
HAL Id: lirmm-01620060
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620060v1

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TARDIS: Optimal Execution of Scientific Workflows in
Apache Spark

Daniel Gaspar, Fabio Porto, Reza Akbarinia, Esther Pacitti

To cite this version:
Daniel Gaspar, Fabio Porto, Reza Akbarinia, Esther Pacitti. TARDIS: Optimal Execution of Scientific
Workflows in Apache Spark. DaWaK: Data Warehousing and Knowledge Discovery, Aug 2017, Lyon,
France. pp.74-87, �10.1007/978-3-319-64283-3_6�. �lirmm-01620060�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620060v1
https://hal.archives-ouvertes.fr


TARDIS: Optimal Execution of Scientific
Workflows in Apache Spark

Daniel Gaspar1, Fabio Porto1, Reza Akbarinia2, and Esther Pacitti3

1 LNCC - National Laboratory for Scientific Computing,
Av. Getúlio Vargas, 333, 25651-075 Petrópolis, RJ, Brazil

2 INRIA - National Institute for Research in Computer Science and Control,
161 Rue Ada, 34095 Montpellier, France

3 LIRMM - Montpellier Laboratory of Informatics, Robotics and Microelectronics,
860 Rue de St Priest, 34095 Montpellier, France

Abstract. The success of using workflows for modeling large-scale sci-
entific applications has fostered the research on parallel execution of
scientific workflows in shared-nothing clusters, in which large volumes
of scientific data may be stored and processed in parallel using ordi-
nary machines. However, most of the current scientific workflow manage-
ment systems do not handle the memory and data locality appropriately.
Apache Spark deals with these issues by chaining activities that should
be executed in a specific node, among other optimizations such as the
in-memory storage of intermediate data in RDDs (Resilient Distributed
Datasets). However, to take advantage of the RDDs, Spark requires ex-
isting workflows to be described using its own API, which forces the
activities to be reimplemented in Python, Java, Scala or R, and this
demands a big effort from the workflow programmers.

In this paper, we propose a parallel scientific workflow engine called
TARDIS, whose objective is to run existing workflows inside a Spark
cluster, using RDDs and smart caching, in a completely transparent way
for the user, i.e., without needing to reimplement the workflows in the
Spark API. We evaluated our system through experiments and compared
its performance with Swift/K. The results show that TARDIS performs
better (up to 138% improvement) than Swift/K for parallel scientific
workflow execution.

1 Introduction

Over the last years, the volume of data produced by scientific simulations and
experiments has been increasing in a astronomical rate. This increase is mainly
a consequence of advances in sensors and the thriving of the Internet of Things,
which amplify the quantities that are analysed and stored during an experiment.
This leads to a field of study, called big data, that is interested in studying how
to collect, store and process these enormous volumes of data.

Fortunately, there has also been plenty of development in the high-performance
computing area. Usually, big data is stored and processed in parallel databases



running in dedicated and expensive servers. However, this approach is inappro-
priate for many large scale scientific applications due to its cost [14]. Besides,
some scientific data is completely unstructured, or non-relational, therefore diffi-
cult to be dealt in databases. More recently, some approaches to process unstruc-
tured data over clusters of commodity hardware have appeared. These include
MapReduce [3], Spark [13] and Pegasus [4].

In the context of scientific applications, the standard has been to express
the scientific processes as workflows. Scientific workflows define a computational
processing composed of activities. Each activity consumes input data and gen-
erates output. Activities are linked together forming a directed acyclic graph
(DAG), taking in account the data dependency between them [9] [8] [6].

Typically, scientific workflows have been designed to run in clusters using
a shared-disk model, inherited from HPC systems. For processing big datasets,
however, moving data through the network jeopardize the computation.

