
HAL Id: lirmm-01617207
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01617207v1

Submitted on 16 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linking indexing data structures to de Bruijn graphs:
Construction and update

Bastien Cazaux, Thierry Lecroq, Eric Rivals

To cite this version:
Bastien Cazaux, Thierry Lecroq, Eric Rivals. Linking indexing data structures to de Bruijn graphs:
Construction and update. Journal of Computer and System Sciences, 2019, 104, pp.165-183.
�10.1016/j.jcss.2016.06.008�. �lirmm-01617207�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01617207v1
https://hal.archives-ouvertes.fr


JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.1 (1-19)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Linking indexing data structures to de Bruijn graphs: 

Construction and update

Bastien Cazaux a,b, Thierry Lecroq c, Eric Rivals a,b,∗
a LIRMM, CNRS and Université de Montpellier, 161 rue Ada, 34095 Montpellier Cedex 5, France
b Institut Biologie Computationnelle, CNRS and Université de Montpellier, 860 rue Saint Priest, 34095 Montpellier Cedex 5, France
c Normandie Univ. & UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, 76000 Rouen France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 June 2015
Received in revised form 26 May 2016
Accepted 27 June 2016
Available online xxxx

Keywords:
Index
Data structure
Suffix tree
Suffix array
Dynamic update
Overlap
Contracted de Bruijn graph
Assembly
Algorithms
Bioinformatics

DNA sequencing technologies have tremendously increased their throughput, and hence 
complicated DNA assembly. Numerous assembly programs use de Bruijn graphs (dBG) built 
from short reads to merge these into contigs, which represent putative DNA segments. In 
a dBG of order k, nodes are substrings of length k of reads (or k-mers), while arcs are their 
k + 1-mers. As analysing reads often require to index all their substrings, it is interesting 
to exhibit algorithms that directly build a dBG from a pre-existing index, and especially 
a contracted dBG, where non-branching paths are condensed into single nodes. Here, we 
exhibit linear time algorithms for constructing the full or contracted dBGs from suffix trees, 
suffix arrays, and truncated suffix trees. With the latter the construction uses a space that 
is linear in the size of the dBG. Finally, we also provide algorithms to dynamically update 
the order of the graph without reconstructing it.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In life sciences, determining the sequence of bio-molecules is an essential step towards the understanding of their 
functions and interactions within an organism. Powerful sequencing technologies allow to get huge quantities of short 
sequencing reads that need to be assembled to infer the complete target sequence. These constraints favour the use of a 
version of the de Bruijn Graph (dBG) dedicated to genome assembly – a version which differs from the combinatorial struc-
ture invented by N.G. de Bruijn [1]. Given a set S = {s1, . . . , sn} of n reads and an integer k, an assembly de Bruijn Graph, 
or for short simply de Bruijn Graph, stores each k-mer (k-long substring) occurring in the reads as nodes and has an arc 
joining two k-mers if they appear as successive (and hence overlapping) k-mers in at least one read.

The dBG is then traversed to extract long paths, which will form the contigs, i.e., the sequence of sub-regions of the 
molecule. In non-repetitive regions, the layout of the reads dictates a simple path of k-mers without bifurcations. Any simple 
path between an in-branching node and the next out-branching node, can then be contracted into a single arc without 
loosing any information on the graph structure. The sequences of such simple paths are called unitigs (the contraction from 
unique and contigs). The version of the dBG where each such “non-branching” path is condensed into a single arc is termed 
the Contracted dBG (CdBG).

* Corresponding author at: LIRMM, CNRS and Université de Montpellier, 161 rue Ada, 34095 Montpellier Cedex 5, France.
E-mail addresses: bastien.cazaux@lirmm.fr (B. Cazaux), thierry.lecroq@univ-rouen.fr (T. Lecroq), rivals@lirmm.fr (E. Rivals).
http://dx.doi.org/10.1016/j.jcss.2016.06.008
0022-0000/© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcss.2016.06.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://creativecommons.org/licenses/by/4.0/
mailto:bastien.cazaux@lirmm.fr
mailto:thierry.lecroq@univ-rouen.fr
mailto:rivals@lirmm.fr
http://dx.doi.org/10.1016/j.jcss.2016.06.008
http://creativecommons.org/licenses/by/4.0/


JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.2 (1-19)

2 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Sequencing technologies of the second generation can yield hundreds of millions of reads. Compared to the overlap graph 
or to the string graph, which were used with previous technologies, the dBG has a number of nodes that is not proportional 
to the number of reads: it depends on a user controlled parameter k, termed the order of the dBG. Its memory usage can 
be fine tuned through this parameter.

In bioinformatics, dBGs are heavily exploited for genome assembly [2], but for other purposes as well. Actually, some 
programs mine the dBG to seek graph patterns representing mutations, large insertions/deletions, or chromosomal rear-
rangements [3]. Others use it to correct sequencing errors in long reads [4].

The de Bruijn Graph is usually built directly from the set of reads, which is time and space consuming. Several compact 
data structures for storing dBGs have been developed [5,6] including probabilistic ones [7]. The emphasis is placed on the 
practical space needed to store the dBGs in memory. Moreover, some recent assembly algorithms put forward the advan-
tage of using for the same input, multiple dBGs with increasing orders [8], thereby emphasising the need for dynamically 
updating the dBG. In all cases, the construction algorithms need to scan through the whole set of reads.

Several genome assembly programs used hash tables to store the k-mer of the reads and allow navigating through the 
arcs of the dBG, but these solutions suffer from several limitations regarding e.g. functionalities and flexibility. With hash 
functions, it is often not possible to add extra information to the nodes, like for instance the number of times a k-mer is 
observed in the read set, which is used as a confidence measure. Hash tables make it difficult to compute the contracted 
dBG or to change the value of k. The main advantage of sophisticated hash functions is their memory footprint. For instance 
Minia [9] offers a very space efficient storage to handle the dBG based on cascading Bloom filters, which are a type of 
hash functions. This hash table based solution was used for long read error correction and also proves efficient in that 
context [4].

In studies involving the analysis of sequencing reads, distinct tasks require to index either all substrings, or the k-mers of 
the reads. For instance, fast dBG assembly programs first count the k-mers before building the dBG to estimate the memory 
needed [7]. Another example: some error correction software build a suffix tree of all short reads to correct them [10]. 
Hence, before the assembly starts, the read set has already been scanned through and indexed. It can thus be efficient 
to enable the construction of the dBG for the subsequent assembly, directly from the index rather than from scratch. For 
these reasons, we set out to find algorithms that transform usual indexes into a dBG or a contracted dBG. It is also of 
theoretical interest to build bridges between well studied indexes and this graph on words. Despite recent results [11,12], 
formal methods for constructing dBGs from suffix trees are an open question. In comparison, Simpson and Durbin have 
proposed an algorithm to build the String Graph from a FM-index [13].

Here, we present algorithms to build directly the CdBG from a Generalised Suffix Tree or from a Generalised Suffix 
Array of the reads [14–17]. These algorithms take space and time that are linear in the input size. These well-known data 
structures index all substrings of the reads, and not only their k-mers. This results in one drawback and in one advantage.

The drawback is their space occupancy. We will then consider an indexing data structure that reduces the set of indexed 
substrings: the truncated suffix tree [18,19]. We introduce the reduced truncated suffix tree (TST) and then show how to 
construct with this index both the dBG and CdBG in time and space that are linear in the size of the final dBG, rather than 
in the cumulated length of the reads. By size of the dBG we mean the sum of number of nodes, plus the number of arcs. 
This algorithm achieves an optimal time and space complexity.

The advantage is the counterpart: as substrings of all lengths are indexed, it allows to update the order of the graph, 
that is to change dynamically the value of k without reconstructing the dBG. Finally, we provide efficient algorithms for 
increasing or decreasing the value of k. Of course, if one uses the truncated suffix tree instead of the full suffix tree, only 
some updates remain possible. Our results nevertheless remain applicable to the truncated suffix tree, where the order can 
be dynamically decreased.

This article includes results that appeared in [20,21].

1.1. Indexing data structures

Suffix trees are well-known indexing data structures that enable to store and retrieve all the factors of a given string. 
The suffix tree of a string y of length s can be build in time and space in O (s) on a constant size alphabet [14,22]. 
Then, it is possible to check if a pattern x of length m is a factor of a string y of S in time O (m). Counting the number 
of occurrences of x in y can also be done in time O (m) while enumerating the positions where x occurs in y can be 
performed in time O (m + occ), where occ denotes the number of occurrences of x in y. Suffix trees can be adapted to a 
finite set of strings and are then called Generalised Suffix Trees (GSTs). Thus, given a set S of n strings of total length ‖S‖ on 
a constant size alphabet, the generalised suffix tree for S can be build in time and space O (‖S‖). For a detailed exposition 
of properties of suffix trees we refer the reader to [17]. Suffix trees have been widely studied and used in a large number of 
applications (see [15] and [17]). In practice, they consume too much space and are often replaced by the more economical 
suffix arrays [16], which have the same properties [23].

