of p at most r. We also define the associated para-
meter pr(G) = min{k | ∃S ⊆ E(G) : |S| ≤ k ∧ p(G \ S) ≤ r} and Gk,pr

= {G | pr(G) ≤ k}.
Then the following meta-result can be derived from Theorems 2 and 3 and the fact that
immersion is a well-quasi-order; a proof can be found in the full version of the paper.

I Theorem 4. Let p be a graph parameter that is closed under immersion and under disjoint
union and moreover is large on the class of walls5. Then, for every constant r, the p-at-
most-r Edge Deletion problem admits a constant-factor approximation and a linear
kernel. Moreover, there is a constant cr, depending (non-constructively) on r, such that for
every k, every graph H in obsim(Gk,pr

) has at most cr · k edges.

Natural parameters that satisfy the prerequisites of Theorem 4 include cutwidth, carving
width, tree-cut width, and edge ranking; see e.g. [34, 35, 36, 26, 23] for more details.
Theorem 4 mirrors a corollary by Fomin et al. [14] for the Treewidth-η Deletion problem
asserting a constant-factor approximation, a polynomial kernel, a polynomial bound for
the corresponding minor-obstruction set, and a single-exponential FPT algorithm, for every
constant η.

Organization. This extended abstract focuses on sketching the proofs of Theorems 2 and 3.
The proofs of statements marked with ? are omitted and can be found in the full version [19].

2 Preliminaries

For a positive integer p, we denote [p] = {1, 2, . . . , p}. A graph G is a pair (V (G), E(G)),
where V (G) is the vertex set, and E(G) is a multiset of edges. Each edge connects two
different vertices, called the endpoints of the edge (we do not allow loops). Note that there
might be several edges (called parallel edges) between two vertices. An edge is incident to a
vertex if it is one of its two endpoints.

We write |G| for |V (G)| and ‖G‖ for |E(G)| (counting edges with multiplicities). For a
subset of vertices X ⊆ V (G), G[X] is the subgraph induced by X. For a subset of edges

5 A graph parameter p is large on a graph class C if {p(G) | G ∈ C} is not a bounded set.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:7

F ⊆ E(G), G − F denotes the graph G with all edges from F removed. For two subsets
X,Y ⊆ V (G), not necessarily disjoint, EG(X,Y) denotes the set of edges of E(G) of the
form xy for some x ∈ X and y ∈ Y . The boundary of X is δG(X) = EG(X,V (G) \X).

Tree-cut width. A near-partition of a set X is a family of (possibly empty) subsets
X1, . . . , Xk of X such that

⋃k
i=1 Xi = X and Xi ∩Xj = ∅ for every i 6= j.

A tree-cut decomposition of a connected graph G is a pair (T,X) where T is a tree and
X = {Xt : t ∈ V (T)} is a near-partition of the vertices of G. Sets {Xt : t ∈ V (T)} are called
the bags of the decomposition. For a subset W ⊆ V (T), define XW as

⋃
t∈W Xt. By rooting

T at some vertex, we can talk about a rooted tree-cut decomposition. When G is disconnected,
a tree-cut decomposition is a forest consisting of one tree for each connected component.

For each edge e = uv of T , T − uv has exactly two components which we call Tuv and
Tvu, that contain u and v respectively. Since X is a near-partition, sets XV (Tuv) and XV (Tvu)
form a near-partition of V (G) (provided G is connected). We define the adhesion of an edge
e = uv of T , denoted adhT (e), as the set EG(XV (Tuv), XV (Tvu)). We omit the subscript if T
is clear from the context. An adhesion is thin if it has at most 2 edges, bold otherwise.

We now move to the definition of tree-cut width. In fact, we do not give the original
definition (it can be found in the full version of the paper), but we instead give an alternative
definition that is easier to handle. Let G be a graph and (T,X = {Xt : t ∈ V (T)}) be a
tree-cut decomposition of G. For a node t of T , let w(t) be the number of edges incident to t
that have bold adhesions. The width′ of the decomposition, denoted width′(T,X), is equal to
max{maxe∈E(T) |adh(e)|,maxt∈V (T) |Xt|+w(t)}. The tree-cut width′ of G, denoted tctw′(G),
is the minimum width′ of a tree-cut decomposition of G. The standard tree-cut width of G,
denoted tctw(G), is similarly defined as the minimum width of a tree-cut decomposition of
G, where width is defined slightly differently. We prove that both notions are equivalent.