By analysing current solutions for the parallel execution of scientific work-
flows, we observe that the great majority of them is concerned with the lack of
data locality. In addition, currently there is not a complete coupling between
the data management framework and the scientific workflow engine in most of
the existing systems. Solutions based on MapReduce [3] or Hadoop [2] (like Pig
Latin [10] or Hive [11]) do not analyse the entire workflow. They do not con-
sider the chaining of activities when scheduling tasks to nodes. Swift/K is a
C-like programming language for defining workflows that can be executed in
clusters, among other architectures. The language coordinates the execution of
activities defined as programs that consume and produce files [12]. However, the
Swift/K engine does not ensure the data locality during the workflow execution.

Spark is an Apache open-source framework for processing big data in clusters.
It allows storing data in memory and querying it repeatedly, therefore providing
performance increase over Hadoop or other MapReduce implementations [13].

To use Apache Spark, users should develop their applications using the pro-
vided API, e.g., in Scala, Python or R. However, usually scientific workflows
activities are defined in existing software, e.g., MAFFT, Align2D, Montage or
some scripts developed by the scientists [5] [7]. It is not trivial to execute a
workflow designed in Swift/K, or any other workflow whose activities read and
write from files in Spark.

In this paper, we propose TARDIS (Task Analyser Regarding Data in Spark),
a parallel scientific workflow engine that allows to run workflows using Spark,
without needing to rewrite their activities in Spark API. TARDIS executes work-
flows with activities which are scientific programs, allowing them to behave in
Spark as a code written in one of its compatible languages reading and writing
data from Spark RDDs. In addition, it deals with the optimal partitioning of the
activities inputs in the Spark RDDs avoiding unnecessary data transfers during
workflow execution. TARDIS also includes new algorithms for scheduling the
input data in the Spark cluster.

We have compared the performance of TARDIS with Swift/K for executing a
Montage workflow to generate an image of the sky from mosaics of tiles obtained



from space catalogues. The results show that TARDIS performs much better
than Swift/K for the execution of workflows.

The rest of the paper is organized as follows. In the next section, we describe
the problem we are facing. In Section 3, we present some background about
Spark, and in Section 4, we present the TARDIS engine. In Section 5, we report
our experimental results.

2 Problem Definition

A workflow W = (A,F, I,O) is composed of a set of activities A = {a1, ..., an},
a set of files F = {f1, ..., fm}, a set of input dependencies I ⊂ (F × A) and a
set of output dependencies O ⊆ (A×F ). Activities are defined as command-line
invocations of external program that reads and writes into files. Additionally,
we consider N = {n1, ..., nx} a set of computer nodes and a function µ(F )⇒ N
that allocates a file fi ∈ F in a node nj ∈ N . Furthermore, I = {I1, I2, . . . , Iv}
is a set of sets of input dependencies such that if (fi, aj) ∈ Ik and (fp, al) ∈ Ik
then j = l, representing the set of files that are input to a single program,
enabling the parallel execution of the corresponding scientific program.

Given a workflow W , let a, a′ ∈ A be activities. We define:

– Input of an activity: input(a) = {f ∈ F | ∃(f, a) ∈ I}.
– Output of an activity: output(a) = {f ∈ F | ∃(a, f) ∈ O}.
– Activity dependency: We say that a depends on a′, dep(a′, a) if output(a′)∩

input(a) 6= ∅.
– Input of a workflow: input(W ) = {f ∈ F | @ a ∈ A : f ∈ output(a)}.

The output of a workflow output(W ) ⊆ F , can be anything defined by the
user.

The problem, which we address in this paper, is how to run a workflow W
in a shared-nothing architecture pursuing data locality and using in-memory
storage for intermediate data. This can be done by solving the following four
sub-problems:

– How to distribute input files in a shared-nothing cluster? We want
to optimize data locality by bringing the jobs close to the data and therefore
minimizing the execution time of the workflow. We should consider the data
transfers among nodes during the execution of the workflow. The challenge
is to allocate the input files of a workflow on nodes of the shared-nothing
cluster so that data locality can be achieved.

