
HAL Id: lirmm-01620154
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620154v1

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RadiusSketch: Massively Distributed Indexing of Time
Series

Djamel-Edine Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Dennis
Shasha

To cite this version:
Djamel-Edine Edine Yagoubi, Reza Akbarinia, Florent Masseglia, Dennis Shasha. RadiusSketch:
Massively Distributed Indexing of Time Series. IEEE International Conference on Data Science and
Advanced Analytics (DSAA 2017), Oct 2017, Tokyo, Japan. pp.262-271, �10.1109/DSAA.2017.49�.
�lirmm-01620154�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620154v1
https://hal.archives-ouvertes.fr


RadiusSketch: Massively Distributed Indexing of
Time Series

Djamel-Edine Yagoubi1,∗

Djamel-Edine.Yagoubi@inria.fr

Reza Akbarinia1
1Inria & LIRMM, Montpellier, France

Reza.Akbarinia@inria.fr

Florent Masseglia1

Florent.Masseglia@inria.fr

Dennis Shasha2
2Dep.of Computer Sc., NYU

shasha@nyu.edu

Abstract—Performing similarity queries on hundreds of mil-
lions of time series is a challenge requiring both efficient indexing
techniques and parallelization. We propose a sketch/random
projection-based approach that scales nearly linearly in parallel
environments, and provides high quality answers. We illustrate
the performance of our approach, called RadiusSketch, on real
and synthetic datasets of up to 1 Terabytes and 500 million time
series. The sketch method, as we have implemented, is superior in
both quality and response time compared with the state of the art
approach, iSAX2+. Already, in the sequential case it improves
recall and precision by a factor of two, while giving shorter
response times. In a parallel environment with 32 processors, on
both real and synthetic data, our parallel approach improves by
a factor of up to 100 in index time construction and up to 15
in query answering time. Finally, our data structure makes use
of idle computing time to improve the recall and precision yet
further.

I. INTRODUCTION

Time series arise in many application domains such as
finance, agronomy, health, earth monitoring, weather forecast-
ing, to name a few. Because of advances in sensor technology,
such applications may produce millions to trillions of time
series per day, requiring fast analytical and summarization
techniques.

Usually, indexing is at the core of major time series manage-
ment solutions, as well as analytical tasks (e.g., classification,
clustering, pattern discovery, visual analytics, and others)
because indexes enable fast execution of similarity queries,
which constitute the core operation of the domain. That core
operation is what we want to solve very fast, viz. given a
time series, find similar time series (e.g., all those having a
correlation above a threshold).

Unfortunately, creating an index over billions of time series
by using traditional centralized approaches is highly time
consuming. Our experiments show that iSAX2+ [5], a state
of the art index, may take at least one day with one billion
time series, or more, in a centralized environment (see the
building time reported in [5]). Most state of the art indices
have focused on: i) data representation, with dimensionality
reduction techniques such as Discrete Wavelet Transform, Dis-
crete Fourier Transform, or more recently Symbolic Aggregate
Approximation; and ii) index building techniques, considering

∗The research leading to these results has received funding from the
European Union’s Horizon 2020 - The EU Framework Programme for
Research and Innovation 2014-2020, under grant agreement No. 732051

the index as a tree that calls for optimal navigation among
sub-trees and shorter traversals.

An appealing opportunity for improving the index con-
struction time is to take advantage of the computing power
of distributed systems and parallel frameworks such as
MapReduce[11] or Spark [26].

In centralized systems, one of the most efficient ways to
index time series for the purpose of similarity search is to
combine a sketch approach [9] with grid structures. Random
projection is based on the idea of taking the inner product of
each time series, considered as a vector, with a set of random
vectors whose entries are +1 or -1 [9]. The resulting sequence
of inner products is called a sketch vector (or sketch for short).
The goal is to reduce the problem of comparing pairs of time
series to the problem of comparing their sketches, which are
normally much shorter.

To avoid comparing the sketch of each time series of the
database with that of the searched time series, [9] uses grid
structures on pairs of sketch entries (e.g., the first and second
entry in one grid, the third and fourth in the second grid,
and so on) to reduce the complexity of search. Given the
sketches s and s′ of two time series t and t′, the more grids
in which s and s′ coincide, the greater the likelihood that t
and t′ are similar. In time series data mining, sketch-based
approaches have also been used to identify representative
trends [10], [16], maintain histograms [25], and to compute
approximate wavelet coefficients [13], etc. All aspects of the
sketch-based approach are parallelizable: the computation of
sketches, the creation of multiple grid structures, and the
computation of pairwise similarity. However, a straight parallel
implementation of existing techniques would under-exploit the
available computing power.