When one is only interested in factors of a given length, truncated suffix trees only store the factors of length up to a 
given constant k of a given string. They can also be build in linear time and space [18]. In practice, truncated suffix trees 
save a lot of nodes compared to suffix trees.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.3 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3
Fig. 1. S := {bacbab, cbabcaa, bcaacb, cbaac, bbacbaa} is a set of words. Therefore, we have Support(ba) = {(1, 1), (1, 4), (2, 2), (4, 2), (5, 2), (5, 5)}, RC(ba) =
{ε, c, cb, cba, cbab, b, bc, bca, bcaa, a, ac, cbaa}, LC(ba) = {ε, c, ac, bac, b, bbac} and d(ba) = 0. One has RC(ba) ∩ � = {a, b, c}. Thus, the word ba is not right 
extensible in S (see Definition 2).

2. Definitions of de Bruijn graphs

2.1. Notation about strings

Here we introduce a notation and basic definitions.
An alphabet � is a finite set of letters. A finite sequence of elements of � is called a word or a string. The set of all 

words over � is denoted by �� , and ε denotes the empty word. For a word x, |x| denotes the length of x. Given two words 
x and y, we denote by x · y or simply xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|, x[i] denotes the i-th letter 
of x, and x[i .. j] denotes the substring or factor x[i]x[i + 1] . . . x[ j]. Let k be a positive integer. If |x| ≥ k, f irstk(x) is the 
prefix of length k of x and lastk(x) is the suffix of length k of x. Then a substring of length k of x is called a k-mer of x. 
For i such that 1 ≤ i ≤ |x| − k + 1, (x)k,i is the k-mer of x starting in position i, i.e., (x)k,i = x[i .. i + k − 1]. Thus we have 
f irstk(x) = (x)k,1 and lastk(x) = (x)k,|x|−k+1. We denote by �(�) the cardinality of any finite set �.

Let S = {s1, . . . , sn} be a finite set of words. It is our running instance for all the following. Let us denote the sum of the 
lengths of the input strings by

‖S‖ :=
∑
si∈S

|si |

We denote by

• F (S) the set of factors of words of S , i.e., F (S) = {w ∈ �� | ∃u, v ∈ ��, 1 ≤ i ≤ n, si = uw v}.
• Fk(S) the set of factors of length k of S where k is a positive integer, i.e., Fk(S) = F (S) ∩ �k .
• Suff k(S) is the set of suffixes of length k of words of S .

2.2. Classical definition of de Bruijn graph

All definitions below refer to the set S; however, as S is clear from the context, we simply omit the “in S” in the 
notation.

For a word w of F (S),

• Support(w) is the set of pairs (i, j), where w is the substring (si)|w|, j . Support(w) is called the support of w in S .
• RC(w) (resp. LC(w)) is the set of right context (resp. left context) of the word w in S , i.e., the set of words w ′ such that 

w w ′ ∈ F (S) (resp. w ′w ∈ F (S)).
• 
w� is the word w w ′ where w ′ is the longest word of RC(w) such that Support(w) = Support(w w ′). In other words, 

such that w and w w ′ have exactly the same support in S .
• �w is the word w ′ where w ′ is the longest prefix of w such that Support(w ′) �= Support(w).
• d(w) := |
w�| − |w|.

In other words, 
w� is the longest extension of w having the same support as w in S , while �w is the shortest reduction 
of w with a support different from that of w in S . These definitions are illustrated in a running example presented in Fig. 1.

We give the definition of a de Bruijn graph for assembly (dBG for short), which differs from the original definition of a 
complete graph over all possible words of length k stated by de Bruijn [1].

Definition 1. Let k be a positive integer. The de Bruijn graph of order k for S , denoted by D BG+
k , is a directed graph, 

D BG+
k := (V +

k , E+
k ), whose vertices are the k-mers of words of S and where an arc links u to v if and only if u and v are 

two successive k-mers of a word of S , i.e.:

V +
k := Fk(S)

E+
k := {(u, v) ∈ V +

k
2 | lastk−1(u) = f irstk−1(v) and v[k] ∈ RC(u)}.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.4 (1-19)

4 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 2. Examples of arcs from D BG+
k . (a) shows letters in the right context of ba, and (b) the successors of node ba in D BG+

2 ; one for each letter in 
RC(w) ∩ � . (c) shows letters in the left context of ba, and (d) the predecessors of node ba in D BG+

2 ; one for each letter in LC(w) ∩ � .

Fig. 3. With solid arcs only, the graphs correspond to D BG+
2 (a) and D BG+

3 (b) for our running example. With both solid and dotted arcs, they represent 
D BG−

2 (a) and D BG−
3 (b).

An equivalent definition of E+
k can be stated using the left instead of right context:

E+
k := {(u, v) ∈ V +

k
2 | lastk−1(u) = f irstk−1(v) and u[1] ∈ LC(v)}.

Examples of arcs are displayed on Fig. 2. The size of D BG+
k is denoted by and defined as size(D BG+

k ) := �(V +
k ) + �(E+

k ). 
Note that another, simpler definition of the arcs in the de Bruijn graph coexists with that of Definition 1. There, an arc links 
u to v if and only if u overlaps v by k − 1 symbols. This graph is denoted by D BG−

k = (V −
k , E−

k ), where:

V −
k := Fk(S)

E−
k := {(u, v) ∈ V −

k
2 | lastk−1(u) = f irstk−1(v)}.

The arcs of E−
k satisfy less constraints than those of E+

k ; hence, E+
k is a subset of E−

k . Both definitions are illustrated on 
Fig. 3. Some assembly programs use D BG−

k [9]. All the algorithmic results that we obtain for D BG+
k remain valid for D BG−

k . 
In the sequel, we focus only on D BG+

k .
Let us introduce now the notions of extensibility for a substring of S and that of a Contracted dBG (CdBG for short).

Definition 2 (Extensibility). Let w be a word of F (S).

• w is right extensible in S if and only if �(RC(w) ∩ �) = 1.
• w is left extensible in S if and only if �(LC(w) ∩ �) = 1.

Let w be a word of �� . The word w is said to be a unique k′-mer of S if and only if k′ ≥ k and for all i ∈ [1..k′ − k + 1], 
(w)k,i ∈ F (S) and for all j ∈ [1..k′ − k], (w)k, j is right extensible and (w)k, j+1 is left extensible.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.5 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
Fig. 4. The graphs correspond to CDBG+
2 (a) and CDBG+

3 (b) for our running example.

Definition 3. A contracted de Bruijn graph of order k, denoted by CDBG+
k = (V +

k,c, E
+
k,c), is a directed graph where:

V +
k,c = {w ∈ �� | w is a k′-mer unique maximal by substring and k′ ≥ k}

E+
k,c = {(u, v) ∈ V +

k,c
2 | lastk−1(u) = f irstk−1(v) and v[k] ∈ RC(lastk(u))}.

Examples of CDBG+
k are displayed on Fig. 4. Note that in the previous definition, an element w in V +

k,c does not neces-
sarily belong to F (S), since w may only exist as the substring of the agglomeration of two words of S . Thus, let w be a 
k′-mer unique maximal by substring with k′ ≥ k:

• lastk(w) is not right extensible or RC(lastk(w)) ∩ � = {a} and lastk−1(w) · a is not left extensible,
• f irstk(w) is not left extensible or LC( f irstk(w)) ∩ � = {a} and a · f irstk−1(w) is not right extensible.

With this argument, we have both following propositions.

Proposition 1. Let (u, v) ∈ E+
k,c ; (lastk(u), f irstk(v)) ∈ E+

k and there exists w ∈ V +
k such that (w, f irstk(v)) ∈ E+

k \ {(lastk(u),

f irstk(v))} or (lastk(u), w) ∈ E+
k \ {(lastk(u), f irstk(v))}.

Proposition 2. Let (u, v) ∈ E+
k . If u is right extensible and v is left extensible, then there exists w ∈ V +

k,c such that u · v[k] is a substring 
of w. Otherwise, there exists (u′, v ′) ∈ E+

k,c such that u = lastk(u′) and v = f irstk(v ′).

According to Propositions 1 and 2, CDBG+
k is the graph D BG+

k where the arcs (u, v) are contracted if and only if u is 
right extensible and v is left extensible.

2.3. Constructive characterisation of the de Bruijn graph

Let k be a positive integer. We define the following three subsets of F (S).

• Init Exactk = {w ∈ F (S) | |w| = k and d(w) = 0}
• Initk = {w ∈ F (S) | |w| ≥ k and d( f irstk(w)) = |w| − k}
• SubInitk = Init Exactk−1

A word of Init Exactk is either only the suffix of some si or has at least two right extensions, while the first k-mer of a word 
in Initk \ Init Exactk has only one right extension.

Proposition 3. Init Exactk = Initk ∩ {w ∈ F (S) | |w| = k}.

Proof. Let w ∈ Init Exactk . In this case, we get f irstk(w) = w and |w| − k = 0. This means that d( f irstk(w)) = |w| − k and 
therefore w ∈ Initk . �

For w an element of Initk , f irstk(w) is a k-mer of S . Given two words w1 and w2 of Initk , f irstk(w1) and f irstk(w2)

are distinct k-mers of S . Furthermore for each k-mer w ′ of S , there exists a word w of Initk such that f irstk(w) = w ′ . From 
this, we get the following proposition.