– How to keep Spark scheduling under file allocation decision? In
Spark, parallel function scheduling is driven by RDDs partitioning. Run-
ning non-Spark functions and retaining Spark scheduling strategy requires
allocating functions to nodes where files have been allocated.

– How to benefit from local pipelines strategies in activities that
should be chained together? Spark executes pipelines of activities lo-
cally using memory for storing the intermediate data. This is achieved by



analysing the dependencies among the workflows activities. If possible, dif-
ferent activities are executed together locally in a Spark stage. We want to
enforce Spark to perform this behaviour with our program-based workflows.

– How to ensure fault-tolerance to the workflow execution? When
dealing with distributed computing, the chances of a failure become consid-
erably high. We need to ensure that if a node fails, or a program execution
terminates with error, the workflow execution should not only detect the
error but also try to solve it by running again the failed fragment.

In this paper, our objective is to enable the efficient execution of existing sci-
entific workflows in a shared-nothing execution architecture, using Spark, where
programs run on local data and produce intermediate results using local memory.

3 Background

3.1 Spark

Apache Spark is an open-source parallel data processing framework developed
and maintained by Apache that generalizes the MapReduce model [13, 1]. Spark
manages data by introducing the RDD (Resilient Distributed Datasets) abstrac-
tion. These are read-only in-memory collections of objects distributed into the
machines of a cluster.

A workflow may be executed in Spark via the API provided in Scala, Python,
Java or R languages. Activities of a Spark workflow may be transformations or
actions. Transformations consume a RDD and output another. Actions consume
a RDD and output objects like the ones that compose the input RDD. For
example, the collect action returns all of the objects present in a RDD and the
map transformation applies a function to each object of the input RDD and
outputs a new RDD with the transformed objects.

In Spark, the transformations are executed when their output RDD is needed
for an action. Actually, the Spark engine knows what transformations should be
done to generate a given RDD. When an action is called, Spark will execute
all transformations necessary to generate the input data to that action. RDDs
do not persist in memory, but if required by another operation, they can be
recreated on-the-run.

Scientific workflows are typically executed in shared-disk architectures, and
this limits data locality. Conversely, Spark is designed to explore in memory data
locality. Unfortunately, Spark workflows constrain activities to be coded in one
of is compatible languages which limits its applicabilities to a scientific workflow
already existent.

4 TARDIS Engine

TARDIS (Task Analyser Regarding Data In Spark), is a parallel scientific work-
flow engine developed in Python that runs existing workflows over a shared-
nothing Spark cluster. Each Spark node executes some activities of the workflow,
and the data is spread throughout the cluster in the RDDs.



Master Node

TARDIS

Scheduling
Prov
DB

Spark jobs definition

Slave Node

Spark worker

Data transferring

Activities execution

Shared
Memory

Activity
program

HD

Fig. 1. TARDIS architecture.

4.1 Architecture

The TARDIS system is composed of two main modules: the master and slaves.
The first is responsible for executing the files allocation scheduler and maintain-
ing a SQLite database for provenance reasons. It connects to a Spark cluster
and submits jobs to it. The Spark workers behave as TARDIS slave nodes. The
main components of the master module are as follows:

– Job parsing: users provide a workflow descriptor to TARDIS using our own
language. This component is responsible for parsing the job description given
by the user;

– Job reformulation: User inputs his or her workflow using TARDIS defined
activities types (such as map and partial reduce. During the initial workflow
analysis, these activities are converted to a set of Spark activities. Extra ones
are included in order to perform the correct execution of the workflow (i.e.
to transfer data among nodes);

– Scheduling: it is responsible of deciding in which nodes the input files of
activities should be consumed.

The slave module contains the following main components:

– Data placement: whenever the required files for an activity execution are not
available in local shared memory, slave nodes will download them from other
nodes or, if locally available, copy them from local disk;

– Workflow execution: finally, activities are executed by running external soft-
ware over in-memory files.