I Lemma 5 (?). For every graph G, it holds that tctw(G) = tctw′(G). Moreover, given a tree-
cut decomposition T of G, it holds that width(T) ≤ width′(T), and a tree-cut decomposition
T ′ with width′(T ′) ≤ width(T) can be computed in time O(‖G‖ · |G|2 · width(T)).

Ganian et al. [16] showed that bounded tree-cut width implies bounded treewidth. Besides,
Kim et al. [25] showed that the dependency cannot be improved to subquadratic.

I Lemma 6 (see [16]). For any graph G, tw(G) ≤ 2tctw(G)2 + 3tctw(G).

In our algorithms we need to adjust tree-cut decompositions to our needs, and hence we
define the notion of a neat tree-cut decomposition. A neat tree-cut decomposition is a rooted
tree-cut decomposition (T,X) of a connected graph G that has the following properties:

For every e = uv ∈ E(T), the graphs G[XV (Tuv)] and G[XV (Tvu)] are connected.
Suppose t is a node of T with parent s, such that the adhesion of st is thin. Then
EG(XV (Tts), XV (Tt′s)) = ∅ for every sibling t′ of t.

The second property was used by Ganian et al. [16] under the name niceness. It appears
that any tree-cut decomposition can be made neat without increasing the width by much;
the proof follows closely the lines of [16, Lemma 1].

I Lemma 7 (?). Given a tree-cut decomposition of width′ ≤ k, a neat tree-cut decomposition
of the same graph with width′ ≤ k2 + 1 can be constructed in time O(‖G‖ · |G|2 · k2).

The following result shows why neat tree-cut decompositions are useful: if a node of a
neat decomposition has many neighboring nodes, then all but a constant number of them
are connected to it via very simple adhesions.

ICALP 2017

57:8 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

I Lemma 8 (?). Let G be a graph with a neat tree-cut decomposition T = (T,X) satisfying
width′(T) ≤ r. Let t ∈ V (T). Then for all but at most 2r + 1 of the edges e of T incident to
t, adh(e) is thin and all of its edges have an endpoint in the bag at t.

Finally, we need that the tree-cut width of a graph can be computed efficiently. For this,
we can use the following 2-approximation algorithm of Kim et al. [25]. We remark that the
width of the decomposition yielded is measured in terms of width(·) and not width′(·), but
the decomposition can be adjusted to have also width′ bounded by 2r using Lemma 5.

I Theorem 9 (see [25]). There is an algorithm that, given a graph G and an integer r,
runs in time 2O(r2 log r) · |G|2 and either concludes that tctw(w) > r, or returns a tree-cut
decomposition of G of width at most 2r.

For the whole paper we fix a finite family of graphs F with the following properties: all
graphs of F are connected, and at least one is planar and subcubic. A graph G will be called
F-immersion-free, or F-free for short, if G contains no graph from F as an immersion. By
Theorem 1, the tree-cut width of an F -free graph is bounded by a constant depending on F
only, so by Lemma 6 also its treewidth is bounded by a constant. By combining this with
Bodlaender’s algorithm [2] and Courcelle’s Theorem [7], we obtain the following:

I Lemma 10 (?). It can be checked in linear-time whether a given graph is F-free.

Moreover, by combining the bound on tree-cut width of an F -free graph with Lemmas 5, 7
and Theorem 9, we obtain the following.

I Lemma 11 (?). There exists an algorithm that, given an F-free graph G, runs in time
O(‖G‖ · |G|2) and computes a neat tree-cut decomposition T of G with width′(T) ≤ bF , for
some constant bF depending on F only.

For a graph G, by OPT(G) we denote the minimum number of edges that need to be
deleted from G in order to obtain an F-free graph.

3 Protrusions

Replacing protrusions. We now introduce the notion of a protrusion suited to the considered
problem. In the sequel, we will only deal with 2bF - and 2-protrusions, where bF is the
constructive bound on tctw′ guaranteed by Lemma 11.