Proposition 4. There exists a bijection between Initk and the set of the k-mers of S.

According to Definition 1 and Proposition 4, each vertex of D BG+
k can be assimilated to a unique element of Initk . As the 

vertices of D BG− are identical to those of D BG+ , there exists also a bijection between Initk and the set of vertices of D BG− . 
k k k



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.6 (1-19)

6 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
To define the arcs between the words of Initk , which correspond to arcs of D BG+
k , we need the following proposition, which 

states that each single letter that is a right extension of w gives rise to a single arc.

Proposition 5. For w ∈ Init Exactk and a ∈ � ∩ RC(w), there exists a unique w ′ ∈ Initk such that lastk−1(w)a is a prefix of w ′ .

Proof. Let w be a word of Init Exactk and a a letter of RC(w). By definition of right context, lastk−1(w)a ∈ F (S). As 
|lastk−1(w)a| = k, there exists w ′ such that lastk−1(w)a is a prefix of w ′ and |lastk−1(w)a| + d(lastk−1(w)a) = |w ′|. By 
definition of Initk , w ′ ∈ Initk . �

The set Initk represents the nodes of D BG+
k . Let us now build the set of arcs that is isomorphic to E+

k . Let w be a word 
of Initk and Succk(w) denote the set of successors of f irstk(w): Succk(w) := {x ∈ Initk | ( f irstk(w), f irstk(x)) ∈ E+

k }. We 
know that for each letter a in RC(w), there exists an arc from f irstk(w) to f irstk(last|w|−1(w)a) in D BG+

k . We consider 
two cases depending on the length of w:

Case 1. |w| = k.
According to Proposition 3, w ∈ Init Exactk and hence lastk−1(w) ∈ SubInitk . Therefore, the outgoing arcs of w in D BG+

k
are the arcs from w to w ′ satisfying the condition of Proposition 5. Then,

Succk(w) =
⋃

a∈�∩RC(w)


lastk−1(w)a�.

Case 2. |w| > k.
As w is longer than k, it contains the next k-mer; hence f irstk(last|w|−1(w)a) = f irstk(last|w|−1(w)), and there exists a 

unique outgoing arc of w: that from w to 
w[2 .. k]�. Indeed, by definition of Initk , 
w[2 .. k]� ∈ Initk , and thus

Succk(w) = {
w[2 ..k]�}.

Now, we can build integrally D BG+
k or more exactly an isomorphic graph of D BG+

k .

Theorem 1. With the sets Initk, Init Exactk and SubInitk, we can build an isomorphic graph of D BG+
k in linear time in the size of 

these sets.

For simplicity, from now on, we confound the graph we build with D BG+
k .

2.4. Constructive characterisation of the contracted de Bruijn graph

To do the same with CDBG+
k , initially we begin by explaining the algorithm that we use to build this graph and in the 

second time we need to characterise the concepts of right and left extensibility in terms of word properties.

Our algorithm to build CDBG+
k . We present a generic algorithm to build incrementally CDBG+

k . It is explained in terms of 
words, and does not depend on any indexing data structure. In following sections, we will use this generic algorithm and 
explain how it can be performed efficiently using a specified indexing structure.

The main algorithm (Algorithm 2) explores D BG+
k to find the nodes kept in CDBG+

k and set all single arcs that represent 
whole non-branching paths of D BG+

k that are properly contracted. The key point is to find all starting nodes of simple paths 
and explore these paths from them; the exploration is done by Algorithm 1.

A more detailed explanation. First, note that to build D BG+
k it suffices to know the set Succk(.) for each node. The algo-

rithm below simulates a traversal of D BG+
k without building it, and stores only one node per unique maximal k′-mer of 

D BG+
k . For such a k′-mer, say m, we choose to represent it by the node v such that f irstk(v) is a prefix of m. In D BG+

k , 
m is represented by a simple (i.e., non-branching) path and v is its first node. In the traversal algorithm, for a current 
starting node vc in Initk , we traverse the simple path until we arrive at a node u having several successors or such that 
its only successor is not left extensible (i.e., has several predecessors). In other words, until we find u such that u is not 
right extensible or next(u) is not left extensible. In D BG+

k , there exists a simple path between vc and u, and this must 
build a single node in CDBG+

k . To contract this path, we choose to keep vc , and for any successor w of u, we insert an 
arc between u and w , as this arc cannot be contracted. Noting that w necessarily starts a chain (having at least a sin-
gle node), if w is not yet in CDBG+

k , we launch a new path exploration starting from w , one gets that f irstk(w) is the 
prefix of a node of CDBG+

k , and thus w can appropriately represent the path. Now, if w already belongs to CDBG+
k , the 

case is trickier. If v f stores the first vc called by the procedure, it may not be the starting node of a path, but be any-
where inside a path. Two cases arise. If v f is considered during the while loop, then it is not at the start of a simple 



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.7 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Algorithm 1: BuildAuxCDBG(V , E, v f , vc).

Input : The partial contracted graph CDBG+
k as (V , E), two nodes v f and vc . v f the initial starting node, and vc the current starting node.

Output: The updated contracted graph (V ′, E ′), which now contains all paths starting from vc .
1 begin
2 u := vc ; mark u
3 // search the node ending the chain that goes through vc

4 while u is right extensible and next(u) is left extensible do
5 if v f = next(u) then
6 update (v f , i) by (vc , i) for all (v f , i) ∈ E
7 return (V \ {v f }, E)

8 u := next(u); mark u
9 // now explore the path starting in the successor of u

10 for w ∈ Succk(u) do
11 if w ∈ V then
12 (V , E) := (V , E ∪ {(vc , w)});

13 else
14 (V , E) := BuildAuxC D BG(V ∪ {w}, E ∪ {(vc , w)}, v f , w); ; // explore from node w

15 return (V , E)

Algorithm 2: BuildCDBG(S).
Input : A set of words S .
Output: CDBG+

k of S .
1 begin
2 (V , E) = (∅, ∅)

3 // search for any node v of D BG+
k without predecessors

4 // and build CDBG+
k from v

5 for v ∈ Initk do
6 if there exists no w such that v ∈ Succk(w) then
7 (V , E) := (V , E) ⋃ BuildAuxC D BG(V ∪ {v}, E, v, v)

8 // explore D BG+
k from any node not yet visited

9 for vc an unmarked node of Initk do
10 (V , E) := (V , E) ⋃ BuildAuxC D BG(V ∪ {vc}, E, vc , vc)

11 return (V , E)

path: hence we must update V by exchanging v f with vc and terminate the exploration. Otherwise, v f is traversed dur-
ing the for loop (as the value of w), then it is a successor of u and the beginning of a simple path: we just add an 
arc linking vc to w and stop. Finally, if w already belongs to V but w �= v f , we also add an arc linking vc to w and 
stop.

The process performed by Algorithm 1 augments the partial graph CDBG+
k restrained to the nodes visited when exploring 

the path starting from vc . It suffices now to ensure that all arcs of D BG+
k are examined, which Algorithm 2 does. More 

precisely, it starts by visiting the simple paths starting at nodes having no predecessors (otherwise these nodes would 
not be visited). Once this is done, one must explore all nodes not yet marked and continue until all nodes have been 
visited/marked.

From the above discussion, we obtain the following theorem.

Theorem 2. Assume one can determine in constant time for an arc (u, v) of E+
k,c , whether u is right extensible and whether v is left 

extensible. Then, with the sets Initk, Init Exactk and SubInitk, Algorithm 2 builds a graph that is isomorphic to CDBG+
k in linear time 

in the size of these sets.

Remark. Executing Algorithm 2 does not require to build D BG+
k , since the set of successors Succk(u) of any node u is 

computed in constant time.

Characterisation of the concepts of right and left extensibility. By the construction of D BG+
k , we get the following properties, 

which will turn useful for the construction of the CdBG from specific indexes (Section 3 and 4).

Proposition 6. Let w be a word of Initk. f irstk(w) is right extensible if and only if |w| > k or �(RC(w) ∩ �) = 1.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.8 (1-19)

8 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Proposition 7. Let w be a word of Initk such that f irstk(w) is right extensible. Let the letter a be the unique element of 
RC( f irstk(w)) ∩ �, then lastk−1( f irstk(w))a is left extensible if and only if

�(Support( f irstk(w))) = �(Support(lastk−1( f irstk(w))a) \ {(i,1) | 1 ≤ i ≤ n}).

Proof. Let (i, j) be a pair of Support( f irstk(w)). We have

(i, j + 1) ∈ Support(lastk−1( f irstk(w))).

As Support(lastk−1( f irstk(w))) = Support(lastk−1( f irstk(w))a), it follows that

(i, j + 1) ∈ Support(lastk−1( f irstk(w))a).

If there exists (i, j) ∈ Support(lastk−1( f irstk(w))) such that j > 0 and (i, j − 1) /∈ Support( f irstk(w)), there exists a letter 
b �= w[1] such that (i, j − 1) ∈ Support(b · lastk−1( f irstk(w))).