The execution model of TARDIS achieves good performance by combining
the scheduling of files to nodes and the corresponding Spark executors to achieve



data locality in activities execution. Thus, once the TARDIS scheduler defines a
file allocation the system must ensure that the files are in their respective nodes
once the execution of activities begin. In this context, an initial job activity
downloads the files to executing nodes according to the schedule.

This transfer is achieved by running a lightweight HTTP server in each node,
which exposes the in-memory files to the network. The input files are loaded into
its own node shared memory and then other nodes may do an HTTP request to
download the required files. This may happen also for intermediate files during
the execution of the workflow, especially after a Spark shuffle.

These downloaded files are moved to a shared-memory file system mounted
at each node to enable efficient in-memory pipelined activity execution of black-
box programs. The latter run under the control of the Activity Execution (AE)
module. The execution of black-box software should privilege data locality. The
AE module must identify the file allocated to its node and pass it to its associated
black-box program.

At the end of execution, the master collects the output files and stores them
in a local folder.

The architecture of the TARDIS engine is depicted in Figure 1. Prov DB is
a SQLite database and currently only records some data used for provenance.
HD depicts the local storage of files in slave nodes.

4.2 TARDIS Language

TARDIS offers an adaptation of Spark API to enable the instrumentation of
proposed execution as TARDIS activities. Users define their workflows using a
Python script, calling our methods. Our system allows workflow activities to be
defined as maps, partial reduces and reduces.

Map Activities. A map activity is an activity that consumes only one file of
the input RDD and outputs one file. This activity will be performed in parallel
over all files of the input.

It is defined using the TARDIS method map activity. This method expects
up to four parameters: the activity name or ID, the command that performs the
activity, the input RDD and the pattern of files that will be affected by it. The
name or ID is used only for provenance reasons. The command is given by the
path to the executable that should be run over the files with all of its expected
parameters. A special keyword @!input is replaced by the respective filename
in each execution of the map.

The pattern of files describes in a bash-alike expression which files of the
input RDD should be consumed by the activity. The default case is ”*”, which
means that the command specified will be run over every file in the input RDD.

This method returns a transformed RDD with the respective output files and
the files from the input that were not used.

For example, if a user wants to reverse all txt files in an RDD (the first
line becomes the last, and do on), he or she can use the following command in
Python:



reverseRDD = tardis.map activity("reverse", "tac @!input >

@!input.rev", filesRDD, "*.txt").

For instance, if filesRDD had three files: text1.txt,
text2.txt and photo.jpg, after running the previous command, reverseRDD
would have also three files:
text1.txt.rev, text2.txt.rev and photo.jpg.

Partial Reduce Activities. A partial reduce activity consumes more than one
file and outputs only one. This allows the user to specify more than one disjoint
set of files that will be consumed together, so that the different sets can be
executed in parallel. For instance, the user can reduce all txt files and all jpg
files in parallel.

To run an activity like this, users can use the TARDIS method called
partial reduce activity. The first 3 parameters are the same as the map
method: the activity name or ID, the command that performs the activity and
the input RDD. The fourth is an array of patterns of files that will be affected
by it. The only difference is that in a partial reduce, the user can specify more
than one pattern.

In the command string, @!input will be translated to all the affected file-
names separated by a space, and there is a new placeholder, @!output, which
will be translated to a filename-safe version of the current pattern.

For example, if the user wants to concatenate all txt files in one big file and
all the jpg files in another, the following command can be used:

concatenatedRDD = tardis.partial reduce activity("cat", "cat

@!input > all@!output", filesRDD, ("*.txt", "*.jpg")).

If we had four files in filesRDD: text1.txt, text2.txt, photo1.jpg and
photo2.jpg, after the command concatenatedRDD we would have two files:
all.jpg and all.txt.

