An operational characterization of mutual information in algorithmic information theory

Abstract : We show that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings $x$ and $y$ is equal, up to logarithmic precision, to the length of the longest shared secret key that two parties, one having $x$ and the complexity profile of the pair and the other one having $y$ and the complexity profile of the pair, can establish via a probabilistic protocol with interaction on a public channel. For $\ell > 2$, the longest shared secret that can be established from a tuple of strings $(x_1, . . . , x_\ell)$ by $\ell$ parties, each one having one component of the tuple and the complexity profile of the tuple, is equal, up to logarithmic precision, to the complexity of the tuple minus the minimum communication necessary for distributing the tuple to all parties. We establish the communication complexity of secret key agreement protocols that produce a secret key of maximal length, for protocols with public randomness. We also show that if the communication complexity drops below the established threshold then only very short secret keys can be obtained.
Type de document :
Communication dans un congrès
45th International Colloquium on Automata, Languages, and Programming (ICALP), Jul 2018, Prague, Czech Republic. pp.95:1-95:14, 2018, LIPIcs 107, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2018. 〈10.05984〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01618559
Contributeur : Andrei Romashchenko <>
Soumis le : mercredi 18 octobre 2017 - 10:25:45
Dernière modification le : vendredi 20 juillet 2018 - 15:08:17

Lien texte intégral

Identifiants

Citation

Andrei Romashchenko, Marius Zimand. An operational characterization of mutual information in algorithmic information theory. 45th International Colloquium on Automata, Languages, and Programming (ICALP), Jul 2018, Prague, Czech Republic. pp.95:1-95:14, 2018, LIPIcs 107, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2018. 〈10.05984〉. 〈lirmm-01618559〉

Partager

Métriques

Consultations de la notice

176