Hence (b · lastk−1( f irstk(w)), lastk−1( f irstk(w))a) also belongs to E+ , and thus lastk−1( f irstk(w))a is not left extensi-
ble. �

In summary, this section gives a formulation of the dBG of S in terms of words. Now assume that the substrings of the 
words are indexed in a data structure, e.g. a generalised suffix array. How can we build the dBG or the contracted graph 
directly from this structure? To achieve this, it suffices to compute the three sets Initk , Init Exactk , SubInitk , as well as the 
sets Support(.) and Succk(.) for some appropriate substrings. In the following sections, we exhibit algorithms to compute 
D BG+

k and CDBG+
k for two important indexing structures and for a home-made truncated data structure.

3. Transition from an indexing data structure to de Bruijn graphs

3.1. From a generalised suffix tree

Suffix Trees (ST) belong to the most studied indexing data structures. A generalised ST can index the substrings of a set 
of words. Generally for this sake, all words are concatenated and separated by a special symbol not occurring elsewhere. 
However, this trick is not compulsory, and an alternative is to keep the indication of a terminating node within each node.

3.1.1. The suffix tree and its properties
The Generalised Suffix Tree of a set of words S is the suffix tree of S , where each word of S does not necessarily finish 

by a letter of unique occurrence. Hence, for each node v of the Generalised Suffix Tree of S , we keep in memory the set, 
denoted by Suff (v), of pairs (i, j) such that the word represented by v is the suffix of si starting at position j. Let us 
denote by T the generalised suffix tree of S (from now on, we simply say the tree) and by V T its set of nodes. For v ∈ V T , 
Children(v) denotes its set of children and f (v) its parent. See Fig. 5 for an example of GST.

Some nodes of T may have just one child. The size of the union of Suff (v) for all node v of T equals the number of 
leaves in the generalised suffix tree when the words end with a terminating symbol. Hence, the space to store T and the 
sets Suff (.) is linear in ‖S‖. By simplicity, for a node v of T , the word represented by v is confused with v . For each node 
v of T , v ∈ F (S). As all elements of F (S) are not necessarily represented by a node of T , we give the following proposition.

Proposition 8. The set of nodes of T is exactly the set of words w of F (S) such that d(w) = 0.

We recall the notion of a suffix link (SL) for any node v of T (leaves included). Let sl(v) denote the node targeted by the 
suffix link of v , i.e., sl(v) = v[2 .. |v|]. By definition of a suffix tree, for all w ∈ F (S), there exists a node v of T such that w
is a prefix of v . Let v ′ the node of minimal length of T such that w is a prefix of v , then |v ′| = |w| + d(w), and therefore 

w� = v ′ .

Proposition 9. Let w ∈ F (S). Then |
w�| ≥ |w| > | f (
w�)|, where f (
w�) is the parent of 
w� in T .

Proof. As f (
w�) = �w, the result is obvious. �
3.1.2. Construction of D BG+

k
Let [x1..xm] be the set of k-mers of S . According to the definition of Initk and to Proposition 4, Initk = [
x1�..
xm�]. Thus, 

by Proposition 9, Initk = {v ∈ V T | | f (v)| < k and |v| ≥ k}. Similarly, Init Exactk = {v ∈ V T | |v| = k}. Now, it appears clearly 
that Init Exactk is a subset of Initk , since for all v ∈ V T , | f (v)| < |v|.

We consider the same two cases as for the construction of E+ on p. 6, but in the case of a tree. Let v ∈ Initk .



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.9 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Fig. 5. The generalised suffix tree for our running example and the constructed de Bruijn graph for k := 2. Square nodes represent words that occur as 
a suffix of some si , circle nodes are the other nodes of T . Nodes in grey are those used to represent the nodes of the dBG. Each square node stores its 
positions of occurrences in S; for simplicity, we display the starting position as a number and the word of S in which it occurs as its colour, instead of 
showing the list of pairs (i, j). The solid curved arrows are the edges of the de Bruijn graph for k := 2; those coloured in red correspond to Case 1 and 
those in blue to Case 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The figures (a), (b) and (c) show Case 1 and Case 2 encountered when computing the arcs of D BG+
k . The green node represents the node v , and 

the one in orange sl(v). The dashed arcs correspond to suffix links. Arcs of D BG+
k are in solid line and coloured in red for Case 1 (a), or in blue for Case 2

(b), (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Case 1. |v| = k (Fig. 6a).
As v ∈ Init Exactk , sl(v) ∈ SubInitk . Therefore, each child u of sl(v) is an element of Initk . Thus, the outgoing arcs of v

in D BG+
k are the arcs from v to the child u of sl(v) where the first letter of the label between sl(v) and u is an element 

of the right context of v . As the set of the first letters of the label between v and children of v is exactly RC(v) ∩ �, the 
number of outgoing arcs of v in D BG+

k is the number of children of v . To build the outgoing arcs of v in D BG+
k , for each 

child u′ of v , we associate v with the node of Initk between the root and sl(u′), i.e., 
 f irstk(sl(u′))�.

Case 2. |v| > k (Figs. 6b and 6c).
We have that sl(v) is a node of V T . As |v| > k, |sl(v)| ≥ k. Thus, there exists an element of Initk between the root and 

sl(v). We associate v with this node, i.e. 
 f irstk(sl(v))�.

We illustrate these two cases in Fig. 5:

Case 1. Case where v is 6,6 , sl(v) is 7,7 , the unique child u′ of v is 3 , and sl(u′) is 4 , which is in Initk .

Case 2. Case where v is 1 , sl(v) is 2 , and 
 f irstk(sl(v))� is .

In both cases, building the arcs of E+ requires to follow the SL of some node. The node, say u, pointed at by a SL may 
not be initial. Hence, the initial node representing the associated first k-mer of u is the only ancestral initial node of u. We 



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.10 (1-19)

10 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
equip each such node u with a pointer p(u) that points to the only initial node on its path from the root. In other words, 
for any u /∈ Initk such that |u| > k, one has p(u) := 
 f irstk(u)�.

The algorithm to build the D BG+
k is as follows. An initial depth first traversal of T allows to collect the nodes of Initk

and for each such node to set the pointer p(.) of all its descendants in the tree. Finally to build E+ , one scans through Initk
and for each node v one adds Succk(v) to E+ using the formula given above. Altogether this algorithm takes a time linear 
in the size of T . Moreover, the number of arcs in E+ is linear in the total number of children of initial nodes. This gives us 
the following result.

Theorem 3. For a set of words S, building the de Bruijn Graph of order k, D BG+
k takes linear time and space in |T |, i.e., in ‖S‖.

3.1.3. Construction of CDBG+
k

In Section 2.3, we have seen an algorithm that allows to compute directly CDBG+
k provided that one can determine if a 

node v is right extensible and if next(v) is left extensible, where next(v) denotes the only successor of v . Let us see how 
to compute the extensibility in the case of a Suffix Tree.

By applying Proposition 6 in the case of a tree, for an element v of Initk , f irstk(v) is right extensible if and only if 
|v| > k or �(Children(v)) = 1. Thus checking the right extensibility of a node takes constant time.

For the left extensibility of the single successor of a node, one only needs the size of support of some nodes (Proposi-
tion 7). Let us see first how to compute �(Support(.)) on the tree, and then how to apply Proposition 7.

Proposition 10. Let v be a word of F (S) and V T (
v�) denotes the set of nodes of the subtree rooted in 
v�.

Support(v) =
⋃

v ′∈V T (
v�)
Suff (v ′).

Along a traversal of the tree, we can compute and store �(Support(v)) and �(Support(v) ∩ {(i, 1) | 1 ≤ i ≤ n}) for each 
node v in linear time in |T |.

Let v be a word of Initk such that f irstk(v) is right extensible.

Case 1. If |v| = k, then f irstk(v) = v and �(Children(v)) = 1. Let u be the only child of v . Thus, |u| > k, RC(v) ∩ � =
{u[k + 1]}, and lastk−1(v)u[k + 1] = f irstk(sl(u)). Hence,

�(Support(v)) = �(Support( f irstk(sl(u))) \ {(i,1) | 1 ≤ i ≤ n})
and by Proposition 7, f irstk(sl(u)) is left extensible.

Case 2. If |v| > k, then RC( f irstk(v)) ∩ � = {v[k + 1]} and

lastk−1( f irstk(v))v[k + 1] = lastk( f irstk+1(v)) = f irstk(sl(v)).

By Proposition 7, f irstk(sl(v)) is left extensible if and only if

�(Support( f irstk(v))) = �(Support( f irstk(sl(v))) \ {(i,1) | 1 ≤ i ≤ n})
As �(Support( f irstk(v))) = �(Support(
 f irstk(v)�)) and �(Support(v) \ {(i, 1) | 1 ≤ i ≤ n}) = �(Support(v)) −

�(Support(v) ∩ {(i, 1) | 1 ≤ i ≤ n}), determining if next(v) is left extensible takes constant time. To conclude, as for any 
initial node v , we can compute in O (1) time its set of successors Succk(v), its right extensibility, and the left extensibility 
of its single successor, we can readily apply Algorithm 2 to built CDBG+

k and we obtain a complexity that is linear in the 
size of D BG+

k , since each successor is accessed only once. This yields Theorem 4.

