
HAL Id: lirmm-01620127
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620127v1

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In situ visualization and data analysis for turbidity
currents simulation

José Camata, Vitor Silva, Patrick Valduriez, Marta Mattoso, Alvaro L. G. A.
Coutinho

To cite this version:
José Camata, Vitor Silva, Patrick Valduriez, Marta Mattoso, Alvaro L. G. A. Coutinho. In situ
visualization and data analysis for turbidity currents simulation. Computers & Geosciences, 2018,
110, pp.23-31. �10.1016/j.cageo.2017.09.013�. �lirmm-01620127�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620127v1
https://hal.archives-ouvertes.fr

In Situ Visualization and Data Analysis for Turbidity Currents
Simulation

Jose J. Camataa,c, Vı́tor Silvab,c, Patrick Valduriezd, Marta Mattosob,c, Alvaro L. G. A.
Coutinhoa,c

aHigh-Performance Computing Center and Department of Civil Engineering
bDepartment of Computer Science

cCOPPE, Federal University of Rio de Janeiro, Brazil
dInria and LIRMM, University of Montpellier, France, France

Abstract

Turbidity currents are underflows responsible for sediment deposits that generate geological forma-

tions of interest for the oil and gas industry. libMesh-sedimentation is an application built upon

the libMesh library to simulate turbidity currents. In this work, we present the integration of

libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is

a solution based on provenance data to extract and relate strategic simulation data in transit from

multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to

perform in situ data analysis and visualization. We present a parallel performance analysis for two

turbidity currents simulations showing that the overhead for both in situ visualization and in transit

data analysis is negligible. We show that our tools enable monitoring the sediments appearance

at runtime and steer the simulation based on the solver convergence and visual information on the

sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

Keywords: Turbidity currents; in situ visualization; in transit data analysis; adaptive mesh

refinement and coarsening; parallel computing

1. Introduction

Turbidity currents are particle-laden underflows where the main driver is turbulence. According

to Meiburg and Kneller [1], turbidity currents Reynolds number in nature is of O(109). Thus

∗Corresponding author
Email addresses: camata@nacad.ufrj.br (Jose J. Camata), silva@cos.ufrj.br (Vı́tor Silva),

patrick.valduriez@inria.fr (Patrick Valduriez), marta@cos.ufrj.br (Marta Mattoso), alvaro@nacad.ufrj.br
(Alvaro L. G. A. Coutinho)

Preprint submitted to Computers & Geosciences October 19, 2017

particles can be carried for long distances and eventually they will settle, being responsible for

sediment deposits that generate geological formations of considerable interest for the oil and gas5

industry. Sedimentation and erosion promoted by such particle-laden flows can mold the seabed,

producing different geological structures like canyons, dunes, and ripples.

Meiburg and Radhakrishnan [2] review models and computational approaches for modeling

gravity and turbidity currents. They vary from simple conceptual models, depth-averaged models,

like shallow-water approximations, to more realistic depth-resolved models, based on the three-10

dimensional Navier-Stokes equations. Possible computational approaches, in this case, involve

direct numerical simulation (DNS), large-eddy simulations (LES) and Reynolds averaged Navier-

Stokes simulations (RANS). We use an LES finite element approach based on the residual-based

variational multiscale (RBVMS) method as described in Guerra et al [3]. However, to improve

the front resolution, we extend the parallel adaptive mesh refinement/coarsening strategy used15

by Rossa and Coutinho [4] for simulating three-dimensional lock-exchange configurations to the

RBVMS method. Three-dimensional adaptive mesh refinement and coarsening (AMR/C) poses

several challenges regarding parallel performance, but according to Burstedde et al [5], AMR/C is

optimal for tackling large-scale problems governed by partial differential equations. Other software

using AMR/C for similar problems are Fluidity-ICOM [6] and the Gerris solver [7].20

The standard turbidity current simulation workflow involves the following steps: (i) preprocess-

ing and mesh generation; (ii) time stepping, saving data on disk when required, that is, velocity,

pressure, sediment concentrations; and (iii) post-processing, typically visualizing the data generated

by the simulation and extracting relevant information on the quantities of interest. When AMR/C

is used, mesh data are also saved in step (ii). For large-scale problems, this workflow involves saving25

a huge amount of raw data in persistent storage.

In situ visualization techniques circumvent the storage bottleneck by removing the necessity of

first storing data to persistent storage before processing. A recent review discusses the advantages

of these techniques [8]. Besides savings in persistent storage, we can indeed generate more detailed

visualizations, since in situ techniques directly access the memory allocated by the simulation codes.30

Then, we can, in principle, produce pictures for every time step, which is practically impossible in

the standard workflow. We can extend these ideas, using in situ visualization techniques to provide

information to help control the simulations. Often, by only observing a deposition pattern, an

experienced interpreter can infer that something is not going well in the simulation, deciding to

2

stop it or change parameters, preferably at runtime, resuming the simulation. However, to do that,35

the visualization should be complemented with information regarding the evolution of quantities of

interest, such as residual norms, number of linear and nonlinear iterations, often within a specific

time window, not just the current values. To obtain this complementary information, even the

experienced interpreter has difficulty in identifying the files related to the time window, opening

and parsing them to obtain specific values and tracking their evolution. The present paper discusses40

how to integrate in situ visualization with in transit data analysis techniques in large-scale parallel

three-dimensional turbidity current simulations.