Reduce Activities. A reduce activity is a specific case of the partial reduce one
where only one pattern is given: "*". This means that all files from the RDD will
be consumed by only one instance of the command that performs the activity.

This is different from a reduce in a MapReduce or a Spark paradigm. In
those cases, it can be executed in parallel, because the operation is transitive
and binary (so it can be executed in a binary tree). As our operator is a black-
box, we cannot assure that the operation is transitive and we cannot modify the
input to receive only a pair of files.

Users can define this activity with the reduce activity method. It expects
three parameters: the activity name or ID, the command that performs the ac-
tivity and the input RDD. The @!input placeholder can be used in the command
to be translated to a list of all files available in the RDD. For instance, the user
wants to concatenate all of the files in an RDD to a single file, the following
command can be used:



finalRDD = tardis.reduce activity("final cat", "cat @!input >

allFiles", filesRDD).

In this example, the * wildcard could replace @!input with no loss of general-
ization. The finalRDD would have only one file, named allFiles.

4.3 Data Placement

As discussed in section 4.1, TARDIS distributes the files through nodes of the
shared-nothing cluster, such that the scientific black-box softwares can be sched-
uled to access their input files locally. In this section, we present our file allocation
algorithms for mapping each input file f ∈ F to a node n ∈ N in the cluster.

The file allocation algorithm should take into account the size of the file, their
initial allocation and the cost to transfer the file from one node to another. This
cost may vary if the nodes are not in the same network. Additionally, to avoid
skew, the scheduler should consider the ideal load of each node. This ideal is
given by the ratio of the computing capability of the respective node in relation
to the general computing capability of the cluster. At this moment, we consider
only the quantity of cores and the respective CPU frequency as a measure of
this capability.

Let ci be the computing capability of node ni.
∑

j cj is the sum of the capa-
bilities of the entire cluster. Supposing that to run a workflow W , the partition
pi is allocated to node ni, the ideal size of pi is given by

ideal size(pi) =
ci ×

∑
d∈input(W ) size(d)∑

j cj
. (1)

We propose four different file allocation algorithms: only local, greedy alloca-
tion, locals first and lazy allocation. They are presented in the next sections.

File Allocation Algorithms.

Only local
This algorithm tries to minimize the data transfer during the execution of work-
flows by maximizing the data locality. It trivially allocates each file to be run in
the same node where it is already stored. Algorithm 1 describes the only local
allocation. The FQDN (fully qualified domain name) of the node is used as its
identification.

Greedy allocation
The Greedy allocation algorithm pursues the optimal solution by reducing the

skew of data according to the computing capability of each node. As discussed
previously, each node is attributed an ideal fraction of the total input volume size
(as computed by Equation 1). As shown in Algorithm 2, our greedy algorithm
allocates the biggest files to the nodes with highest capability.

The algorithm proceeds as follows. After sorting the nodes and the files in
descending order (lines 2 and 3), we allocate the biggest files to the node with



Algorithm 1 Only local algorithm

1: procedure Local(nodes,objects)
2: for obj in objects do
3: for no in nodes do
4: if obj.node.fqdn == no.fqdn then
5: no.alloc obj to(obj)

biggest capability that can still fit this file (line 6-10). If the file cannot fit any
host, the host with the biggest capability, which has less tasks than it should,
will receive the task (lines 11-15) even if this makes it have more tasks than
what is required.

Algorithm 2 Greedy allocation algorithm

1: procedure Greedy(nodes,objects)
2: sort nodes by capability into descending order
3: sort objects by size into descending order
4: for object in objects do
5: obj allocated ← False
6: for no in nodes do
7: if obj.size < no.avail size then
8: no.alloc obj to(obj)
9: obj allocated ← True

10: break
11: if not obj allocated then
12: for no in nodes greedy do
13: if no.ideal size > no.curr size then
14: no.alloc obj to(obj)
15: break

Locals first

The locals first is a hybrid algorithm, in the sense that they tries to reduce
both the skew and the data transfer among the nodes. The locals first algorithm
tries to allocate the data to its local node, while this node has space (lines 2-6).
After filling every node, the remained data will be allocated to the closest node
with space available (lines 7-12). This is done by ordering the nodes with respect
to the transfer cost to where the object currently is.

