R. Agrawal, C. Faloutsos, and A. N. Swami, Efficient similarity search in sequence databases, Int. Conf.on FODO, 1993.
DOI : 10.1007/3-540-57301-1_5

I. Assent, R. Krieger, F. Afschari, and T. Seidl, The TS-tree, Proceedings of the 11th international conference on Extending database technology Advances in database technology, EDBT '08, 2008.
DOI : 10.1145/1353343.1353376

A. Camerra, T. Palpanas, J. Shieh, and E. Keogh, iSAX 2.0: Indexing and Mining One Billion Time Series, 2010 IEEE International Conference on Data Mining, pp.58-67, 2010.
DOI : 10.1109/ICDM.2010.124

A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J. Keogh, Beyond one billion time series: indexing and mining very large time series collections with $$i$$ SAX2+, Knowledge and Information Systems, vol.20, issue.7, 2014.
DOI : 10.1109/ICDE.2002.994711

P. Esling and C. Agon, Time-series data mining, ACM Computing Surveys, vol.45, issue.1, pp.1-1234, 2012.
DOI : 10.1145/2379776.2379788

URL : https://hal.archives-ouvertes.fr/hal-01577883

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence matching in time-series databases, SigRec, vol.23, issue.2, pp.419-429, 1994.

H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, Searching in one billion vectors: Re-rank with source coding, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.
DOI : 10.1109/ICASSP.2011.5946540

J. Eamonn and . Keogh, Exact indexing of dynamic time warping, VLDB, 2002.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A symbolic representation of time series, with implications for streaming algorithms, Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery , DMKD '03, 2003.
DOI : 10.1145/882082.882086

J. Lin, E. Keogh, L. Wei, and S. Lonardi, Experiencing SAX: a novel symbolic representation of time series, Data Mining and Knowledge Discovery, vol.5, issue.2, 2007.
DOI : 10.1007/s10618-007-0064-z

T. Palpanas, Data Series Management, ACM SIGMOD Record, vol.44, issue.2, pp.47-52, 2015.
DOI : 10.1145/2783258.2783382

T. Palpanas, Big Sequence Management: A glimpse of the Past, the Present, and the Future, 2016.
DOI : 10.1007/978-3-662-49192-8_6

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover et al., Searching and mining trillions of time series subsequences under dynamic time warping, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, 2012.
DOI : 10.1145/2339530.2339576

J. Shieh and E. Keogh, SAX, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.623-631, 2008.
DOI : 10.1145/1401890.1401966

J. Shieh and E. Keogh, iSAX: disk-aware mining and indexing of massive time series datasets, Data Mining and Knowledge Discovery, vol.3, issue.4, pp.24-57, 2009.
DOI : 10.1007/s10618-009-0125-6

W. Yang, W. Peng, P. Jian, W. Wei, and H. Sheng, A data-adaptive and dynamic segmentation index for whole matching on time series, 2013.

C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding et al., Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets, 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016.
DOI : 10.1109/ICDM.2016.0179

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster computing with working sets, HotCloud, 2010.

K. Zoumpatianos, T. Idreos, and . Palpanas, Indexing for interactive exploration of big data series, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, SIGMOD '14, 2014.
DOI : 10.1145/2588555.2610498

K. Zoumpatianos, S. Idreos, and T. Palpanas, ADS: the adaptive data series index, The VLDB Journal, vol.8, issue.12, pp.843-866, 2016.
DOI : 10.1109/ICDE.2014.6816724