The rest of this work is organized as follows. Section 2 introduces the governing equations,

and the numerical formulation used to simulate turbidity currents using libMesh [9]. Section 3

describes our in transit data analysis approach using DfAnalyzer tool [10] and in situ data ex-45

traction and visualization using ParaView Catalyst [11]. We also discuss in this section how we

integrate libMesh with the data analysis tools. Section 4 provides numerical results and a parallel

performance evaluation of our solution solving two turbidity current scenarios. The results show

that the overhead of in situ visualization and in transit data analysis is negligible, while the added

analytical power enables monitoring deposition patterns and steering simulations. The paper ends50

with a summary of our conclusions.

2. Turbidity Currents Simulation in libMesh

2.1. Governing Equations

This section establishes the mathematical setting for the numerical simulation of turbidity cur-

rents within a Eulerian−Eulerian framework. The flows of interest here are mainly driven by small55

density differences promoted by the heterogeneous presence of sediment particles within the fluid.

The double mention to Eulerian is to emphasize that suspended particles, assumed to be present in a

dilute proportion in the mixing with a clear fluid, are modeled as a continuum, which motion is gov-

erned by an advection dominated transport equation. Here we adopt the simplest three-dimensional

depth-resolved model, considering just one sediment granulometry. More complex models can be60

found in [12, 13, 14, 15, 16].

The suspension flow is governed by the incompressible Navier−Stokes equations considering the

Boussinesq approximation

3

∂u

∂t
+ u · ∇u = −∇p+

1√
Gr
∇2u + egc in Ω× [0, tf] (1)

∇ · u = 0 in Ω× [0, tf] (2)

coupled with the equation for sediment transport

∂c

∂t
+ (u + use

g) · ∇c =
1

Sc
√
Gr
∇2c in Ω× [0, tf] (3)

where u, p, c, t, are respectively, non-dimensional velocity, pressure, sediment concentration and

time. The dimensionless velocity us quantifies the settling velocity of the particles and eg is the

direction of gravity. Gr is the Grashof number, expressing the ratio between buoyancy and viscous

effects given by

Gr =

(
ubH

ν

)2

(4)

with ν the fluid kinematic viscosity, H a characteristic length of the flow, and ub the buoyancy

velocity. A second dimensionless number is the Schmidt number (Sc) that gives the ratio between

diffusion and viscous effects,

Sc =
ν

κ
(5)

where κ is the diffusivity coefficient.65

Essential and natural conditions for Eq. 1 are u = g on Γg and n · (−pI + 1√
Gr
∇u) = h on Γh,

where g and h are given functions, n is the unit outward normal vector of Γh. Γg and Γh are subsets

of the domain boundary Γ. Initial conditions for velocity are chosen to respect the divergence free

condition. For Eq. 3, essential conditions may be applied as c = c̄ on Γin. We also apply no-flux

boundary conditions at boundary ΓT by imposing

usc− n · (1

Sc
√
Gr
∇c) = 0 on ΓT (6)

This condition ensures that no particle is transported across this boundary. We also assume that

particles leave the flow due to sedimentation. This is accomplished by imposing a convective

boundary condition at Γb (typically the bottom wall).

4

∂c

∂t
= n · (us∇c) on Γb (7)

with Γ = Γin ∪ Γb ∪ ΓT . No explicit particle resuspension mechanism, allowing particles going

back to the flow after hitting the bottom, like erosion, is included. In fact, no significant amount70

of resuspension is expected for the flow conditions analyzed here [13]. We compute the deposited

particle layer thickness by integrating in time the particle flux through the bottom, that is,

D(x, t) =

∫ t

0

us c(x, t) dτ (8)

2.2. Weak form of the governing equations

Assuming that the test and weight functions belong to the standard discrete finite element

spaces, the weak form for the incompressible Navier–Stokes, based on the Residual-Based Varia-75

tional Multiscale method (RBVMS) reads

(
wh,

∂uh

∂t

)
Ωh

+ (wh,uh − τMrM ,∇uh)Ωh + (qh,∇ · uh)Ωh

− (∇ ·wh, ph)Ωh + (∇swh,
1√
Gr
∇suh)Ωh − (wh, egch)Ωh

+ (uh · ∇wh)Ωh

+ (∇qh, τMrM)Ωh

+ (∇wh, τC∇ · uh)Ωh

− (∇wh, τMrM ⊗ τMrM)Ωh = 0 (9)

while for the sediment transport equation we have,

(
wh,

∂ch

∂t

)
+

(
wh, (u + use

g) · ∇ch
)

Ωh +

(
∇wh,

1

Sc
√
Sc
∇ch

)
Ωh

+

nel∑
e=1

(
τSUPGu · ∇wh, (

∂ch

∂t
+ (u + use

g) · ∇ch)

)
Ωe

+

nel∑
e=1

(
δ(ch)∇wh,∇ch

)
Ωe

=
(
wh, hh

)
Γ
. (10)