Theorem 4. For a set of words S, building the Contracted de Bruijn Graph of order k, CDBG+
k takes linear time and space in |T |, i.e., 

in ‖S‖.

3.2. From a generalised suffix array

In the previous subsections we have shown how to build de Bruijn graphs from suffix trees. Suffix trees are very elegant 
data structures but they are too space-consuming in practice. In many applications they have been replaced by suffix arrays 
that are equivalent data structures and are more space economical. We will now show how to build de Bruijn graphs from 
suffix arrays.

Let SA and LCP be the generalised enhanced suffix array of S:

• ∀ 1 ≤ i < ‖S‖, SA[i] = (g, h), SA[i + 1] = (g′, h′) then sg[h . . |sg |] < sg′ [h′ . . |sg′ |],
• ∀ 2 ≤ i ≤ ‖S‖, LCP[i] is the length of the longest common prefix between suffixes stored in SA[i − 1] and in SA[i], and 

LCP[1] = LCP[‖S‖ + 1] = −1.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.11 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
Let us recall the definition of an lcp-interval.

Definition 4 ([23]). An interval [i, j], 1 ≤ i < j ≤ ‖S‖ is called a lcp-interval of value �, also denoted by �-[i, j], iff:

1. LCP[i] < �,
2. LCP[g] ≥ � for i < g ≤ j,
3. LCP[g] = � for at least one g such that i < g ≤ j,
4. LCP[ j + 1] < �.

Let us now recall the definitions of the previous and next smaller values (PSV and NSV) arrays.

Definition 5 ([23]). For 2 ≤ i ≤ ‖S‖:

• PSV[i] = max{ j | 1 ≤ j < i and LCP[ j] < LCP[i]},
• NSV[i] = min{ j | i < j ≤ ‖S‖ + 1 and LCP[ j] < LCP[i]}.

Recall that if 2 ≤ i ≤ ‖S‖ then [PSV[i], NSV[i] − 1] is an lcp-interval of value LCP[i]. The direct inclusion among lcp-
intervals defines a tree relationship called the lcp-interval tree (see [23, Def. 4.4.3, p. 87]). Given an lcp-interval �-[i, j], its 
parent lcp-interval �′-[i′, j′] can be easily computed in constant time using the arrays LCP, PSV and NSV . Then:

• Initk consists of:
– the lcp-intervals �-[i, j] such that � ≥ k and the parent interval �′-[i′, j′] of �-[i, j] is such that �′ < k (the associated 

string is sSA[i].g[SA[i].h . . SA[i].h + � − 1]);
– the positions SA[i′] = (g, h) such that i′ is not contained in lcp-intervals �-[i, j] with � ≥ k and h ≤ |sg | − k + 1 (the 

associated string is sg [h . . |sg]);
• Init Exactk is composed of the lcp-intervals k-[i, j];
• SubInitk = Init Exactk−1.

Actually the lcp-interval tree does not need to be explicitly build and the sets can be computed by a single scan of the 
SA and LCP arrays.

For an lcp-interval �-[i, j] ∈ Initk we have �(Support(sSA[i].g[SA[i].h . . SA[i].h + k − 1])) = j − i + 1.

Theorem 5. The de Bruijn graph of order k, CDBG+
k , for a set of words S can be built in a time and space that are linear in ‖S‖ using 

the generalised suffix array of S.

4. Transition from a truncated structure to de Bruijn graphs

This section is organised as follows. In Section 4.1, we define a simple condition that a set of input strings must satisfy 
to allow building a generalised index and sketch a modification of McCreight’s algorithm [14] for doing so. In Section 4.2, 
we introduce the reduced truncated suffix tree and specialise the previous algorithm for constructing it efficiently. Finally, 
in Section 4.3 we show how to construct both the de Bruijn Graph and its contracted version in optimal time from the 
reduced truncated suffix tree.

4.1. Set of chains of suffix-dependant strings and tree

Here, we introduce the notion of suffix dependence between strings, and the notion of chain of suffix-dependant strings in 
order to define a unified index that generalises both the suffix tree [14] and the truncated suffix tree [18]. First, let us define 
the concept of suffix-dependant strings and of chains of suffix-dependant strings.

Definition 6.

1. A string x is said to be suffix-dependant of another string y if x[2..|x|] is prefix of y.
2. Let w be a string and m be a positive integer smaller than |w| − 1. A m-tuple of m strings (x1, . . . , xm) is a chain 

of suffix-dependant strings of w if x1 is a prefix of w and for each i ∈ [2, m], xi is a prefix of w[i, |w|] such that 
|xi | ≥ |xi−1| − 1.

Let R = {C1, . . . , Cn} be a set of tuples such that for each i ∈ [1, n], Ci is a chain of suffix-dependant strings of the 
string si . For i ∈ [1, n] and j ∈ [1, |Ci |], Ci[ j] is the jth string of the tuple Ci . Let R̂ = {Ĉ1, . . . , Ĉn} be the set of tuples such 
that for each i ∈ [1, n] and j ∈ [1, |Ci |], Ĉi[ j] = |Ci[ j]|, i.e. R̂ contains tuples of lengths.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.12 (1-19)

12 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
With R̂ and S , we can easily compute R . In the sequel, we use R to demonstrate our results, and R̂ to state the 
complexities of algorithms. Indeed, in the case where Ci is the tuple of each suffix of si , the size of Ci is linear in |si |2 but 
Ĉi is linear in |si |.

Let w be a string; w may occur in distinct tuples of R . Thus, we define N(w) the set of (i, j) such that w = Ci[ j]. In 
other words, N(w) is the set of coordinates of the elements of R that are equal to w .

We define a contracted version of the well-known Aho–Corasick tree [17]. In fact, we apply nearly the same contraction 
process that turns a trie of a word into its compact Suffix Tree [17]. Consider the Aho–Corasick tree of S , in which each 
node represents a prefix of words in S . We contract the non-branching parts of the branches except that we keep all nodes 
representing a word that belongs to a tuple in R . From now on, let T (R ) denote this contracted version of the Aho–Corasick 
tree of S .

N and L denote respectively the set of nodes and the set of leaves of T (R ). Furthermore, we define for each node v of 
T (R ) two weights:

• s(v) is the number of times that an element of a tuple of R is equal to the word represented by v (i.e., s(v) := |N(v)|).
• t(v) is the number of times that the first element of a tuple of R is equal to the word represented by v (i.e., t(v) :=

|{(i, 1) ∈ N(v) | i ∈ [1, n]}|).

Let w be a string, we put Succ(w) = {(i, j) | (i, j − 1) ∈ N(w) and j ≤ |Ci |}. We define H as the subset of L such that:

H := {u ∈ L | ∃ C ∈ R and j < |C | such that u = C[ j]}
It is equivalent to say that H = {u ∈ L | Succ(u) is not empty}. A mapping m from H to N is called possible link if for 

each node v in H , ∃(i, j) ∈ Succ(v) such that m(v) = Ci[ j].
Below we present an algorithm that constructs T (R ), and computes for each node v in N , the weights s(v) and t(v)

and a possible link P0.

Construction of T (R ). Now, we give an algorithm to construct T (R ). We use the version of McCreight’s algorithm given by 
Na et al. [18] on our input and we build for each leaf v , s(v), t(v) and P0(v). For building T (R ), we start with a tree that 
contains only the root. Then, for each word w in every chain C , we create or update (if it exists) the node w as follows. 
Assume that we keep in memory the node v that has been processed just before w .

If w is the first word of C , we go down from the root by comparing w to the labels of the tree. If we create the 
node w , s(w) and t(w) are initialised to 1, and P0(w) to nil. If w already exists on the tree, we increment s(w) and t(w)

by 1.
If w is not the first word of C , we start from v , and as in McCreight’s algorithm, we create or arrive on the node 

representing w . If we need to create this node, s(w) is initialised to 1, t(w) to 0, and P0(w) to nil. Otherwise, we add 1 to 
s(w). We set P0(v) = w .

The loop continues with the next word until the end, and we obtain T (R ).

Theorem 6. For a set of chain of suffix-dependant strings R , we can construct T (R ) in O (‖S‖) time and space.

Proof. To begin with, let us to prove that T (R ) is in O (‖S‖) space. Its number of leaves equals 
∑

C∈R |C |. Hence, its number 
of nodes is at most 2 

∑
C∈R |C | − 1 ≤ 2‖S‖, and its number of edges is at most 2‖S‖. Thus the size of T (R ) is in O (‖S‖).

Clearly, the construction algorithm of T (R ) computes both weights s(.) and t(.), and the possible link P0(.) correctly. 
For the complexity, for each chain of suffix-dependant Ci of R , the length of the traverse path on the tree is equal to |wi |, 
thanks to the use of the suffix links. Thus as in McCreight’s algorithm, the complexity is in O (‖S‖). �

Now, we are equipped with an algorithm that builds T (R ) for any set of chains of suffix-dependant strings. Let us review 
some instances of sets S , for which T (R ) is in fact a well-known tree.