Lazy allocation

The lazy allocation algorithm, also hybrid, starts by allocating all data to
the local node, like the only local algorithm (lines 2-5). Then, it redistributes
the overflowing data to other nodes, as shown in Algorithm 4. This is done by
ordering the files in a overflowing node by their size and removing the smallest
ones until the node is close to its ideal size (lines 6-11). Then each removed file
will be allocated to the closest node with available space (lines 12-16).



Algorithm 3 Locals first algorithm

1: procedure First(nodes,objects)
2: for obj in objects do
3: for no in nodes do
4: if obj.node.fqdn == no.fqdn and no.avail size ≥ obj.size then
5: no.alloc obj to(obj)
6: objects.remove(obj)

7: for obj in objects do
8: sort nodes by transfer costs from obj.node into ascending order
9: for no in nodes do

10: if no.avail size > 0 then
11: node.alloc obj to(obj)
12: break

Algorithm 4 Lazy allocation algorithm

1: procedure Lazy(nodes,objects)
2: for obj in objects do
3: for no in nodes do
4: if obj.node.fqdn == no.fqdn then
5: no.alloc obj to(obj)

6: for no in nodes do
7: if no.avail size < 0 then
8: sort no.objs to run by size in ascending order
9: while no is still overflowing do

10: obj taken ← no.objs to run[0]
11: remove no.objs to run[0] from no
12: ordered nodes← sort nodes by transfer costs from no into ascend-

ing order
13: for other no in ordered nodes do
14: if other node.avail size > 0 then
15: other node.alloc obj to(obj taken)
16: break

4.4 Scheduling

Given the TARDIS file allocation scheduling, we must conceive a strategy that
would oblige Spark scheduling to follow the proposed solution. This is done by
proceeding four main steps.

Step 1: Placeholders distribution. The output of the previous allocation
algorithms is a table, with the input files and theirs respective nodes to be al-
located to. We create an RDD containing n× f unique integers, where n is the
number of nodes and f is the number of input files. The n × f copies of the
scheduling table reserves f slots for each of the n nodes. The f slots are place-
holders for possible files at each node. Each place-holder has an individual id.
Later, each slot may hold a pointer to file allocated by the scheduling algorithm.



This is needed because it is not possible to increase the number of elements in
the RDD later without Spark performing a shuffling of the data.

By invoking the parallelize method of Spark with the parameter n, we
create n partitions of the allocation table and send them to the cluster. We
cannot assure that each node will receive a RDD partition with f elements. So
we check if the number of elements allocated to each node is higher or equal
to the number of files that should be allocated to that specific node. If this
condition is not assured, we restart this algorithm, this time creating an RDD
with m × n × f integers. m is initialized to 2, and is increased until the above
condition is satisfied. This condition is checked in the master node after executing
a Spark map transformation over the RDD which tags the element with the
current node name. After caching it in the nodes and collecting all elements to
the master, it knows not only the quantity of placeholders of each node, but also
which exact ids have been allocated to each node. This information will be used
for fault-tolerance reasons.

Step 2: Distribution of the allocation table. At this point, the master
node has two tables, a file allocation one, generated by the algorithms presented
in the previous section and an id allocation, collected by the previous step. By
joining both tables we generate (id, file) pairs, associating different ids of one
node to the files it should store. This new table will be broadcast to all nodes.

Step 3: Memory allocation. Then, we run a Spark map over this RDD
with a TARDIS method that will be executed over each element of this array.
This method will copy into memory the file related to the current id. This map
returns a pointer to the file allocated in memory as well as its name. This copy
will be done by locally reading the disk, if the file is already available in this node,
or by transferring it via the network. This is done, currently, using the rsync

utility. To allocate and access files in the memory, we use the shared memory
area (SHM) of the operational system (i.e. Linux).