5

The RBVMS weak formulation, Eq. (9), is based on splitting the physical variables of the

problem into large scales (those explicitly captured by the numerical grid) and fine scales (sub–grid

scales), that is,

u = uh + u′ (11)

p = ph + p′ (12)

where the superscript h denotes the large scale component of the solution, while the superscript ′

refers to the small scale complement. In Eq. (9) a simple algebraic model for the small scale part

of the solution is used to close the formulation, that is,

u′ = −τMrM (13)

p′ = −τCrC (14)

with rM and rC being the discrete residuals of the coarse scale equations, given by

rM =
∂uh

∂t
+ uh · ∇uh +∇p− 1√

Gr
∇2uh − egch (15)

rC = ∇ · uh (16)

and τM and τC are scalar parameters computed as in [17].

For sediment transport, the stabilized SUPG finite element formulation is employed [4]. The

expression for the stabilization parameter τSUPG is also given in [4]. We also added to the formula-80

tion a discontinuity-capturing operator, the last term in Eq. 10, in which the parameter δ depends

nonlinearly on the concentration [3].

2.3. libMesh library

libMesh [9] is an open-source library that provides a complete platform for parallel, adaptive,

multiphysics finite element simulations. The library supports adaptive mesh refinement and coars-85

ening (AMR/C) capabilities on general unstructured meshes. AMR/C can be implemented using

a variety of error estimators [18]. Additionally, libMesh supports parallel distributed meshes and

employs adaptive repartitioning techniques to increase scalability for AMR/C runs. Various con-

tinuous and discontinuous finite element families can be used. For a recent review of libMesh, its

new variants and other related finite element libraries see Bauman and Stogner [19].90

6

libMesh also interfaces with several external solver packages, such as PETSc [20] and Trilinos

[21]. In particular, PETSc includes a large suite of parallel linear and nonlinear equation solvers.

Despite providing several tools for mesh-based solvers, applications built upon libMesh need to

reimplement many common finite element kernels, including assembly loops and time integration

schemes. These kernels are typically related to the physics of the problem of interest and the95

numerical formulation adopted.

In this work, we introduce libMesh-sedimenation, where we implement the mathematical frame-

work presented in section 2.1. A staggered scheme advances in time the Navier-Stokes and sed-

iment transport equations. Non-linearities are handled by the Inexact-Newton method for both

systems. For time integration we adopted a predictor/multicorrector scheme for Navier-Stokes and100

the Crank-Nicolson method for the sediment transport equation.

3. Data analysis tools

Data analysis typically involves sophisticated queries and visualization tools. ParaView [22] is

an open-source, multi-platform data analysis and visualization application. ParaView Catalyst is an

in situ data processing visualization tool. However, enabling Catalyst on a parallel simulation code105

still introduces some overhead on the overall memory footprint, presents limited query processing

power, and is not possible to adjust simulation parameters dynamically (i.e., user steering support).

In this section, we expand Catalyst’s analytical power by extracting and inserting relevant

simulation data and metadata into a Database Management System (DBMS) with more robust

simulation data query support. We use a tool, DfAnalyzer, that aims at relating data from different110

simulation time steps and registers at runtime execution provenance, without interfering with the

overall parallel performance.

3.1. DfAnalyzer: Runtime Data Analysis Tool based on Dataflow Management

DfAnalyzer1 [10] is a generic tool to analyze simulation data. DfAnalyzer is based on four

components: extracting selected data from the simulation; relating simulation data and metadata;115

ingesting data into a DBMS, and processing queries. DfAnalyzer gathers quantities of interest

by instrumenting simulation codes, such as solver results (residual norms, number of linear and

1https://hpcdb.github.io/armful/dfanalyzer.html

7

nonlinear iterations); extracts data that are allocated in memory using Catalyst, such as velocity,

pressure and sediment concentration; gathers provenance data, describing the history of data trans-

formations in simulation runs; and relates these simulation data from different files with provenance120

management support, such as nonlinear solver convergence data (i.e., residual norms), correlating

them with results extracted using Catalyst (e.g., sediment concentration).

There are several advantages of this data analysis approach. First, simulation data is preserved

in their format and not replicated in the DBMS. Second, data is related among different files while

it is being generated, which might be cumbersome after the simulation ends, as in post-processing125

approaches [23]. Third, the history of data generation is registered for further analysis or repro-

duction through provenance, following W3C PROV–DM [24]. Fourth, efficient data management

techniques from column-oriented relational DBMS (i.e., MonetDB [25]) can be used at runtime.

Consequently, DfAnalyzer provides a provenance database enriched with quantities of interest (i.e.,

domain data) that can be queried at runtime.130

3.2. In situ Data Extraction and Visualization using ParaView Catalyst

Catalyst [11] leverages raw data extraction and visualization capabilities of the common post-

processing platforms, VTK [26] and ParaView [22]. Catalyst can take advantage of the ParaView

User Interface (UI) to develop Python scripts for data extraction and visualization in VTK data

structures. Catalyst also provides APIs that initialize, execute, and finalize co-processing pipelines135

to enable in situ data processing during a simulation run [11]. Therefore, Catalyst API provides

an interface between simulation codes and Python scripts for analyzing raw data in memory. This

interface, called adaptor, maps data structures from simulation codes to Catalyst VTK data model

and provides an API that the simulation code uses to invoke Catalyst. The specification of this

interface is an important step and may require a significant effort. Alternatively, a generic interface,140

such as SENSEI [27], may be used to replace the adaptor.