• If C := ∪w∈S {tuple of suffixes of w}, then T (C ) is the Generalised Suffix Tree of S (see Fig. 7a). We have that the 
restrained mapping sl(.) is an example of a possible link.

• If Bk := ∪w∈S {tuple of k-mer of w and suffixes of length k′ < k of w}, then T (Bk) is the generalised k-truncated suffix 
tree of S , as defined in [19] (which generalises the k-truncated suffix tree of Na et al. [18]).

• If Ak := ∪w∈S {tuple of k + 1-mer of w and suffixes of length k of w}, then T (Ak) is the truncated suffix tree that we 
define below in Section 4.2 (see Fig. 7b).

4.2. Our truncated suffix tree

First, we define the following notation.



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.13 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 13
Fig. 7. (a) The generalised suffix tree for the set of words {bacbab, bbacbaa, bcaacb, cbaac, cbabcaa}. The part above the green line corresponds to the TST 
T (A2), which is shown in (b). (b) The truncated suffix tree T (A2) for the same set of words. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Definition 7.

1. For all i ∈ [1, |S|] and j ∈ [1, |si | − k + 1], Ak,i denotes the tuple such that its jth component is defined by

Ak,i[ j] :=
{

wi[ j, j + k] if j ≤ |wi | − k

wi[ j, |wi |] otherwise

2. and Ak is the set of these tuples: Ak := ⋃n
i=1 Ak,i .

Proposition 11.

1. Ak,i is a chain of suffix-dependant strings of si .
2. Moreover, {w ∈ Ak,i | Ak,i ∈ Ak} = Fk+1(S) ∪ Suff k(S).

Proof.

1. For all j ∈ [1, |Ak,i| − k], it is easy to see that Ak,i[ j] is a suffix-dependant string of Ak,i[ j + 1].
2. For the second point

{w ∈ Ak,i | Ak,i ∈ Ak} =
n⋃

i=1

(

|si |−k+1⋃
j=1

{Ak,i[ j]})

=
n⋃

(

|si |−k⋃
{Ak,i[ j]}

⋃
{Ak,i[|si | − k + 1]})
i=1 j=1



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.14 (1-19)

14 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
�reads 100 1000 10000

ST 14382 135558 1320811
TST (k = 5) 1352 (9.40%) 1365 (1.00%) 1365 (0.10%)
TST (k = 10) 14100 (98.03%) 120602 (88.96%) 677153 (51.26%)
TST (k = 20) 14347 (99.75%) 133204 (98.26%) 1263803 (95.68%)
TST (k = 40) 14382 (100.00%) 134316 (99.08%) 1291685 (97.79%)

�reads 100000 1000000 2249632

ST 12354838 103555389 216725799
TST (k = 5) 1365 (0.01%) 1365 (0.001%) 1365 (0.0006%)
TST (k = 10) 1315886 (10.65%) 1396675 (1.34%) 1397752 (0.64%)
TST (k = 20) 10549607 (85.38%) 49389538 (47.69%) 69248532 (31.95%)
TST (k = 40) 11337038 (91.76%) 69375578 (66.99%) 117282522 (54.11%)

Fig. 8. Number of nodes of the GST vs the TST for k = 5,10,20,40 and the percentage compared to the GST for Illumina reads of length 101.

=
n⋃

i=1

(Fk+1({si})
⋃

Suff k({si}))

= Fk+1(S) ∪ Suff k(S) �
By applying the algorithm described in Section 4.1 to the set Ak (Definition 7), and by using Theorem 6, we get the 

following result.

Corollary 1. We can construct T (Ak) in O (‖S‖) time and space.

4.2.1. Experimental results
We tested the two data structures GST and TST on real biological data. We considered a set of 2249632 Illumina reads of 

yeast of length 101 and performed tests for subsets of size 100, 1000, 10000, 100000, 1000000 and for the whole set. We 
counted the number of nodes of the GST and of the TST for various values of k (5, 10, 20 and 40). We used the gsuffix1

of [19]. It should be noted that their implementation of the TST stores all the suffixes shorter than k producing thus more 
nodes than our TST. Fig. 8 displays the results. It can be seen that for small sets, TSTs do not save many nodes compared
to the GST except for very small values of k but that for large sets TSTs save a lot of nodes for small values of k, they save 
more than two third of nodes for k = 20 and almost half of the nodes for k = 40. We also performed experiments with 
longer reads from Pacific Biosciences technology (not shown here). In this case, as expected, TSTs save less nodes than for 
Illumina reads.

4.3. De Bruijn graph via the truncated suffix tree

Here, we describe an algorithm that builds the de Bruijn Graph of S starting from the generalised truncated suffix tree 
of S .

4.3.1. De Bruijn graph
Proposition 12 states that there does not exist any leaf in T (Ak) representing a word strictly shorter than k.

Proposition 12. Let v be a leaf of T (Ak). Then |v| = k or |v| = k + 1.

Proof. For all wi ∈ S and j ∈ [1, |wi | − k + 1], |Ak,i[ j]| = k or k + 1. �
We set Initk = {v ∈ V T (Ak) | |v| ≥ k and | f (v)| < k}. For a possible link P0, we define the mapping P from H to N . H , 

N and L have the same definition as before, but applied to the T (Ak). H can be seen in this case as the set of leaves of 
length k + 1 of T (Ak). We define the mapping P as follows:

P : H −→ N

v �→
{

P0(v) if P0(v) ∈ Initk

f (P0(v)) otherwise

1 http :/ /gsuffix .sourceforge .net /gsuffix-docs /main .html.

http://gsuffix.sourceforge.net/gsuffix-docs/main.html


JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.15 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
Fig. 9. The de Bruijn graph of order 2 built on T (A2). The solid curved arrows are the edges corresponding to the first part of the definition of E+
k , while 

those in blue correspond to the second part. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

The mapping P can be constructed in linear time in O (‖S‖). In fact, for each v ∈ H , P (v) can be constructed in O (1)

time because in this case, P0(v) ∈ Initk ⇔ | f (P0(v))| �= k. As |H | ≤ ‖R‖, we can construct P for all elements of H in 
O (‖R‖). Indeed, it is enough to consider the length of the parent of P0(v) to decide if P0(v) is in Initk .

Proposition 13. Let v ∈ L , P (v) ∈ Initk and P (v) = sl(v) if sl(v) exists.

Proof. Let v ∈ L . If v ∈ H and P0(v) /∈ Initk , | f (P0(v))| = k and thus P (v) = f (P0(v)) ∈ Initk . According to the definitions 
of a possible link P , and of Ak , for any node v in L , P (v) is the shortest node of T (Ak) such that v is a prefix of P (v). 
Hence, P (v) = sl(v). �
Theorem 7. We can construct D BG+

k in O (‖S‖) time and in O (size(D BG+
k )) space.

Proof. We begin by building T (Ak). With T (Ak), we can build Initk , SubInitk and Init Exactk as we do on the generalised 
suffix tree of S . By using P as the suffix link, we can build the graph (V , E) satisfying

V = Initk,

E =
⎛⎝ ⋃

v∈Initk,|v|=k+1

(v, P (v))

⎞⎠ ⋃⎛⎝ ⋃
v∈Initk,|v|=k

⎛⎝ ⋃
u∈Children(v)

(v, P (u))

⎞⎠⎞⎠ .

Let us note that two cases of arcs arise depending on whether the starting node v represents a word of length k or of 
length k + 1. These cases correspond to the two terms in the union above.

This graph is isomorphic to D BG+
k .

Let b be the application from H to E such that

b(v) =
{

(v, P (v)) if | f (v)| �= k

( f (v), P (v)) if | f (v)| = k.

As (V , E) is isomorphic to D BG+
k , b is a bijection. As |L \ H | ≤ |S|, |L | is linear in the size of D BG+

k . �
Fig. 9 shows an example of de Bruijn graph of order 2 built from T (A2).

4.3.2. A contracted de Bruijn graph

Proposition 14. For each leaf v of T (Ak), s(v) is the size of the support of v in S and t(v) is the size of the set 
(

Support(v) ∩ {(i, 1) |
1 ≤ i ≤ n}).

Hence, we obtain the following theorem.

Theorem 8. We can construct CDBG+
k in O (‖S‖) time and in O (size(D BG+

k )) space.

Instead of using T (Ak) to build D BG+
k or CDBG+

k , we could have taken T (Bk+1). Indeed, T (Bk+1) is the tree T (Ak) with 
additional leaves representing all suffixes shorter than (k − 1) of the words in S . These leaves make T (Bk+1) linear in ‖S‖, 
but not in the size of D BG+ .
k



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.16 (1-19)

16 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
5. Dynamically updating the order of D BG+
.

Genome assembly from short reads is difficult and in practice requires to test multiple values of k for the dBG. Indeed, 
the presence of genomic repeats makes some orders k appropriate to assemble non-repetitive regions, and larger orders 
necessary to disentangle (at least some) repeated regions. Combining the assemblies obtained from D BG+

k for successive 
values of k is the key of IDBA assembler, but the dBG is rebuilt for each value [8]. Other tools also exploit this idea [24]. It 
is thus interesting to dynamically change the order of the dBG.