Step 4: Unused placeholders removal. Finally, a Spark filter trans-
formation with a TARDIS routine is executed over the RDD to remove the
elements flagged with zero. Thus, in this step we have an RDD full of filenames
with pointers to its respective positions in local memory. Besides, we also have
this RDD partitioned according to our scheduling algorithm.

4.5 Collecting Output Files

After executing the workflow, the collect files TARDIS method should be
used to write the files in the output RDD to the master node hard disk.

A folder called output<N> will be created in the current directory with the
files inside it. <N> is a random integer that should allow the user to execute
the workflow many times and keep the outputs. TARDIS prints to the standard
output the name of the created folder.



5 Experiments

In this section, we report the results of our experiments done for validating
TARDIS and evaluating its performance.

mProjectPP
map

mAdd
groupByKey

mJPEG
reduce

Fig. 2. The Montage workflow used in experiments

We tested TARDIS with a workflow using Montage to produce an image in a
cluster. This workflow consumes 3.7 GB of input data and 20 GB of intermediate
data. Montage is a toolkit to assemble astronomical images to generate mosaics,
or panoramas [5]. It can be used for generating a colorful image of a certain
part of the sky. To generate a color image, Montage uses tiles obtained from the
DSS2 (Digitalized Sky Survey) with three filters: blue, red and infra-red. These
are catalogs that are generated by using the pictures taken by telescopes.

Table 1. Execution time for different experiments

6 nodes 3 nodes 1 node

TARDIS with only local allocation
average 8 min 04 sec 13 min 32 sec 19 min 57 sec

maximum 8 min 05 sec 13 min 34 sec 20 min 18 sec
minimum 8 min 03 sec 13 min 30 sec 19 min 44 sec

TARDIS with greedy allocation
average 8 min 26 sec 14 min 28 sec

maximum 8 min 37 sec 14 min 30 sec
minimum 8 min 21 sec 14 min 25 sec

TARDIS with locals first allocation
average 8 min 03 sec 13 min 34 sec

maximum 8 min 04 sec 13 min 35 sec
minimum 8 min 03 sec 13 min 33 sec

TARDIS with lazy allocation
average 8 min 10 sec 13 min 33 sec

maximum 8 min 15 sec 13 min 38 sec
minimum 8 min 06 sec 13 min 32 sec

Swift/K
average 16 min 51 sec 16 min 20 sec 10 min 42 sec

maximum 19 min 13 sec 23 min 03 sec 12 min 27 sec
minimum 14 min 20 sec 12 min 15 sec 9 min 17 sec

During the required image generation, the tiles (photos obtained from tele-
scopes) need to be normalized and unified to cover the area requested by the
user. Besides, after doing this for the three filters, they need to be combined to



generate a color image. Although all the tiles of the three channels are used to
generate the final image, intermediate activities perform a reduce operation in
each channel separately.

Figure 2 shows the Montage workflow, with its activities and types. The
mProjectPP activity projects some tiles to the coordinates of the final image.
The mAdd concatenate the different tiles, already reprojected. This is done for
three color-channels: red, blue and infrared. Finally, mJPEG creates a colorful
picture using the three channels.

The experiments were run in a cluster running Linux (CentOS distribution).
Each node has two Intel(R) Xeon(R) CPU E5-2630 v3 running at 2.40GHz with
eight physical cores each. The RAM memory available in each node is 94 GB.
The cluster nodes were used for running this workflow using six, three and one
node. We compare the execution time of TARDIS and its different scheduling
algorithms with Swift/K, which is the state-of-art workflow engine.

After performing 10 times each experiment, the averages, maximums and
minimums of the execution time are presented in Table 1.