I Definition 12. An r-protrusion of a graph G is a set X ⊆ V (G) such that |δ(X)| ≤ r and
G[X] is F-free.

As in [14], the base for our kernelization algorithm is protrusion replacement. That is, we
iteratively find a protrusion X that is large but has small δ(X), and replace it with a smaller
gadget X ′ that has the same behaviour. The following lemma formalizes this intuition.

I Lemma 13 (?). There is a constant cF and algorithm that, given a graph G and a 2bF -
protrusion X in it with ‖G[X]‖ > cF , outputs in linear time a graph G′ with OPT(G) =
OPT(G′) and ‖G′‖ < ‖G‖. Moreover, there is a linear-time algorithm working as follows:
given a subset F ′ of edges of G′ such that G′ − F ′ is F-free, the algorithm computes a subset
F of edges of G such that G− F is F-free and |F | ≤ |F ′|.

The proof of Lemma 13 follows closely the strategy used by Fomin et al. [14]: Every
2bF -protrusion can be assigned a type, where the number of types is bounded by a function

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:9

depending on F only. The type of a protrusion can be computed efficiently due to protrusions
having constant treewidth. Protrusions with the same type behave in the same way with
respect to the problem of our interest, and hence can be replaced by one another. Therefore,
we store a replacement table consisting of the smallest protrusion of each type, so that every
larger protrusion can be replaced by a smaller representative stored in the table. The lifting
algorithm finds, using dynamic programming, a partial solution in the large protrusion that
has the same behaviour as the given partial solution in the replacement protrusion, while
being not larger. Note that while a replacement table exists and can be hard-coded into the
algorithm (as it depends on the fixed family F only), giving an explicit bound on the size of
the graphs in it (and thus on cF in Lemma 13) would require additional arguments. The
details can be found in the full version of the paper.

We henceforth define a replaceable protrusion in G as a 2bF -protrusion X with ‖G[X]‖ >
cF , where cF is the constant given by Lemma 13.

Finding excessive protrusions. Recall that a replaceable protrusion in a graph G is a
2bF -protrusion X with ‖G[X]‖ > cF . To find replaceable protrusions in the input graph,
we need to assume some additional connectivity constraint (which will be implied from a
connected tree-cut decomposition) – this is captured by the following definition. The larger
protrusion size is needed to make any connected component of the protrusion replaceable.

I Definition 14. A 2bF -protrusion B in a connected graph G is called excessive if ‖G[B]‖ >
2bF · cF and G−B has at most two connected components.

Replaceable protrusions could be found easily if we allowed a (far worse) running time
of the form ‖G‖O(bF), but this would affect the running times in both our main results.
With the above definition in hand, we use the techniques of important cuts, introduced by
Marx [27] (see also the exposition in [8, Chapter 8.2]) and of randomized contractions by
Chitnis et al. [6] instead. These two techniques allow us to reduce excessive protrusions:
we use the randomized contractions technique to find a large enough subset of a presumed
excessive protrusion, after which important cuts allow us to find a boundary that makes this
subset a replaceable protrusion.

I Lemma 15 (?). There is an algorithm that, given a connected graph G, runs in time
O(‖G‖ log ‖G‖ · |G|2) and either correctly concludes that G does not contain any excessive
protrusion, or it outputs some replaceable protrusion in G.

We remark that we only defined excessive protrusions in connected graphs. Note that if
B is an excessive protrusion in a connected component H of G, it would not necessarily be
an excessive protrusion in G, since G−B may have more components than H −B (they are
however not adjacent to B). We will say that no component of G has an excessive protrusion
if for each connected component H of G, there is no excessive protrusion in H.

By exhaustively (at most ‖G‖ times) executing the algorithm of Lemma 15 and replacing
any obtained protrusion using Lemma 13, we can get rid of all excessive protrusions. We
formalize this in the following lemma, which will serve as the abstraction of protrusion
replacement in the sequel.

I Lemma 16 (Exhaustive Protrusion Replacement). There is an algorithm that, given a
graph G, runs in time O(‖G‖2 log ‖G‖ · |G|2) and computes a graph G′ such that OPT(G) =
OPT(G′), ‖G′‖ ≤ ‖G‖, and no connected component of G′ has an excessive protrusion.