An application of the BOSS structure introduced by Bowe et al. [6] to store efficiently the D BG+
k was proposed to 

update dynamically the order from k to k − 1 [25]. Their algorithm solves only the case of a decreasing k and can be used 
iteratively to build the dBG for all values of k in the desired range [kmax, kmin]. However, when the graph is built for kmax
and iteratively updated until kmin as proposed, then the k-mers corresponding to reads of length between kmax and kmin
will not be included in the dBG. In contrast, we propose a dynamic update for a decreasing and an increasing k, and our 
solution cannot forget some k-mers.

Here, we argue that starting the construction from an index instead of the raw sequences eases the update. On p. 8, 
we stated which information is needed in general to build D BG+

k . Assume the words are indexed in a suffix tree T (as in 
Section 3.1.2).

5.1. Updating the sets of nodes

Our construction algorithm for D BG+
k is based on three subsets of nodes of the suffix tree: Initk , Init Exactk and SubInitk . 

We first explain how these three sets can be updated when the order of the dBG changes.
Consider first changing k to k − 1. First, only the nodes of Initk whose parent represents a word of length k − 1 are 

substituted by their parent in D BG+
k−1; all other nodes remain unchanged. Thus, any arc of order k either stays as such or 

has some of its endpoints shifted toward the parent node in T . In any case, updating an arc depends only on the nature of 
its nodes in D BG+

k−1 (whether they belong to Initk−1 or Init Exactk−1), and can be computed in constant time.
When the order decreases from k to k − 1, we have:

• Init Exactk−1 = SubInitk by definition.
• Initk−1 \ Init Exactk−1 = {v ∈ Initk | | f (v)| < k − 1}.

Indeed, a node of Initk−1 either belongs to Init Exactk−1 (meaning its length equals k − 1) or it already belongs to Initk
and its parent is strictly shorter than k − 1.

• SubInitk−1 = { f (v) | v ∈ Initk−1 and | f (v)| = k − 2} ∪ Suff k−2(S). Obviously, a node of length k − 2 is either a parent of 
a node in Initk−1 or a leaf of length k − 2.

The same situation arises when changing k to k + 1. First, only nodes of Init Exactk change in D BG+
k+1: they are substi-

tuted by their children. Updating an arc also depends on the nature of its nodes: it can create a fork towards the children of 
the destination node if the latter changes, or it can be multiplied and join each child of the source to one child of the desti-
nation if both nodes change. Then, the label of the children in T indicates which children to connect to. It can be seen that 
updating from D BG+

k to D BG+
k+1 in either direction takes linear time in the size of T . Moreover, as updating the support of 

nodes in T is straightforward, we can readily apply the contraction algorithm to obtain CDBG+
k+1 (see Section 3.1.3).

When the order increases from k to k + 1, we have:

• SubInitk+1 = Init Exactk by definition.
• Initk+1 = (Initk \ Init Exactk) ∪ ⋃

v∈Init Exactk
Children(v).

Indeed, any node of Initk that is longer than k remains in Initk+1. Moreover, we add the children of the nodes in 
Init Exactk .

• Init Exactk+1 = {v ∈ Initk+1 | |v| = k + 1}.

5.2. An algorithm for a dynamic update

Here, we present the algorithms for updating the order of the dBG. We consider both cases: decreasing or increasing 
the order of the dBG. We detail the case where the update changes the order from k to k − 1 using T (Ak) (Algo-
rithm 3); the opposite case, when k is increased by one, follows a similar logical scheme as explained in Section 5.1
(Algorithm 4). For the latter, we assume that the suffix tree T (or at least the reduced truncated suffix tree T (Ak+1)) is 
in memory. However, both Algorithms 3 and 4 show that one does not need to scan again through the complete set of 
reads.

The input is D BG+
k and we wish to compute D BG+

k−1. Precisely, the input consists in the three subsets of nodes, SubInitk , 
Init Exactk , and Initk (whose update has been detailed above), and in the application Succk(.), which for any node of D BG+

k
gives its successors. Actually, the subsets SubInitk and Init Exactk are included to allow iterating the algorithm. For simplicity 
and without loss of generality, we assume that k is smaller than the length of the shortest input word of S . Moreover, the 
algorithm stores several sets and uses an insertion procedure denoted Set.ins(node), which inserts a node in the set if it is 



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.17 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 17
Algorithm 3: Dynamic update of the dBG from order k to k − 1.
Input : The sets SubInitk , Init Exactk and Initk and the application Succk(.)

Output: The sets SubInitk−1, Init Exactk−1 and Initk−1 and the application Succk−1(.)

1 begin
2 Initk−1 := ∅; SubInitk−1 := ∅; Init Exactk−1 := SubInitk ;
3 for v ∈ Init Exactk−1 do Succk(v) := ∅;
4 for v ∈ Initk do
5 if | f (v)| = k − 1 // f (v) is already in Init Exactk−1 then
6 s := f (v)

7 SubInitk−1.ins(sl(s))

8 else
9 s := v

10 Succk−1(s) := ∅
11 Initk−1.ins(s)
12 if | f (s)| = k − 2 then SubInitk−1.ins( f (s));
13 for w ∈ Succk(s) do
14 if | f (w)| = k − 1 then
15 t := f (w)

16 SubInitk−1.ins(sl(t))

17 else
18 t := w

19 Initk−1.ins(t)

20 Succk−1(s).ins(t) // ( f irstk−1(s), f irstk−1(t)) ∈ E+
k−1

21 if | f (t)| = k − 2 then SubInitk−1.ins( f (t));

22 return SubInitk−1 , Init Exactk−1 , Initk−1 and Succk−1(.)

Algorithm 4: Dynamic update of the dBG from order k to k + 1.
Input : The sets SubInitk , Init Exactk and Initk and the application Succk(.)

Output: The sets SubInitk+1, Init Exactk+1 and Initk+1 and the application Succk+1(.)

1 begin
2 Initk+1 := ∅; SubInitk+1 := Init Exactk ; Init Exactk+1 := ∅;
3 for v ∈ Initk do
4 if |v| = k // v is in Init Exactk then
5 S := Children(v)

6 else
7 S := {v}
8 for s ∈ S do
9 Initk+1.ins(s)

10 Succk+1(s) := ∅
11 if |s| = k + 1 then Init Exactk+1.ins(s) ;
12 for w ∈ Succk(s) do
13 if |w| = k then
14 R := Children(w)

15 else
16 R := {w}
17 for r ∈ R do
18 Succk+1(s).ins(r)

19 return SubInitk+1 , Init Exactk+1 , Initk+1 and Succk+1(.)

not already in it. One can store the membership of all nodes of each set with binary vectors of length E+
k , which is linear 

in the size of E+
k .

Algorithm 3 scans through the nodes of Initk (for loop of line 4), builds the set Initk−1 and computes the arcs of 
E+

k−1 according to the typology of the nodes, and as a by-product it obtains SubInitk−1 and Init Exactk−1. For each node, it 
determines which node is the source (denoted by s) of an arc of E+

k−1 (lines 5–10), then it inserts the source node in Initk−1, 
and updates SubInitk−1 (lines 11–12). Then it loops over all successors of the source in E+

k (line 13), and determines which 
node is the target of an arc going out of s in E+

k−1 (lines 14–18 – the target is denoted by t). Finally, it inserts the target in 
Initk−1, the arc from s to t in Succk−1(s), and updates SubInitk−1 (lines 19–21).

The correctness of the computation of Initk−1, Init Exactk−1, and of Succk−1(.) follows from the section above and from 
the correctness of the construction of D BG+ (see Section 3.1.2). Let us explain why SubInitk−1 is correctly computed. Let 
k



JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.18 (1-19)

18 B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 10. Illustrating an update of k, the dBG order: (a) from k to k − 1 and (b) from k to k + 1. This figure shows only the cases of a type 1 node that is 
not right extensible. At order k, the square node in dotted line has two possible right extensions: two (red) arcs leaving it. In (a), at order k − 1 its parent 
belongs to Initk−1 and it becomes right extensible. One sees that the tree structure helps in determining this. In (b), the pendant situation occurs, where 
the children of the square node in dotted line belong to Initk+1 and they both become right extensible. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

z be a node of SubInitk−1. Assume z is a parent of some node of Initk−1. If the latter is a source node, then z is inserted 
on line 12; if the latter is a target node, z is inserted on line 21. Otherwise, z must be pointed to by a suffix link of some 
node v . As the suffix link removes the first letter, the difference of word length between v and z is only one. Hence, v must 
be a node representing exactly a (k − 1)-mer and must belong to Initk−1. This case is detected on line 5 for a source node 
(line 14 for a target), and z is properly inserted on line 7 (resp. on line 16). This ends the correctness proof of Algorithm 3.

The updates of nodes in cases 1 (see Fig. 6 on p.9) are illustrated in Fig. 10. Looking at the tree rooted in sl(s) and whose 
leaves are the Succk(s), one can determine if one faces the case illustrated in Fig. 10a when changing k to k − 1.