We see that TARDIS performs better than Swift/K for the execution of the
workflow when the number of nodes is higher than one. With 6 nodes, the best
algorithm is TARDIS with locals first allocation. Swift/K does not pursue data
locality, thus its performance is not very good compared to TARDIS when the
number of nodes increases. However, it performs better than TARDIS when
running in only one node, i.e., not parallel. The reason is that TARDIS is op-
timized for running in distributed environments, particularly its data allocation
and scheduling modules.

6 Conclusion

In this paper, we proposed TARDIS, a Spark -based parallel workflow execution
system that pursues data locality and minimizes the skew among nodes. It ex-
ecutes existing workflows, without needing to re-implement workflow activities
in Spark API. It uses the nodes memory to export the data from Spark to ac-
tivities that consume and generate data from/to files. We also proposed four
data allocation algorithms to be used with TARDIS. In our experiments, jobs
with different allocations incurred in very close elapsed-time. This is mainly due
to the fact that files were already evenly distributed among cluster nodes. We
intend to further investigate the impact of allocation algorithms in future work.
Moreover, we proposed techniques for modifying the scheduling of Spark in or-
der to optimize the workflow execution in TARDIS and to take into account our
data placement strategies.

We evaluated the performance of TARDIS and compared it with Swift/K.
The results show that the data locality and in-memory execution of TARDIS
is highly adequate to parallel workflow execution in distributed environments,
leading to an improvement of up to 138% in execution time.



References

1. Apache: Apache spark programming guide.
https://spark.apache.org/docs/2.0.1/programming-guide.html

2. Apache: Hadoop. http://hadoop.apache.org/
3. Dean, J., Ghemawat, S.: Mapreduce: Simplified data process-

ing on large clusters. Commun. ACM 51(1), 107–113 (Jan 2008),
http://doi.acm.org/10.1145/1327452.1327492

4. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., et al.: Pegasus: A framework for mapping com-
plex scientific workflows onto distributed systems. Scientific Programming 13(3),
219–237 (2005)

5. Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J.C., Laity, A., Deelman, E.,
Kesselman, C., Singh, G., Su, M.H., Prince, T., et al.: Montage: a grid portal and
software toolkit for science-grade astronomical image mosaicking. International
Journal of Computational Science and Engineering 4(2), 73–87 (2009)

6. Liroz-Gistau, M., Akbarinia, R., Pacitti, E., Porto, F., Valduriez, P.: Dynamic
workload-based partitioning for large-scale databases. Database and Expert Sys-
tems Applications (Jan 2012), http://dx.doi.org/10.1007/978-3-642-32597-7 16

7. Ocaña, K., de Oliveira, D.: Parallel computing in genomic research: advances and
applications. Advances and applications in bioinformatics and chemistry: AABC
8(23) (2015)

8. Oliveira, D., Boeres, C., Porto, F., Fausti, A.: Avaliação da localidade de dados
intermediários na execução paralela de workflows bigdata. In: SBBD Proceedings
2015 (2015)

9. de Oliveira, D.E.M., Boeres, C., Porto, F.: Análise de estratégias de acesso a
grandes volumes de dados. In: SBBD Proceedings 2014 (2014)

10. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: A not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. pp. 1099–1110. SIGMOD ’08,
ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1376616.1376726

11. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S.,
Liu, H., Wyckoff, P., Murthy, R.: Hive: A warehousing solution over a
map-reduce framework. Proc. VLDB Endow. 2(2), 1626–1629 (Aug 2009),
http://dx.doi.org/10.14778/1687553.1687609

12. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift:
A language for distributed parallel scripting. Parallel Computing 37(9), 633–652
(2011)

13. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation (2012)

14. Zhou, J., Bruno, N., Wu, M.C., Larson, P.A., Chaiken, R., Shakib, D.: Scope:
Parallel databases meet mapreduce. The VLDB Journal 21(5), 611–636 (Oct 2012),
http://dx.doi.org/10.1007/s00778-012-0280-z