In this paper, we propose a parallel solution to construct a
sketch-based index over billions of time series. Our solution
makes the most of the parallel environment by exploiting each
available core. Our contributions are as follows:
• We propose a parallel index construction algorithm that

takes advantage of distributed environments to efficiently
build sketch-based indices over very large volumes of
time series. In our approach, we provide a greedy tech-
nique that uses idle processors of the system to increase
query precision.

• We propose a parallel query processing algorithm, which
given a query, exploits the available processors of the



distributed system to answer the query in parallel by using
the constructed index which has already been distributed
among the nodes of the system at construction time.

• We implemented our index construction and query pro-
cessing algorithms, and evaluated their performance over
large volumes of data, i.e., 500 million time series for
a total size of 1 Terabytes. The results illustrate the
efficiency of index construction in massively distributed
environments. We compare our index construction al-
gorithm to the current state of the art index building
algorithm and show how parallelism enables important
gains. We also illustrate how efficient our index is for
search queries, and show how to improve precision and
recall.

The rest of the paper is organized as follows. In Section
II, we discuss closely related background material on time
series indexing. In Section III, we describe the details of our
parallel index construction and query processing algorithms.
In Section IV, we present a detailed experimental evaluation
to verify the effectiveness of Sketch Approach compared to
iSAX2+. Finally, we conclude in Section V.

II. RELATED WORK

Indexes often make the response time of lookup operations
sublinear in the database size. Relational systems have mostly
been supported by hash structures, B-trees, and multidimen-
sional structures such as R-trees, with bit vectors playing a
supporting role. Such structures work well for lookups, but
only adequately for similarity queries.

The problem of indexing time series using centralized
solutions has been widely studied in the literature, e.g., [3],
[4], [12], [24], [5]. For instance, in [3], Assent et al. propose
the TS-tree (time series tree), an index structure for efficient
retrieval and similarity search over time series. The TS-tree
provides compact summaries of subtrees, thus reducing the
search space very effectively. To ensure high fanout, which
in turn results in small and efficient trees, index entries are
quantized and dimensionally reduced.

In [4], Cai et al. use Chebyshev polynomials as a basis for
dealing with the problem of approximating and indexing d-
dimensional trajectories and time series. They show that the
Euclidean distance between two d-dimensional trajectories is
lower bounded by the weighted Euclidean distance between
the two vectors of Chebyshev coefficients, and use this fact to
create their index.

In [12], Faloutsos et al. use R*-trees to locate multi di-
mensional sequences in a collection of time series. The idea
is to map a large time series sequence into a set of multi-
dimensional rectangles, and then index the rectangles using an
R*-tree. Our work is able to use the simplest possible multi-
dimensional structure, the grid structure, because our problem
is simpler as we will see.

A. Discrete values

Several techniques have been used to reduce the dimen-
sionality of time series, before creating the index. Examples

of such techniques that can significantly reduce the time and
space required for the index are: singular value decomposition
(SVD) [12], the discrete Fourier transformation (DFT) [2],
discrete wavelets transformation (DWT) [7], piecewise aggre-
gate approximation (PAA) [19], adaptive piecewise constant
approximation (APCA) [6], random sketches [9], and symbolic
aggregate approXimation (SAX) [21].

In [24], Shieh et Keogh propose a multiresolution symbolic
representation called indexable Symbolic Aggregate approX-
imation (iSAX) which is based on the SAX representation.
The advantage of iSAX over SAX is that it allows the
comparison of words with different cardinalities, and even
different cardinalities within a single word. iSAX can be used
to create efficient indices over very large databases. In [5], an
improved version of iSAX, called iSAX2+, has been used to
index more than one billion time series. It uses two different
buffers for storing parts of the index and time series in memory
before flushing them into the disk. It also uses an efficient
technique for splitting a leaf node when its size is higher
than a threshold. In [27], instead of building the complete
iSAX2+ index over the complete dataset and querying only
later, Zoumpatianos et al. propose to adaptively build parts
of the index, only for the parts of the data on which the
users issue queries. We view the state-of-the-art iSAX2+ as
the primary competition to our own indexing method.