Clearly, the two nested loops of Algorithm 3 scans over E+
k . The instructions inside can all be performed in constant 

time. The complexity of Algorithm 3 is thus linear in the number of arcs of E+
k . Moreover, since it outputs what it needs as 

input, one can iterate this algorithm over any interval of values of k. Finally, the construction algorithm that starts directly 
from the suffix tree is asymptotically optimal and takes the same time complexity as the dynamic update of the dBG order.

6. Conclusion and perspectives

De Bruijn Graphs (dBG) are intricate structures and intensively exploited for assembling large genomes from short se-
quences. Understanding their complexity can help improving their representations or traversal algorithms. We investigate 
algorithms to transform indexing data structures of the input words into a dBG of those words and propose linear time 
algorithms when starting from Suffix Trees and Suffix Arrays to build directly a contracted dBG. Although the algorithms 
need a slight adaptation, all results obtained are clearly valid for both definitions of the dBG: D BG+

k and D BG−
k . Moreover, 

we show that this approach provides a way to update dynamically the graph when one changes its order k. Algorithms 
enabling a dynamic update represent a theoretical challenge as well as an exciting avenue for improving genome assem-
bly methods [24,8]. Other topics for future research include transforming compressed indexes, such as a FM-index [23], 
into a dBG, implementing a practical contracted dBG representation for DNA taking into account k-mers and their reverse 
complements based on these algorithms.

Acknowledgments

This work is supported by ANR Colib’read (ANR-12-BS02-0008) and by ANR IBC (ANR-11-BINF-0002).

References

[1] N.G. de Bruijn, On bases for the set of integers, Publ. Math. (Debr.) 1 (1950) 232–242.
[2] P. Pevzner, H. Tang, M. Waterman, An Eulerian path approach to DNA fragment assembly, Proc. Natl. Acad. Sci. USA 98 (17) (2001) 9748–9753.
[3] G. Rizk, A. Gouin, R. Chikhi, C. Lemaitre, MindTheGap: integrated detection and assembly of short and long insertions, Bioinformatics 30 (24) (2014) 

3451–3457.
[4] L. Salmela, E. Rivals, LoRDEC: accurate and efficient long read error correction, Bioinformatics 30 (24) (2014) 3506–3514.
[5] T.C. Conway, A.J. Bromage, Succinct data structures for assembling large genomes, Bioinformatics 27 (4) (2011) 479–486.
[6] A. Bowe, T. Onodera, K. Sadakane, T. Shibuya, Succinct de Bruijn graphs, in: WABI, in: Lect. Notes Comput. Sci., vol. 7534, 2012, pp. 225–235.
[7] R. Chikhi, G. Rizk, Space-efficient and exact de Bruijn graph representation based on a Bloom filter, Algorithms Mol. Biol. 8 (2013) 22.
[8] Y. Peng, H. Leung, S. Yiu, F. Chin, IDBA – a practical iterative de Bruijn graph de novo assembler, in: B. Berger (Ed.), Research in Computational 

Molecular Biology, in: Lect. Notes Comput. Sci., vol. 6044, Springer, Berlin, Heidelberg, 2010, pp. 426–440.
[9] R. Chikhi, G. Rizk, Space-efficient and exact de Bruijn graph representation based on a Bloom filter, in: WABI, in: Lect. Notes Comput. Sci., vol. 7534, 

Springer, 2012, pp. 236–248.
[10] L. Salmela, Correction of sequencing errors in a mixed set of reads, Bioinformatics 26 (10) (2010) 1284–1290.
[11] E.A. Rødland, Compact representation of k-mer de Bruijn graphs for genome read assembly, BMC Bioinform. 14 (2013) 313.

http://colibread.inria.fr
http://www.ibc-montpellier.fr
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib6465427275696A6E2D3530s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib5065767A6E6572s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4D696E64546865476170s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4D696E64546865476170s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib6C6F726465632D62696F696E666F726D6174696373s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib436F6E77617932303131s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib426F776532303132s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4368696B686932303133s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib69646261s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib69646261s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib6D696E6961s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib6D696E6961s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib53616C6D656C612D3130s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib526F646C616E6432303133s1


JID:YJCSS AID:2997 /FLA [m3G; v1.183; Prn:28/07/2016; 13:04] P.19 (1-19)

B. Cazaux et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 19
[12] T. Onodera, K. Sadakane, T. Shibuya, Detecting superbubbles in assembly graphs, in: A. Darling, J. Stoye (Eds.), Algorithms in Bioinformatics, in: Lect. 
Notes Comput. Sci., vol. 8126, Springer, 2013, pp. 338–348.

[13] J.T. Simpson, R. Durbin, Efficient construction of an assembly string graph using the FM-index, Bioinformatics 26 (12) (2010) i367–i373.
[14] E. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (1976) 262–272.
[15] A. Apostolico, The myriad virtues of suffix trees, in: A. Apostolico, Z. Galil (Eds.), Combinatorial Algorithms on Words, in: NATO Advanced Science 

Institutes, Series F, vol. 12, Springer, 1985, pp. 85–96.
[16] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM J. Comput. 22 (5) (1993) 935–948.
[17] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology, Cambridge University Press, Cambridge, 1997.
[18] J.C. Na, A. Apostolico, C.S. Iliopoulos, K. Park, Truncated suffix trees and their application to data compression, Theor. Comput. Sci. 304 (1–3) (2003) 

87–101.
[19] M.H. Schulz, S. Bauer, P.N. Robinson, The generalised k-truncated suffix tree for time-and space-efficient searches in multiple DNA or protein sequences, 

Int. J. Bioinform. Res. Appl. 4 (1) (2008) 81–95.
[20] B. Cazaux, T. Lecroq, E. Rivals, From indexing data structures to de Bruijn graphs, in: A. Kulikov, S. Kuznetsov, P. Pevzner (Eds.), Proc. of the 25th Annual 

Symposium on Combinatorial Pattern Matching (CPM), in: Lect. Notes Comput. Sci., vol. 8486, Springer International Publishing, Switzerland, 2014, 
pp. 89–99.

[21] B. Cazaux, T. Lecroq, E. Rivals, Construction of a de Bruijn graph for assembly from a truncated suffix tree, in: A. Dediu (Ed.), Proc. of the 9th Int. Conf. 
on Language and Automata Theory and Applications (LATA), in: Lect. Notes Comput. Sci., vol. 8977, Springer International Publishing, Switzerland, 
2015, pp. 109–120.

[22] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (3) (1995) 249–260.
[23] E. Ohlebusch, Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction, Oldenbusch Verlag, 2013, 

604 pp.
[24] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, 

N. Vyahhi, G. Tesler, M.A. Alekseyev, P.A. Pevzner, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. 
Biol. 19 (5) (2012) 455–477.

[25] C. Boucher, A. Bowe, T. Gagie, S.J. Puglisi, K. Sadakane, Variable-order de Bruijn graphs, in: 2015 Data Compression Conference, DCC, IEEE Computer 
Society Press, 2015, pp. 383–392.

http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4F6E6F646572612D776162692D32303133s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4F6E6F646572612D776162692D32303133s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib53696D70736F6E2D666D2D696E6465782D737472696E672D67726170682D32303130s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4D63437265696768742D3736s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib41706F3835s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib41706F3835s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4D4D3933s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4775733937s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4E614149503033s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib4E614149503033s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib536368756C7A42523038s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib536368756C7A42523038s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib43617A6175782D43504D2D3134s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib43617A6175782D43504D2D3134s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib43617A6175782D43504D2D3134s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib43617A6175782D4C4154412D3135s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib43617A6175782D4C4154412D3135s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib43617A6175782D4C4154412D3135s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib556B6B6F6E656E3935s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib456E6E6F2D62696F696E666F726D6174696373s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib456E6E6F2D62696F696E666F726D6174696373s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib737061646573s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib737061646573s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib737061646573s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib426F756368657232303135s1
http://refhub.elsevier.com/S0022-0000(16)30050-2/bib426F756368657232303135s1

	Linking indexing data structures to de Bruijn graphs: Construction and update
	1 Introduction
	1.1 Indexing data structures

	2 Deﬁnitions of de Bruijn graphs
	2.1 Notation about strings
	2.2 Classical deﬁnition of de Bruijn graph
	2.3 Constructive characterisation of the de Bruijn graph
	2.4 Constructive characterisation of the contracted de Bruijn graph

	3 Transition from an indexing data structure to de Bruijn graphs
	3.1 From a generalised sufﬁx tree
	3.1.1 The sufﬁx tree and its properties
	3.1.2 Construction of DBG+k
	3.1.3 Construction of CDBG+k

	3.2 From a generalised sufﬁx array

	4 Transition from a truncated structure to de Bruijn graphs
	4.1 Set of chains of sufﬁx-dependant strings and tree
	4.2 Our truncated sufﬁx tree
	4.2.1 Experimental results

	4.3 De Bruijn graph via the truncated sufﬁx tree
	4.3.1 De Bruijn graph
	4.3.2 A contracted de Bruijn graph


	5 Dynamically updating the order of DBG+.
	5.1 Updating the sets of nodes
	5.2 An algorithm for a dynamic update

	6 Conclusion and perspectives
	Acknowledgments
	References