3.3. libMesh-sedimentation Integration with ParaView Catalyst and DfAnalyzer

Figure 1 illustrates the integration among libMesh-sedimentation with Catalyst and DfAnalyzer.

For in situ data analysis and visualization, we implemented a Catalyst adaptor with Initialize,

CoProcess, and Finalize methods for invoking pipelines developed in Python scripts to extract145

simulation data and to generate visualizations. Initialize method starts Catalyst in a proper

8

state in a simulation run. This method is invoked once per simulation run and before CoProcess

method invocations. It defines analysis pipelines to be run by Catalyst. Each analysis pipeline

corresponds to a Python script generated by the ParaView UI application.

CoProcess method is called for each time step that is relevant for data analysis and visualization.150

Therefore, the adaptor implementation maps simulation data structures to the VTK data model

(from Catalyst) and uses them to run registered analysis pipelines (from Initialize method).

Then, the Finalize method is responsible for releasing memory allocated during simulation run

and cleaning up Catalyst state.

libMesh uses a complex data structure and reuse of memory would only be possible by modifying155

the libMesh code. Thus, we have opted for a generic adaptor able to work with any libMesh

version. Thus, unlike [28], we do not consider reuse of in-memory data in this data structure

mapping between libMesh-sedimentation and Catalyst.

DfAnalyzer gathers high granularity provenance data from simulation stages relevant analysis,

involving data from different time steps. DfAnalyzer registers simulation data from the nonlinear160

iterations loops for fluid and sediment solvers. Figure 2 shows how we instrumented libMesh-

sedimentation code using DfAnalyzer. We identify when a data transformation (in general, repre-

sented by the invocation of a libMesh component) initializes and finalizes to gather relevant domain

data, such as the final linear residual norm for the fluid solver at a given time step. To avoid harm-

ing the solver performance, we instantiate MonetDB DBMS in a dedicated node, different from165

the nodes executing libMesh-sedimentation. As data is registered on a different computational

node from where it was generated, the integration of libMesh-sedimentation with DfAnalyzer cor-

responds to an in transit approach.

4. Numerical, Performance and Data Analysis Results

In this section, we study two turbidity current scenarios. First, we reproduce the experimental170

and DNS results provided by Rooij and Dalziel [29] and Nasr-Azadami [14]. The second test case

simulates the sediment deposition carried by a turbidity current over a real bed bathymetry. We

tested our approach on Lobo Carneiro, an SGI ICE X. The system has 252 nodes connected by an

FDR InfiniBand. Each node has two 12-core Intel Xeon E5-2670v3 processor and 64GB of memory.

The total system memory is 16 terabytes. The high-performance scratch file system is powered by175

Lustre and has a total capacity of 500TB.

9

4.1. de Rooij and Dalziel sedimentation tank

The experiments carried out by de Rooij and Dalziel [29] are based on a lock-exchange config-

uration. Figure 3 shows the domain model used in this simulation. It is a rectangular box with

dimensions 20 × 2 × 2. The lock, in which the fluid initially is at rest, has a height 2 and length180

0.75. In this simulation, we take Gr = 106, Sc = 1 and the non-dimensional settling velocity is

us = 0.02. We use a hexahedral structured mesh with a 0.1 grid spacing. Two uniform refinements

are applied initially, totalizing 4,608,000 hexahedra. The Kelly’s error estimator [18] is computed

for both velocity and sediment concentration, and it is used to drive the adaptive mesh refinement.

The Navier-Stokes and sediment concentration equations linear systems are solved in parallel by185

Block-Jacobi + GMRES(35) with local ILU(0) preconditioning. GMRES tolerance is set to 10−6.

For the nonlinear solver, the tolerance is 10−3 and the time step size is 0.005. XDMF/HDF5 raw

data files are written every 50 time steps.

For the in situ data analysis, we created a pipeline from a Python script using ParaView client’s

user interface where a sequence of ParaView’s filters is applied to generate a view of the sediment190

concentration profile on the plane x− z taken at y = 1.0. We control how often to call the Catalyst

adaptor and the raw data writer. We kept the Catalyst calling frequency identical to the raw data

writer. Figure 4 (a) and (b) shows sediment concentration snapshots at t = 10 and t = 20 generated

by Catalyst.

The Catalyst adaptor is also used to extract derived information from original data, improving195

the data analysis. For geologists, tracking the sediment deposition along time is one of the most

relevant information. A typical analysis is to verify if sediments reach a given region of interest

and to map the deposit profile. To do that, we defined four monitoring lines at the bottom of the

domain. These lines are discretized in 100 equally spaced points where data is extracted. Three

of these lines are parallel and defined perpendicular to the x-axis (blue lines in Fig. 3). They are200

used to map the progress of the sediment current. The fourth line cuts the domain transversally

and maps the deposition profile (red line in Fig. 3). It is defined at y = 0 and extends from x = 0

to x = 20.