B. Sketches

Our method is based on the use of random vectors. The
basic idea is to multiply each time series (or in a sliding
window context, each window of a time series) with a set
of random vectors. The result of that operation is a ”sketch”
for each time series consisting of the distance (or similarity)
of the time series to each random vector. Then two time series
can be compared by comparing sketches.

The theoretical underpinning of the use of sketches is given
by the Johnson-Lindenstrauss lemma [17].

Lemma 1: Given a collection C of m time series with length
n, for any two time series −→x ,−→y ∈ C, if ε < 1/2 and k =
9logm

ε2
, then

(1− ε) ≤ ‖
−→s (−→x )−−→s (−→y ) ‖2

‖ −→x −−→y ‖
≤ (1 + ε)

holds with probability 1/2, where −→s (−→x ) is the Gaussian
sketch of −→x .

Note that the sketch approach we advocate is a kind of
Locality Sensitive Hashing [14], by which similar items are
hashed to the same buckets with high probability. In particular,
the sketch approach is similar in spirit to SimHash [8], in
which the vectors of data items are hashed based on their
angles with random vectors.

Our goal (and contribution) is to construct a parallel index
by exploiting the sketch approach in a distributed environment
for both:
• better performance (fast index building, compared to

approaches from the state of the art, like iSAX2+)



 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120

E
s
ti
m

a
te

d
 D

is
ta

n
c
e

Euclidean Distance

Sketch

SAX

Euclidean Distance

Fig. 1: Sketches allow very accurate distance computation
compared to the Symbolic Aggregate approXimation (SAX)
distance. Here, a comparison on 1, 000 couples of time series
from our seismic dataset.

• high quality (precision and recall) for similarity search.
To the best of our knowledge, the literature contains no

solution for parallel construction of indices over very large
time series datasets (e.g., billions of time series, with hundreds
or thousands of values each). The fact is that parallelization
of existing methods is not straightforward. iSAX2+ [5], for
instance, creates a tree on a single machine. A straightforward
implementation in a parallel environment would be to dis-
tribute the nodes at the first level on different machines. In this
case, the communication cost might overwhelm the benefits.
As explained in the introduction, we parallelize the sketch
approach both at index creation time and at query processing
time. Experiments show excellent and nearly linear gains in
performance.

III. PARALLEL SKETCH APPROACH

This section reviews our algorithm for sketches, discusses
the index structure required, and then shows how to parallelize
the construction both to increase speed and improve quality.

A. The Sketch Approach

The sketch approach, as developed by Kushilevitz et al. [20],
Indyk et al. [15], and Achlioptas [1], provides a very nice
guarantee: with high probability a random mapping taking b
points in Rm to points in (Rd)2b+1 (the (2b+1)-fold cross-
product of Rd with itself) approximately preserves distances
(with higher fidelity the larger b is).

In our version of this idea, given a point (a time series
or a windo of a time series) t ∈ Rm, we compute its dot
product with N random vectors ri ∈ {1,−1}m. This results
in N inner products called the sketch (or random projection)
of ti. Specifically, sketch(ti) = (ti • r1, ti • r2, ..., ti • rN).
We compute sketches for t1, ..., tb using the same random
vectors r1, ..., rN . By the Johnson-Lindenstrauss lemma [17],
the distance ‖sketch(ti)− sketch(tj)‖ is a good appproxi-
mation of ‖ti−tj‖. Specifically, if ‖sketch(ti)−sketch(tj)‖
< ‖sketch(tk) − sketch(tm)‖, then it’s very likely that
‖ti − tj‖ < ‖tk − tm‖.

1

3

6

9

9 11 15 17

b
b b

b

12

15

17

20

4 7 10 12

Grid 1 Grid 2

s1

s2

s1

s2

Fig. 2: Two series (s1 and s2) may be similar in some
dimensions (here, illustrated by Grid1) and dissimilar in other
dimensions (Grid2). The higher their similarity, the larger the
fraction of grids in which the series are close.