Moreover, there exists a solution-lifting algorithm that works as follows: given a subset F ′
of edges of G′ for which G′ − F ′ is F-free, the algorithm runs in time O(‖G‖2) and outputs
a subset F of edges of G such that |F | ≤ |F ′| and G− F is F-free.

ICALP 2017

57:10 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

4 Constant-factor approximation

It would be ideal if just applying the Exhaustive Protrusion Replacement (Lemma 16) reduced
the size of the graph to linear in OPT. Then, we would already have a linear kernel, and
taking all its edges would yield a constant-factor approximation. Unfortunately, there are
graphs with no excessive protrusions, where the size is not bounded linearly in OPT. To see
this, observe that a large group of parallel edges is not a protrusion, so our current reduction
rules will not reduce their multiplicity, even if they amount to 99% of the graph. Hence, we
need to find a way to discover and account for such groups (we remark that reducing each to
O(OPT) would be relatively easy, giving a quadratic kernel). More generally, the structures
that turn out to be problematic are large groups of constant-size 2-protrusions attached to
the same pair of vertices; a group of parallel edges is a degenerated case of this structure. To
describe the problematic structures formally, we introduce the notion of a bouquet.

Bouquets. Let us define the following constant dF := max{2bF · cF + 2bF , 3MAXF}+ 1
(where MAXF = maxH∈F ‖H‖). A bouquet is a family of at least dF isomorphic 2-protrusions,
while a theta is a set of at least dF parallel edges.

I Definition 17. Consider a graph G, a set U ⊆ V (G) and a family of 2-protrusions {Si}i∈I
such that for each i ∈ I:

N(Si) = U (implying |U | ≤ 2);
G[Si] is connected; and
G[U ∪ Si] is isomorphic to G[U ∪ Sj] for all i, j ∈ I, with an isomorphism that maps each
vertex of U to itself.

We call such a family a bouquet attached to U if it is maximal under inclusion (i.e. there is
no proper superfamily which is also a bouquet) and has at least dF elements. The edge set
of the bouquet is the set of all edges incident to some Si.

I Definition 18. For two vertices u, v ∈ V (G), a theta attached to {u, v} is a set of edges
between u and v that is maximal under inclusion and has at least dF elements.

The constant dF is chosen so that a protrusion containing a set to which a bouquet (or
theta) is attached is large enough to be excluded as an excessive protrusion, and so that any
immersion of a graph of F cannot simultaneously intersect all elements of a bouquet. Indeed,
in any immersion of some H ∈ F in a graph G, the image of an edge of H is a path in G,
which visits every vertex of the bouquet’s attachment at most once, and hence intersects at
most three elements of the bouquet. Thus in total, the immersion model intersects at most
3 ·maxH∈F ‖H‖ elements of the bouquet or theta, which is less than dF .

We now show that the number of edges of a graph with no excessive protrusions, no
bouquets, and no thetas is linearly bounded in the optimum solution size, which formalizes
the intuition that only those structures prevent the graph from being a linear kernel.

I Lemma 19 (?). Let G be a connected graph without excessive protrusions, bouquets, or
thetas. Then G is F-free, or ‖G‖ ≤ c · OPT(G), for some constant c depending on F only.

The proof of Lemma 19 goes roughly as follows. Take some optimum solution F . Then
G− F is F -free, so, by Theorem 11, it has a neat tree-cut decomposition (T,X) of width at
most bF . For simplicity suppose that G− F is connected, so that T is a tree (the proof in
the general case is essentially the same). Let M0 be the set of all vertices of T whose bags
contain a vertex incident to an edge of F ; then |M0| ≤ 2|F |. Compute the lowest common
ancestor closure M ofM0: start withM := M0, and iteratively add toM any lowest common

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:11

ancestor of two nodes of M that is not yet included. As in Fomin et al. [14], we have that
|M | ≤ 2|M0| ≤ 4|F |, and each component of T −M is adjacent to at most two nodes of M .