DfAnalyzer registers deposition along time at predefined locations and the corresponding point-

ers to the Catalyst visualization files. Therefore, we can monitor the sediments on these lines205

through online queries with a negligible elapsed time (< 500 milliseconds). Figure 5 illustrates

the sediment deposits at five different times for x = 9.0 and x = 13.5. As we can observe, the

10

sediments have already reached one region of interest at x = 9.0 but not at x = 13.5. With this

combined information, we may decide to stop the simulation (deposition reached the area of in-

terest) or whether it is necessary to continue execution (deposition is still away from the area of210

interest). If the decision is to continue, we need to reset the maximum time interval. Figure 6

shows a piece of libMesh-sedimentation code where we can see how simulation parameters can be

changed at runtime by reading a reset file. libMesh-sedimentation checks at the beginning of each

time step whether a reset file exists. If true, the input parameters file is read superseding previous

values.215

Without DfAnalyzer, we would need to browse the generated files to extract and analyze raw

data. Moreover, some relevant data are stored in log files. Therefore, we would have to gather

those data from log files and develop programs to relate data captured from the log and raw

data files. Different from this approach, our integration of libMesh-sedimentation with Catalyst

and DfAnalyzer enables online query processing considering data obtained from log and raw data220

files, taking advantage of in situ visualization and in transit data analysis without compromising

performance, as shown in Table 1.

Figure 7 compares the deposition profile extracted from our solution with experimental and

DNS results provided respectively by de Rooij and Dalziel [29] and Nasr-Azadami and Meiburg

[14]. Considering the limitations imposed by experimental conditions pointed out in [13], our result225

shows a good agreement with both experiment and DNS solutions.

Table 1 shows the elapsed time spent in the different stages of libMesh-sedimentation. In this

experiment, we ran the simulation on 480 MPI processes. CPU time spent by the data analysis tools

is only 6.41% of the total time, where 6.33% accounts for in situ visualization and data extraction,

and the remaining 0.08% is from DfAnalyzer. Code instrumentation has shown that CPU time230

spent in Catalyst depends on how many filters are applied. Therefore, data extraction spent more

CPU time than visualization. The most expensive stage is the nonlinear solution of fluid equations,

taking almost 33% of the total time, followed by mesh refinement and coarsening (AMR/C) with

20.70%. XDMF/HFD5 raw data writer took 0.92% of the total time.

Although in situ visualization and extraction have higher CPU times than the XDMF/HDF5 raw235

data writer, this could be offset by disk bandwidth constraints as well as limited disk capacity. Table

2 shows the storage usage for the PNG images, data extracted, provenance data and XDMF/HDF5

raw data files. As we can see, raw data files consume 10,000 MB of disk space. The space used

11

Table 1: Elapsed time for different stages on libMesh-Sedimentation – de Rooij and Dalziel sedimentation tank

Time Contribution CPU Time (in secs) Cost/Call %Cost

Flow Solver 16,203.71 0.87 32.67%

AMR/C 10,268.32 17.11 20.70%

Sediment Solver 2,797.36 0.15 5.64 %

XDMF/HDF5 Writer 453.96 4.93 0.92%

In Situ Visualization + Data Extraction 3,137.24 33.73 6.33%

Provenance (DfAnalyzer) 38.47 0.01 0.08%

Others (libMesh) 16,598.00 – 33.67%

Total 62,171.00

to store the provenance database takes only 2.96% of XDMF/HDF5’s storage space. Visualization

files use 2.48% of this space and data extracted files consume only 0.02% of XDMF/HDF5 raw data240

files.

Table 2: Storage requirements - de Rooij and Dalziel sedimentation tank

Storage (MB) files

In Situ Visualization 248.00 62

Extracted data 2.48 248

Provenance 296.01 75,696

XDMF/HDF5 Raw Data 10,000.00 44,254

4.2. Real Bathymetry Tank

In this second experiment, all computations were performed taking into consideration the phys-

ical scenario described in Figure 8. The color map in Figure 8 represents a real bathymetry where

deeper regions are colored in dark blue. In this scenario, a diluted mixture of sediments is continu-245

ously injected into a channel that releases sediments into the tank at an angle of 45 degrees. Note

that the channel is located near a deeper region of the domain. This computational configuration is

divided in two main areas: the channel with length Lc = 2.5, width Wc = 0.2 and height Hc = 1.5,

and the tank with length LT = 14, width Wc = 12 and height Hc = 1.5. Spatial discretization

employs a fixed unstructured mesh with 7,674,812 tetrahedra and 1,418,934 nodes.250

12

A monodisperse mixture is considered with dimensionless settling velocity us = 5.6651× 10−03,

Gr = 106 and Sc = 1.0. The time step is fixed as t = 5× 10−3 and the analysis is performed over

a total of 100 units of dimensionless time. Nonlinear and linear solver parameters are the same of

the previous experiment. Non-penetration and non-slip velocity boundary conditions are set on the

channel walls and the tank wall in contact with the channel. In the other walls, free slip conditions255

are applied. Sediment loss is allowed only through the tank bottom. The sediments are injected

into the channel with a velocity magnitude of 0.1.