Figure 1 gives an illustration of the Symbolic Aggregate
approXimation distance (SAX distance) and sketch distance,
compared to the actual Euclidean distance. This is done for
1, 000 couples of random time series from a seismic dataset
(detailed in Section IV). We report in Figure 1 the distance
between i) the corresponding sketches of size 120, and ii) the
SAX distance, where the cardinality y is 128, the number of
segments w is 120, and the time series are not normalized. We
did the same experiment with the maximum possible values
of parameters for SAX (i.e., the cardinality y is 512 and the
number of segments w is 120 ) and, even in this case, the
SAX distance between time series is still much lower, i.e.,
approximately half of the actual one in average. The sketch
distance turns out to be a better approximation.

In our approach, we use a set of grid structures to hold the
time series sketches. Each grid maintains the sketch values
corresponding to a specific set of random vectors over all time
series. Let |g| be the number of random vectors assigned to
each grid, and N the total number of random vectors, then
the total number of grids is b = N/|g|. The distance of time
series in different grids may be different. We consider two time
series similar if they are similar in a given (large) fraction of
grids.

Example 1: Let’s consider two time series t=(2, 2, 5, 2, 6, 5)
and t′=(2, 1, 6, 5, 5, 6). Suppose that we have generated four
random vectors as follows : r1=(1, -1, 1, -1, 1, 1), r2=(1, 1, 1,
-1, -1, 1), r3=(-1, 1, 1, 1, -1, 1) and r4=(1, 1, 1, -1, 1, 1). Then
the sketches of t and t′, i.e. the inner products computed as
described above, are respectively s=(14, 6, 6, 18) and s′=(13,
5, 11, 15). In this example, we create two grids, Grid1 and
Grid2, as depicted in figure 2. Grid1 is built according to the
sketches calculated with respect to vectors r1 and r2 (where t
has sketch values 14 and 6 and t′ has sketch values 13 and 5).
In other words, Grid1 captures the values of the sketches of
t and t′ on the first two dimensions (vectors). Grid2 is built
according to vectors r3 and r4 (where t has sketch values
5 and 18 and t′ has sketch values 11 and 15). Thus, Grid2
captures the values of the sketches on the last two dimensions.
We observe that t and t′ are close to one another in Grid1.
On the other hand, t and t′ are far apart in Grid2.



B. Partitioning Sketch Vectors

In the following, we use correlation and distance more or
less interchangeably because one can be computed from the
other once the data is normalized. Specifically, the Pearson
correlation is related to the Euclidean distance as follows: Here
x̂ and ŷ are obtained from the raw time series by computing
x̂ = x−avg(x)

σx
, where σx =

√∑n
i=1(xi − avg(x))2.

Multi-dimensional search structures don’t work well for
more than four dimensions in practice [23]. For this reason, as
indicated in Example 1, we adopt a first algorithmic framework
that partitions each sketch vector into subvectors and builds
grid structures for the subvectors as follows:

• Partition each sketch vector s of size N into groups of
some size |g|.

• The ith group of each sketch vector s is placed in the ith
grid structure (of dimension |g|).

• If two sketch vectors s and s′ are within distance c × d
in more than a given fraction f of the groups, then the
corresponding time series are candidate highly correlated
time series and should be checked exactly.

For example, if each sketch vector is of length N = 40, we
might partition each one into ten groups of size |g| = 4. This
would yield 10 grid structures. Suppose that the fraction f is
90%, then a time series t is considered as similar to a searched
time series t′, if they are similar in at least ninw grids.

C. Distributed Framework

Spark [26] is a parallel programming framework that aims
at efficiently processing large datasets. This programming
model can perform analytics with in-memory techniques to
overcome disk bottlenecks. Similar to MapReduce [11], Spark
can be deployed on the Hadoop Distributed File System
(HDFS) [22] as well as standalone. Unlike traditional in-
memory systems, the main feature of Spark is its distributed
memory abstraction, called resilient distributed datasets
(RDD). RDD is an efficient and fault-tolerant abstraction for
distributing data in a cluster. With RDD, the data can be easily
persisted in main memory as well as on the hard drive. Spark
is basically designed for being used in iterative algorithms.

To execute a Spark job, we need a master node to coordinate
job execution, and some worker nodes to execute a parallel
operation. These parallel operations are summarized to two
types: (i) Transformations: to create a new RDD from an
existing one (e.g., Map, MapToPair, MapPartition, FlatMap);
and (ii) Actions: to return a final value to the user (e.g.,
Reduce, Aggregate or Count).