Let us consider some connected component T ′ of T −M , and let XT ′ be the union of
the bags at the nodes of T ′. Suppose first that T ′ is adjacent to exactly two nodes of M ;
note that there are at most |M | − 1 such components T ′. Then one can easily see that
‖G[XT ′]‖ ≤ 2bFcF , because otherwise XT ′ would be an excessive protrusion. Here, we
crucially use the first condition of the neatness of T to argue that G − XT ′ has at most
two connected components. Hence, the total number of edges in graphs G[XT ′] for such
components T ′ is bounded by (|M | − 1) · 2bFcF , which is linear in |F | = OPT(G).

We are left with considering components T ′ that are adjacent to exactly one node of M .
We again have that ‖G[XT ′]‖ ≤ 2bF cF for each such component T ′, because otherwise XT ′

would be an excessive protrusion. However, a priori we do not have any bound on the number
of such components. Suppose for a moment that a large number of such components T ′ is
adjacent to the same node t ∈ M . By Lemma 8, all but a constant number of them are
connected to t via edges of the decomposition with thin adhesions. Moreover, for each of
these adhesions, all the (at most 2) edges of the adhesion have both endpoints in the bag Xt.
Since the size of Xt is bounded by a constant, and each XT ′ induces a graph of constant
size, we can infer that there is a constant number of isomorphism types for graphs G[XT ′],
together with the choice of the attachment points in Xt. So if the number of the considered
components T ′ was very large, then some of them would form a bouquet, a contradiction.

This shows that, in fact, the number of components T ′ adjacent to only one vertex of M
is also bounded linearly in |M |, so also in OPT(G). The fact that G has no thetas is used to
bound the number of edges contained in graphs induced by the bags of M . By combining all
these bounds, we conclude the proof of Lemma 19.

Finding a constant-factor approximation piece by piece. To handle bouquets and thetas,
we first show that they are disjoint, as otherwise they would constitute a large protrusion.

I Lemma 20 (?). Let G be a connected graph with no excessive protrusions. Then every
two bouquets and/or thetas in G have disjoint edge sets. Furthermore, if a bouquet or theta
is attached to U ⊆ V (G), then U is disjoint with all elements of any bouquet.

The following lemma is the crucial step for our approximation: we find a subset of edges
∆ with a guarantee that a constant fraction of ∆ is used in some optimum solution.

I Lemma 21 (?). Given a connected graph G with no excessive protrusion that is not F-free,
one can find in in time O(|G|3) a set ∆ ⊆ E(G) such that (for some c depending on F only):
OPT(G−∆) < OPT(G) and |∆| ≤ c · (OPT(G)− OPT(G−∆)).

The set ∆ given by Lemma 21 is constructed as follows. First, we locate all thetas and
bouquets in G; Lemma 20 ensures that they do not overlap. ∆ is defined as the set of all
edges of G, with the exception that in each bouquet and in each theta we exclude from ∆ the
edges of all but dF − 1 elements of the bouquet/theta. We show that the subgraph given by
edges of ∆ satisfies the assumptions of Lemma 19, thus bounding |∆|. The bound is linear
in the size of the intersection of ∆ with any optimal solution, allowing to conclude the claim.

To get a constant-factor approximation algorithm, we iteratively invoke the algorithm of
Lemma 21 (extended to general graphs by considering each connected component separately).
More precisely, we perform iteratively the following procedure, starting with G1 = G. At
step i, given a graph Gi, we first run the algorithm of Lemma 16 to remove excessive
protrusions from Gi and obtain a new graph G′i. Thus, in a sense, we reduce those parts

ICALP 2017

57:12 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

of the graph where no more edges need to be deleted. Then, we apply the algorithm of
Lemma 21 to G′i, thus finding a set ∆i with the following property: the deletion of ∆i

reduces OPT by some number p, while increasing the total number of edges deleted so far
by at most c · p. We proceed to the next iteration with Gi+1 := G′i −∆i. Eventually, we
arrive at the situation when the current graph Gi is already F-free, in which case we stop.
A constant-factor approximate solution can be then obtained by reverting the iterations:
Proceeding from the last iteration to the first, we always add the extracted set ∆i to the
constructed solution, and roll-back the protrusion reductions performed by the algorithm
of Lemma 16 while lifting the current solution using the solution-lifting algorithm. This
concludes the proof of Theorem 2 (the formal description is in the full version of the paper).