In this test, we have setup the Catalyst script to provide visual information of the deposition

map during the simulation run. Catalyst is called with a frequency five times greater than the

raw data writer. Figure 9(a) shows the final snapshot taken at t = 100. Figure 9(b) illustrates a260

post-processing visualization generated by ParaView. As in the previous test, the Catalyst adaptor

was used to extract four lines in four regions of interest.

In this experiment, DfAnalyzer is explored also as a tool to assist the simulation robustness. The

main idea is to help in the detection of possible misbehavior of nonlinear and linear solvers. Figure

10 displays a time window showing the nonlinear residual norms in five consecutive instants. By265

querying DfAnalyzer, we can detect possible convergence issues and decide to steer the simulation

by resetting some solver parameters or even recovering the latest correct checkpoint solution without

interrupting the simulation run. Again, steering is done for these parameters as shown in Figure 6.

Table 3 presents the performance results for the different simulation stages on 480 cores. Once

more analysis tools added a small overhead to overall simulation costs (< 2% of total time). Storage270

requirements are smaller than those of the XDMF/HDF5 raw data files, as reported by Table 4.

Analysis data uses less than 3% of the space needed to store the XDMF/FDF5 files. Moreover, we

can increase the write interval of these files and possibly reducing the data stored in persistent file

systems.

5. Conclusions275

In-situ visualization tools when coupled to simulations solvers reduce storage space and improve

data analytics while the simulation is running. In this work, we coupled Catalyst to libMesh-

sedimentation, a solver based on the libMesh library, that provides support for parallel adaptive

mesh refinement and coarsening. However, despite reducing the number of files, steering the sim-

ulation was still limited to the difficulties in finding the adequate visualization files and relating280

13

Table 3: Elapsed time (in secs) for different stages on libMesh-Sedimentation – Real bathymetry tank

Time Contribution CPU Time (in secs) %Cost

Flow Solver 75,523.49 50.71 %

Sediment Solver 28,000.50 19.58 %

XDMF/HDF5 Writer 421.23 0.29 %

In Situ Visualization + Data Extraction 2,175.16 1.52 %

Provenance (DfAnalyzer) 451.70 0.32 %

Total 143,029.00 100%

Table 4: Storage requirements - Real bathymetry tank

Storage (GB) % Raw Data

XDMF/HDF5 Raw Data 23.44 –

Provenance 0.38 1.60

In Situ Visualization 0.28 1.21

them to the main quantities of interest registered in XDMF/HDF5 files. Our approach is to couple

DfAnalyzer, a runtime data steering tool, to the libMesh-sedimentation/Catalyst solver. DfAn-

alyzer registers quantities of interest related to in-situ visualization files and their time histories.

We demonstrated performance efficiency combined with sophisticated simulation steering at run-

time running two turbidity current simulations. The results on a 480 core analysis evidenced high285

performance with negligible time for both in-situ visualization and data analytics.

Acknowledgements

The research has received funding from CNPq, FAPERJ and Inria (SciDISC projects), the

European Commission (HPC4E H2020 project) and the Brazilian Ministry of Science, Technology,

Innovation and Communications. It has been performed (for P. Valduriez) in the context of the290

Computational Biology Institute. Computer time on Lobo Carneiro was provided by the HPC

Center at COPPE/Federal University of Rio de Janeiro.

14

References

[1] E. Meiburg, B. Kneller, Turbidity Currents and Their Deposits, Annual Review of Fluid Me-

chanics 42 (1) (2010) 135–156. doi:10.1146/annurev-fluid-121108-145618.295

[2] E. Meiburg, S. Radhakrishnan, M. Nasr-Azadani, Modeling Gravity and Turbidity Currents:

Computational Approaches and Challenges, Applied Mechanics Reviews 67 (4) (2015) 040802.

doi:10.1115/1.4031040.

[3] G. M. Guerra, S. Zio, J. J. Camata, F. A. Rochinha, R. N. Elias, P. L. Paraizo, A. L.

Coutinho, Numerical simulation of particle-laden flows by the residual-based variational mul-300

tiscale method, International Journal for Numerical Methods in Fluids 73 (8) (2013) 729–749.

doi:10.1002/fld.3820.

[4] A. L. Rossa, A. L. Coutinho, Parallel adaptive simulation of gravity currents on the lock-

exchange problem, Computers & Fluids 88 (2013) 782 – 794. doi:http://doi.org/10.1016/

j.compfluid.2013.06.008.305

[5] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, L. Wilcox, Extreme-

scale amr, in: Proceedings of the 2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC ’10, IEEE Computer Society,

Washington, DC, USA, 2010, pp. 1–12. doi:10.1109/SC.2010.25.

[6] I. C. London, others., Fluidity: An open-source computational fluid dynamics code with adap-310

tive unstructured mesh capabilities (2017).

URL http://http://fluidityproject.github.io/

[7] S. Popinet, Gerris flow solver (2017).