D. Massively Distributed Index construction

Our approach for sketch construction in massively dis-
tributed environments proceeds in two steps: 1) Local con-
struction of sketch vectors and groups, on the distributed
computing nodes; 2) Global construction of grids, with one
computing node per grid.

1) Local construction of sketch vectors and groups: Before
distributing the construction of sketch vectors, the master node
creates a set of N random vectors of size n, such that each
vector ri =< ri,1, ri,2, · · · , ri,n >, contains n elements.
Each element ri,j ∈ ri is a random variable in {1,−1} with
probability 1/2 for each value. Let R be the set of random
vectors. R is duplicated on all workers (i.e., processors of the
distributed system), so they all share the same random vectors.

Let D be the input dataset involving l times series. Each
time series t ∈ D is of length n: t =< t1, t2, · · · , tn >. D can
be represented as a matrix as follows:

D =

t1 =< t1,1 · · · t1,n >
...

. . .
...

tl =< tl,1 · · · tl,n >


During the first step of sketch construction, each mapper

takes a set of time series P ⊆ D, and projects them to the
random vectors of R, in order to create their sketches. Let
sj =< sj,1 sj,2 · · · sj,N >, be the sketch of a time series
tj , then sj,i ∈ s is the inner product between tj and ri. The
sketch of tj can be written as sj = tj •R.

Let p be the number of time series involved in P , then the
result of random projection in a mapper is a collection X of
p sketches, each corresponding to one times series of P :

XN×l =

s1 =< s1,1 · · · s1,N >
...

. . .
...

sp =< sp,1 · · · sp,k >


The sketches are partitioned into equal subvectors, or

groups, according to the size of sketches and vectors. If, for
instance, sketch vectors have length 40, and groups have size
four, we partition each vector into ten groups (of size four).
For distribution needs, the mapper assigns to each group an
ID in [1..NumberOfGroups].

With a sequential construction of groups, where groups are
contiguous, the mappers simply have to emit < key, value >
pairs where key is the unique ID of a group and value
is a tuple made of the data values of the sketch for these
dimensions, and the time series ID.

Example 2: Let us consider sj the sketch of series tj , such
that sj =< 2, 4, 5, 9 >, and {g1, g2} the set of two contiguous
groups of size two that can be built on sj (i.e., g1 = (sj,1, sj,2),
g2 = (sj,3, sj,4)). In the simple version of our approach, this
information is communicated to reducers (in charge of building
the corresponding grids) by emitting two < key, value >
pairs: < key = g1, value = ((2, 4), 1) > for the information
about g1 and < key = g2, value = ((5, 9), 1) > for the
information about g2.

2) Optimized shuffling for massive distribution: In cases
when a dimension may be involved in multiple groups, a
mapper emits each dimension ID (rather than the group ID)
as the key, while the value embeds a couple, made of the data
value of the sketch for this dimension and the series ID. The
goal is to avoid sending redundant information that is repeated
from one group to another. This is even more important when



the number of random groups is large, because redundancy
increases with the number of overlapping groups. Example 3
illustrates this principle.

Example 3: Let us consider the sketch and series of Example
2 (sj =< 2, 4, 5, 9 >). Let us now consider {g1, ..., g5} a
set of 5 groups of size two built on {sj,1, ..., sj,4}, the four
dimensions of sj . Here, g1 = (sj,1, sj,2), g2 = (sj,1, sj,3),
g3 = (sj,1, sj,4), g4 = (sj,2, sj,3), g5 = (sj,2, sj,4) and
there are overlapping groups. The basic approach described in
Section III-D1 aims to emit a < key, value > pair, for each
group, embedding dimension IDs, data values and time series
IDs. However, that implies communicating much redundant
information. That would be, for instance, key = (sj,1, sj,2)
and value = ((2, 4), 1) for the information about g1 in
sj . However, sj,1 is involved in three different groups and
would therefore be emitted three times as part of different
keys, resulting in unnecessary communication in the shuffling
phase. This is why we choose to separate data transfer and
grid construction. Grid construction is partly realized by
mappers, and also by reducers. Each mapper will send a single
dimension, the corresponding data value and the series ID, so
the reducer builds the grid upon receipt. For group g1, for
instance, we would emit two pairs. In the first one, we have
key = (sj,1) and value = (2, 1). And in the second one, we
have key = (sj,2) and value = (4, 1). Then, for group g2,
there will be only one pair to emit, where key = (sj,3) and
value = (5, 1). This is the same for g3 where only one pair,
embedding compact information, has to be emitted.