5 Linear kernel

In the previous section we observed (Lemma 19) that the only structures in the graph that
prevent it from being a linear kernel are excessive protrusions, bouquets, and thetas. Using
the Exhaustive Protrusion Replacement (Lemma 16) we can get rid of excessive protrusions,
but bouquets and thetas can still be present in the graph. It would be ideal if we could
reduce the size of every bouquet or theta to a constant, but unfortunately we are unable to
do this. Instead, bouquets and thetas will be reduced to constant size in the amortized sense.

The next lemma is the crux of our approach: provided we know a “local” solution ∆ that
isolates a bouquet into an F -free part, this bouquet can be pruned proportionally to the size
of ∆ without changing OPT(G). The proof is by a simple replacement argument, and the
same reasoning can also be applied to limit the sizes of thetas.

I Lemma 22 (?). Let {Xi}i∈I be a bouquet attached to U in G. Suppose ∆ ⊆ E(G) is such
that all the connected components of G −∆ that intersect U ∪

⋃
i∈I Xi are F-free. Then

OPT(G) = OPT(G′), where G′ is obtained from G by removing vertices of all except dF + |∆|
elements of the bouquet.

We are now ready to show the main part of our reasoning: given some solution F , for
example the one returned by the approximation algorithm of Theorem 2, we are able to
reduce the graph, provided it is not already bounded linearly in |F |.

I Lemma 23 (?). Let G be a connected graph with no excessive protrusions and let F ⊆ E(G)
be such that G− F is F-free. Then either ‖G‖ ≤ c · |F | for some constant c depending on F
only, or given G and F , one can compute in time O(‖G‖ · |G|2) a subgraph G′ of G such
that OPT(G) = OPT(G′) and ‖G′‖ < ‖G‖.

The proof uses the following strategy based on the idea of amortization. Given a solution
F , we use parts of F as local solutions to locally bound bouquets and thetas. More precisely,
we first perform a similar structural analysis of G with F removed as in the proof of Lemma 19;
see the sketch following its statement. There, we considered a neat tree-cut decomposition
T = (T,X) of G−F of width bF . In this decomposition, we highlighted a subset M ⊆ V (T),
the lca-closure of those nodes of T whose bags are incident to F . We concluded that the
only parts not yet bounded linearly in terms of |F | were large bouquets and thetas with both
attachment points contained in a bag Xt of some node t ∈ M . For such a node t, define
∆(t) as the set containing: (i) all the edges of F incident to Xt, and (ii) all the adhesions of
edges of T incident to t that lead to components of T −M containing other vertices of M .
Then ∆(t) easily satisfies the prerequisites of Lemma 22. Hence, dF + |∆(t)| can be used as
a bound for reducing these bouquets and thetas. Summing these bounds through all nodes
t ∈M , we achieve an O(|F |+ |M |) bound, thus O(|F |) due to |M | ≤ 4|F |.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:13

With Lemma 23, we can now easily conclude the proof of Theorem 3 (the formal description
is in the full version of the paper). First, we get rid of all excessive protrusions in the graph
(Lemma 16) and compute an approximate solution Fapx (Theorem 2). If |Fapx| > capx · k,
the input is a NO instance. Otherwise, we give Fapx to the algorithm of Lemma 23 which,
provided the graph is still too large to be a kernel, computes a strictly smaller, but equivalent
instance. We then recurse on this smaller instance, eventually returning a linear kernel.

Acknowledgements. The authors thank an anonymous referee for suggesting a more direct
approach to finding excessive protrusions as well as Ignasi Sau, Petr Golovach, Eun Jung Kim,
and Christophe Paul for preliminary discussions on the F-Immersion Deletion problem.

References
1 Rémy Belmonte, Archontia Giannopoulou, Daniel Lokshtanov, and Dimitrios M. Thilikos.

The Structure of W4-Immersion-Free Graphs. ArXiv e-prints 1602.02002, February 2016.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, November
2016. doi:10.1145/2973749.

4 Heather D. Booth, Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachan-
dramurthi. Fast algorithms for K4 immersion testing. J. Algorithms, 30(2):344–378, 1999.