URL http://gfs.sourceforge.net

[8] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland, P. O’Leary,315

V. Vishwanath, B. Whitlock, E. W. Bethel, In situ methods, infrastructures, and applications

on high performance computing platforms, Computer Graphics Forum 35 (3) (2016) 577–597.

doi:10.1111/cgf.12930.

15

http://dx.doi.org/10.1146/annurev-fluid-121108-145618
http://dx.doi.org/10.1115/1.4031040
http://dx.doi.org/10.1002/fld.3820
http://dx.doi.org/http://doi.org/10.1016/j.compfluid.2013.06.008
http://dx.doi.org/http://doi.org/10.1016/j.compfluid.2013.06.008
http://dx.doi.org/http://doi.org/10.1016/j.compfluid.2013.06.008
http://dx.doi.org/10.1109/SC.2010.25
http://http://fluidityproject.github.io/
http://http://fluidityproject.github.io/
http://http://fluidityproject.github.io/
http://http://fluidityproject.github.io/
http://gfs.sourceforge.net
http://gfs.sourceforge.net
http://dx.doi.org/10.1111/cgf.12930

[9] B. S. Kirk, J. W. Peterson, R. H. Stogner, G. F. Carey, libMesh: A C++ Library for Parallel

Adaptive Mesh Refinement/Coarsening Simulations, Engineering with Computers 22 (3–4)320

(2006) 237–254.

[10] V. Silva, J. Leite, J. J. Camata, D. de Oliveira, A. L. Coutinho, P. Valduriez, M. Mattoso, Raw

data queries during data-intensive parallel workflow execution, Future Generation Computer

Systems (2017) –doi:http://doi.org/10.1016/j.future.2017.01.016.

[11] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, J. Mauldin, Par-325

aview catalyst: Enabling in situ data analysis and visualization, in: Proceedings of the First

Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization,

ISAV2015, ACM, New York, NY, USA, 2015, pp. 25–29. doi:10.1145/2828612.2828624.

URL http://doi.acm.org/10.1145/2828612.2828624

[12] F. Necker, C. Härtel, L. Kleiser, E. Meiburg, High-resolution simulations of particle-driven330

gravity currents, International Journal of Multiphase Flow 28 (2) (2002) 279 – 300. doi:http:

//dx.doi.org/10.1016/S0301-9322(01)00065-9.

[13] F. Necker, C. Härtel, L. Kleiser, E. Meiburg, Mixing and dissipation in particle-driven gravity

currents, Journal of Fluid Mechanics 545 (2005) 339–372.

[14] M. M. Nasr-Azadani, E. Meiburg, TURBINS: An immersed boundary, Navier–Stokes code335

for the simulation of gravity and turbidity currents interacting with complex topographies,

Computers & Fluids 45 (1) (2011) 14–28. doi:http://dx.doi.org/10.1016/j.compfluid.

2010.11.023.

[15] J. Camata, R. Elias, A. Coutinho, FEM Simulation of Coupled Flow and Bed Morphodynamic

Interactions due to Sediment Transport Phenomena, Journal of Computational Science and340

Technology 7 (2) (2012) 3–4. doi:10.1299/jcst.7.306.

[16] G. M. Guerra, S. Zio, J. J. Camata, J. Dias, R. N. Elias, M. Mattoso, P. L. B. Paraizo,

A. L. G. A. Coutinho, F. A. Rochinha, Uncertainty quantification in numerical simulation

of particle-laden flows, Computational Geosciences 20 (1) (2016) 265–281. doi:10.1007/

s10596-016-9563-6.345

16

http://dx.doi.org/http://doi.org/10.1016/j.future.2017.01.016
http://doi.acm.org/10.1145/2828612.2828624
http://doi.acm.org/10.1145/2828612.2828624
http://doi.acm.org/10.1145/2828612.2828624
http://dx.doi.org/10.1145/2828612.2828624
http://doi.acm.org/10.1145/2828612.2828624
http://dx.doi.org/http://dx.doi.org/10.1016/S0301-9322(01)00065-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0301-9322(01)00065-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0301-9322(01)00065-9
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2010.11.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2010.11.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.compfluid.2010.11.023
http://dx.doi.org/10.1299/jcst.7.306
http://dx.doi.org/10.1007/s10596-016-9563-6
http://dx.doi.org/10.1007/s10596-016-9563-6
http://dx.doi.org/10.1007/s10596-016-9563-6

[17] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, S. Hulshoff, The role of continuity in

residual-based variational multiscale modeling of turbulence, Computational Mechanics 41 (3)

(2008) 371–378. doi:10.1007/s00466-007-0193-7.

[18] M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Wiley, 2000.

[19] P. T. Bauman, R. H. Stogner, GRINS: A multiphysics framework based on the libmesh finite350

element library, SIAM Journal on Scientific Computing 38 (5) (2016) 78 – 100.

[20] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Ei-

jkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith,

S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.7,

Argonne National Laboratory (2016).355

URL http://www.mcs.anl.gov/petsc

[21] M. A. Heroux, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.

Willenbring, A. Williams, K. S. Stanley, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,

J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, An overview of

the Trilinos project, ACM Transactions on Mathematical Software 31 (3) (2005) 397–423.360

doi:10.1145/1089014.1089021.