Algorithm 1: Index construction
Input: Data partitions P = {P1, P2, . . . , Pn} of a

database D and a collection R of random vectors
Output: Grid structures
// Map Task

1 flatMapToPair( Time Series: T )
2 - Project T to R
3 - Partition sketch into equal groups
4 forall groups do
5 emit (key: ID of group, value:(T ID and group

data) )

// Reduce Task
6 reduceByKey( key: ID of group, list(values) )
7 - Use the list of values to build a d-dimensional grid

structure
8 emit (key:ID of group, values: grid structure)

3) Global construction of grids: Reducers receive local
information from mappers, from which they construct grids.
More precisely, in the reduce phase, each reducer receives
a group ID, and the list of all generated values (group data
and sketch ID). It uses the list to build a d-dimensional grid
structure. Each grid is stored in a d-dimensional array in the
mappers main memory or in HDFS (Hadoop Distributed File
System), where each group is mapped to a cell according to

Algorithm 2: Query processing
Input: Grids Structures, a collection R of random

vectors and a collection Q of Query time series
Output: List of time series
// Map Task 1

1 flatMapToPair( Time Series: Tq )
2 - Project Tq to R
3 - Partition sketch into equal groups
4 forall groups do
5 emit (key: ID of group, value: Tq ID and group

data)

6 - Combine the values of the previous job result with the
result of previous task, where key: ID of group and
value:(Grid Structure , list(values))

// Map Task 2
7 flatMapToPair( key: ID of group, value:(Grid Structure

, list(values)) )
8 foreach group in values do
9 if group ∃ Grid Structure then

10 emit (key: Tq ID, value: IDs of the found
time series)

// Reduce Task
11 reduceByKey( key: Tq ID, value: list(values) )
12 foreach found time series do
13 - Computes the number of occurrence
14 if the found time series has the greatest count

value then
15 emit (key: Tq ID, value: ID of the found

time series)

its values. The pseudo-code of our index construction in Spark
is shown in algorithm 1.

E. F-RadiusSketch

The above framework circumvents the curse of dimensional-
ity by making the groups small enough that grid structures can
be used. Our goal is to achieve extremely high recall (above
0.8) and reasonable precision (above 0.58). Increasing the size
of the sketch vector improves the accuracy of the distance
estimate but increases the search time. In our experiments,
accuracy improved noticeably as the sizes increased to about
256. Beyond that, accuracy does not improve much and perfor-
mance suffers. Because the dimensions used for comparison
in the grids do not have to be disjoint, we build grids based on
random and possibly overlapping combinations of dimensions.
Our strategy is to choose the same number of combinations
as the available processors.

Let the similarity sim(t, t′) of two series be the fraction of
grids where t and t′ fall in the same cell, for all possible grids.
We show that by increasing the number of grids, the standard
error in the computed similarity of t and q decreases. Let G be



the set of all grids which can be generated for the sketches.
Suppose p is the percentage of the grids of G, in which q
and t are similar. Let Gk be the set of n grids randomly
selected from G, and m(Gk) be the fraction of the grids of
Gk in which t and q are similar. Let ∆m be the standard
error in m(Gk), i.e., ∆m = |p − m(Gk)|. The selection of
Gk grids from G can be considered as a sampling process.
We know from statistics [18] that by increasing the number of
samples, the standard error of the mean of samples decreases.
Thus, increasing the number of random grids decreases the
standard error of m(Gk). When the samples are independent,
the standard error of the samples mean is computed as:
∆m = δ√

k
where δ is the standard deviation of samples’ dis-

tribution. The samples aren’t independent in our case because
the grids may overlap, but this is a suggestive approximation.
Our goal in random combinations is to get as close as possible
to the best possible results of sketches, in order to lower the
error. This goal can be achieved by adjusting the number of
random groups where, according to the discussion above, the
error decreases with the number of random groups.

F. Query processing

Given a collection of queries Q, in the form of time series,
and the index constructed in the previous section for a database
D, we consider the problem of finding time series that are
similar to Q in D. We perform such a search in three steps,
as follows.