5 Dimitris Chatzidimitriou, Jean-Florent Raymond, Ignasi Sau, and Dimitrios M. Thilikos.
An O(log OPT)-approximation for covering/packing minor models of θr. Algorithmica, 2017.
To appear.

6 Rajesh Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, Marcin Pilipczuk, and Michał
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions.
SIAM J. Comput., 45(4):1171–1229, 2016.

7 Bruno Courcelle. The Monadic Second-Order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

8 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Matt Devos, Zdeněk Dvořák, Jacob Fox, Jessica McDonald, Bojan Mohar, and Diego
Scheide. A minimum degree condition forcing complete graph immersion. Combinator-
ica, 34(3):279–298, 2014.

10 Zdeněk Dvořák and Paul Wollan. A structure theorem for strong immersions. J. Graph
Theory, 83(2):152–163, 2016. doi:10.1002/jgt.21990.

11 Zdeněk Dvořák and Liana Yepremyan. Complete graph immersions and minimum degree.
ArXiv e-prints 1512.00513, December 2015.

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

13 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
Deletion: Approximation and optimal FPT algorithms. ArXiv e-prints 1204.4230, October
2012.

14 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings of
FOCS 2012, pages 470–479. IEEE Computer Society, 2012.

15 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proceedings of SODA 2010, pages 503–510. SIAM, 2010.

ICALP 2017

http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1002/jgt.21990

57:14 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

16 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-
cut width. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors,
Proceedings of MFCS 2015, volume 9235 of Lecture Notes in Computer Science, pages
348–360. Springer, 2015.

17 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms,
13(3):35:1–35:35, March 2017. doi:10.1145/3029051.

18 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M.
Thilikos. Packing and covering immersion models of planar subcubic graphs. In Proceedings
of WG 2016, pages 74–84. Springer, 2016. Preprint: ArXiv e-prints 1602.04042.

19 Archontia C. Giannopoulou, Michał Pilipczuk, Dimitrios M. Thilikos, Jean-Florent Ray-
mond, and Marcin Wrochna. Linear kernels for edge deletion problems to immersion-closed
graph classes. ArXiv e-prints 1609.07780, September 2016. URL: https://arxiv.org/
abs/1609.07780.

20 Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Effective computation of
immersion obstructions for unions of graph classes. J. Comput. Syst. Sci., 80(1):207–216,
2014.

21 Rajeev Govindan and Siddharthan Ramachandramurthi. A weak immersion relation on
graphs and its applications. Disc. Math., 230(1–3):189–206, 2001.

22 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of STOC 2011, pages 479–488. ACM,
2011.

23 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. On an edge ranking
problem of trees and graphs. Discrete Appl. Math., 30(1):43–52, 1991.

24 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. In Proceedings of ICALP 2013, volume 7965 of Lecture Notes in Computer
Science, pages 613–624. Springer, 2013.

25 Eun Jung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. An
FPT 2-approximation for tree-cut decomposition. Algorithmica, pages 1–20, 2016. doi:
10.1007/s00453-016-0245-5.

26 Tak Wah Lam and Fung Ling Yue. Edge ranking of graphs is hard. Discrete Appl. Math.,
85(1):71–86, 1998.

27 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006. doi:10.1016/j.tcs.2005.10.007.

28 Dániel Marx and Paul Wollan. Immersions in highly edge connected graphs. SIAM J.
Discrete Math., 28(1):503–520, 2014.

29 Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

30 N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

31 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J.
Comb. Theory, Ser. B, 41(1):92–114, 1986.

32 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004.

33 Neil Robertson and Paul D. Seymour. Graph minors. XXIII. Nash-Williams’ immersion
conjecture. J. Comb. Theory, Ser. B, 100(2):181–205, 2010.

34 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

http://dx.doi.org/10.1145/3029051
https://arxiv.org/abs/1609.07780
https://arxiv.org/abs/1609.07780
http://dx.doi.org/10.1007/s00453-016-0245-5
http://dx.doi.org/10.1007/s00453-016-0245-5
http://dx.doi.org/10.1016/j.tcs.2005.10.007

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:15

35 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

36 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory,
Ser. B, 110:47–66, 2015.

ICALP 2017

	Introduction
	Preliminaries
	Protrusions
	Constant-factor approximation
	Linear kernel