[22] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. Gevecik, M. Rasquin, K. E.

Jansen, The paraview coprocessing library: A scalable, general purpose in situ visualization

library, in: IEEE Symposium on Large Data Analysis and Visualization, 2011, pp. 89–96.

doi:10.1109/LDAV.2011.6092322.365

[23] R. A. Oldfield, K. Moreland, N. Fabian, D. Rogers, Evaluation of methods to integrate analysis

into a large-scale shock physics code, in: Proceedings of the 28th ACM International Conference

on Supercomputing, ICS ’14, ACM, New York, NY, USA, 2014, pp. 83–92. doi:10.1145/

2597652.2597668.

[24] P. Missier, K. Belhajjame, J. Cheney, The w3c prov family of specifications for modelling370

provenance metadata, in: 16th International Conference on Extending Database Technology,

EDBT’13, ACM, New York, NY, USA, 2013, pp. 773–776. doi:10.1145/2452376.2452478.

17

http://dx.doi.org/10.1007/s00466-007-0193-7
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1109/LDAV.2011.6092322
http://dx.doi.org/10.1145/2597652.2597668
http://dx.doi.org/10.1145/2597652.2597668
http://dx.doi.org/10.1145/2597652.2597668
http://dx.doi.org/10.1145/2452376.2452478

[25] P. A. Boncz, M. L. Kersten, S. Manegold, Breaking the memory wall in monetdb, Communi-

cations of ACM 51 (12) (2008) 77–85. doi:10.1145/1409360.1409380.

[26] W. Schroeder, K. Martin, B. Lorensen, Visualization Toolkit: An Object-Oriented Approach375

to 3D Graphics, 4th Edition, Kitware, 2006.

[27] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie, E. W. Bethel, The sensei

generic in situ interface, in: 2016 Second Workshop on In Situ Infrastructures for Enabling

Extreme-Scale Analysis and Visualization (ISAV), 2016, pp. 40–44. doi:10.1109/ISAV.2016.

013.380

[28] H. Yi, M. Rasquin, J. Fang, I. A. Bolotnov, In-situ visualization and computational steering

for large-scale simulation of turbulent flows in complex geometries, Proceedings - 2014 IEEE

International Conference on Big Data, IEEE Big Data 2014 (2015) 567–572doi:10.1109/

BigData.2014.7004275.

[29] F. De Rooij, S. B. Dalziel, Time- and Space-Resolved Measurements of Deposition under Tur-385

bidity Currents, Blackwell Publishing Ltd., 2009, pp. 207–215. doi:10.1002/9781444304275.

ch15.

18

http://dx.doi.org/10.1145/1409360.1409380
http://dx.doi.org/10.1109/ISAV.2016.013
http://dx.doi.org/10.1109/ISAV.2016.013
http://dx.doi.org/10.1109/ISAV.2016.013
http://dx.doi.org/10.1109/BigData.2014.7004275
http://dx.doi.org/10.1109/BigData.2014.7004275
http://dx.doi.org/10.1109/BigData.2014.7004275
http://dx.doi.org/10.1002/9781444304275.ch15
http://dx.doi.org/10.1002/9781444304275.ch15
http://dx.doi.org/10.1002/9781444304275.ch15

Figure 1: libMesh-sedimentation integration with Catalyst and DfAnalyzer

19

Figure 2: libMesh-sedimentation source code with provenance management using DfAnalyzer

20

Figure 3: Lock-exchange configuration – de Rooij and Dalziel sedimentation tank

(a) (b)

Figure 4: Sediment concentration profiles at t = 10 (a) and t = 20 – de Rooij and Dalziel sedimentation tank

21

Figure 5: de Rooij and Dalziel sedimentation tank - sediment deposition monitoring at five time instants at x = 9.0

(a) and x = 13.5 (b) combining data annotated by DfAnalyzer with Catalyst in-situ visual information

Figure 6: libMesh-sedimentation source code for supporting user steering – parameters amenable to be changed in

runtime: time step (∆t), maximum simulation time (tmax), nonlinear and linear solver tolerances, AMR/C error

fractions (rfrac, cfrac), and others not shown.

22

Figure 7: In Situ Catalyst data extraction - deposition plotted over line filter – de Rooij and Dalziel sedimentation

tank

Figure 8: Real bathymetry tank: physical scenario

23

(a) (b)

Figure 9: Real Bathymetry Tank: (a) deposition map generated by Catalyst at t = 100, (b) post visualization of

sediment concentration at t = 100 using ParaView filters

Figure 10: Numerical analysis to detect possible misbehavior of nonlinear and linear solvers

24

	Introduction
	Turbidity Currents Simulation in libMesh
	Governing Equations
	Weak form of the governing equations
	libMesh library

	Data analysis tools
	DfAnalyzer: Runtime Data Analysis Tool based on Dataflow Management
	In situ Data Extraction and Visualization using ParaView Catalyst
	libMesh-sedimentation Integration with ParaView Catalyst and DfAnalyzer

	Numerical, Performance and Data Analysis Results
	de Rooij and Dalziel sedimentation tank
	Real Bathymetry Tank

	Conclusions