Step 1: map. Each mapper receives a subset of the searched
time series Q′ ⊂ Q and the same collection R of random
vectors that was used for constructing the index (see Section
III-D1). The mappers generate in parallel the sketch vector
for each given time series t in their subset of queries, and
partition the sketch vectors into groups (the same dividing
principle into groups used for constructing the grid structures
is applied). Each mapper emits the ID of groups as the key,
and the sketch ID (i.e., query ID) coupled with group’s sketch
data as value.

Step 2: map. Each mapper takes one or several grid
structures of the index and the emitted groups of step 1
that correspond to the chosen grids. For each sketch of a
searched time series t in a group, the mapper checks in the
corresponding grid, the cell that contains data points similar to
t, where each data point contains the ID of the corresponding
times series in the grid structure as depicted in Figure 3a.
For each time series t ∈ Q, and for each times series t′ that
belongs to the same cell as t in the grid structure, the mapper
emits a key-value pair, where the key is the ID of t, and the
value is the ID of t′.

Step 3: reduce. In the reduce phase, each reducer computes
for each given key (i.e., the ID of the searched time series)
the count of each emitted value, i.e., the IDs of the found time
series in different grids. Then, for the searched time series, the
reducer emits to HDFS the ID of the time series that has the
greatest count value.

The pseudo-code of query processing for Spark is given by
Algorithm 2.

Searching for the k-nearest neighbours (k-NN) of the time
series Q is done as in the previous section III-F in three steps
steps. The difference is that in Step 2, each mapper returns for
each searched time series, k candidate times series from the
grid. In addition, in Step 3, for each query t, k candidates that
have the highest counts are returned as the answer to the query
t. Sometimes, in Step 2, the mapper does not find enough data
points in cell c, leading to a lack of information for time series
retrieval on the third step. In such cases, all the neighbors of
c will be visited until k points are found, as depicted in figure
3b.

IV. EXPERIMENTS

In this section, we report experimental results that show
the quality and the performance of our parallel solution for
indexing time series.

We evaluate the performance of two versions of our solu-
tion: 1) RadiusSketch that is the basic version of our parallel
indexing approach with partitioning; 2) F-RadiusSketch, as
described in Section III-E. We compare our solutions with the
most efficient version of the iSAX index (i.e., iSAX2+2) pro-
posed in [5]. We implemented two versions of our approach,
one for centralized environments and the other version on top
of Apache-Spark [26] for a distributed environment, using the
Java programming language. The iSAX2+ index [5] is also
implemented with Java, in a centralized version only. The
source code of our approaches, our version of iSAX2+ and
the documentation for reproducible experiments, are available
at: https://radiussketch.github.io/RadiusSketch/

The parallel experimental evaluation was conducted on a
cluster of 32 machines, each operated by Linux, with 64
Gigabytes of main memory, and Intel Xeon X5670 CPU and
250 Gigabytes hard disk. The centralized versions of sketches
and iSAX2+ were executed on a single machine with the same
characteristics.

Our experiments are divided into two sections. In Section
IV-B, we measure the grid construction times with different
parameters. In Section IV-C, we focus on the query perfor-
mance of the sketch approach, both in terms of response time
and accuracy.

A. Datasets and Setting

1) Datasets: We carried out our experiments on both real-
word and synthetic datasets. The first one is a seismic dataset
of 40 million time series, where each time series has a length
of 256. It has a total size of 491 Gigabytes. For the second
one, we generated a dataset of 500 million time series using a
random walk data series generator, each data series consisting
of 256 points. At each time point the generator draws a random
number from a Gaussian distribution N(0,1), then adds the
value (which may be negative) of the last number to the new
number. The total size of our synthetic dataset is 1 Terabytes.

2) Parameters: Table I shows the default parameters (un-
less otherwise specified in the text) used for each approach. For
Sketch and RadiusSketch, the number of groups is given by
SketchSize/ GroupSize. For F-RadiusSketch, the number

https://radiussketch.github.io/RadiusSketch/


b

b

b
b

b

b

b

bb

b

b

b
b

-2

-1

0

1

3

2

3 4 5 6 7 8

b

(a)

b

b

b
b

b

b

b

bb

b

b

b
b

-2

-1

0

1

3

2

3 4 5 6 7 8

b

(b)

Fig. 3: Query processing in RadiusSketch. Each mapper identifies the cell that correspond to a query and emits the IDs of the
corresponding time series (a). If there is not enough information the mapper does a broader search in the adjacent cells (b).

Fig. 4: Construction time as a function of dataset size (ran-
dom walk dataset). Parallel algorithms (RadiusSketch and F-
RadiusSketch) are run on a cluster of 32 nodes. Sequential
algorithms (iSAX2+ and Sketch) are run on a single node.

of groups may be up to 256, depending on the number of
exploited cores. When necessary, parameters are specified in
the name of the approach reported in our experiments. For
instance, Sketch(4, 120) stands for the sketch approach with
group size = 4 and sketch size = 120 (and the number of
groups is 120/4 = 30, since this is the default number of
groups) while F − RadiusSketch(2, 60, 256) stands for F-
RadiusSketch with groups of size 2, sketches of size 60 and
the number of groups is 256

Method Parameters Method Parameters
F-RadiusSketch Group size = 2 iSAX2+ Threshold = 8,000

Sketch size = 60 Word length w = 8
Number of groups = 256

RadiusSketch Group size = 2 Sketch Group size = 2
Sketch size = 120 Sketch size = 60

TABLE I: Default parameters

B. Grid Construction Time

In this section, we measure the index construction time
in RadiusSketch and F-RadiusSketch, and compare it to the
construction time of the iSAX2+ index.

Fig. 5: Construction time as a function of dataset size
(seismic dataset). Parallel algorithms (RadiusSketch and F-
RadiusSketch) are run on a cluster of 32 nodes. Sequential
algorithms (iSAX2+ and Sketch) are run on a single node.

Figures 4 and 5 report the index construction times for both
of the tested datasets. The index construction time increases
with the number of time series for all approaches. In our
distributed testbed, the index construction time is lower than
it is in a centralized environment, with time reduced almost
linearly. Figure 4 reports the construction time of centralized
approaches (iSAX2+ and sketches) in days, while the scale
unit is in minutes for RadiusSketch (60 groups of size 2) and
F-RadiusSketch (256 groups of size 2). For 500 million time
series, on the random walk dataset, the RadiusSketch index is
built in 35 minutes on 32 machines, while the iSAX2+ index
is built in more than 3 days on a single node.

To illustrate the parallel speed-up of our approach, Figures
6a and 6b show the relationship between the execution time
and the number of nodes. For both of our approaches, we
report the total construction time with and without I/O cost
(e.g., RadiusSketch-I/O is without I/O cost). The results illus-
trate a near optimal gain for F-RadiusSketch on the random
walk dataset. For instance, the construction time is almost 60
minutes without I/O cost with 8 nodes, and drops down to 30
minutes without I/O cost for 16 nodes (i.e., the in-memory
construction time is reduced by a factor of two when the
number of nodes is doubled).

Figures 7a and 7b show the shuffling cost for a varying
number of time series. We observe that the shuffling cost



(a) random walk dataset (b) seismic dataset

Fig. 6: Construction time as a function of cluster size. F-RadiusSketch has a near optimal parallel speed-up on the random
walk dataset.

(a) random walk dataset (b) seismic dataset

Fig. 7: Shuffling as a function of dataset size. The shuffling costs of RadiusSketch and F-RadiusSketch increase linearly.

(a) random walk dataset (b) seismic dataset

Fig. 8: Search time of sketch versions and iSAX2+. Parallel algorithms (RadiusSketch and F-RadiusSketch) are run on a cluster
of 32 nodes. Sequential algorithms (iSAX2+ and Sketch) are run on a single node.



(a) random walk dataset (b) seismic dataset

Fig. 9: The effect of the number of combinations on recall is roughly logarithmic and monotonically increasing (Avg. value
for 1M queries).

(a) random walk dataset (b) seismic dataset

Fig. 10: Recall of sketches and iSAX2+ (Avg value for 1M queries). Increasing the number of grids with F-RadiusSketch gives
higher recall. Parallel algorithms (RadiusSketch and F-RadiusSketch) are run on a cluster of 32 nodes. Sequential algorithms
(iSAX2+ and Sketch) are run on a single node.

(a) random walk dataset (b) seismic dataset

Fig. 11: Precision of sketches and iSAX2+ (Avg value for 1M queries). Increasing the number of grids with F-RadiusSketch
gives higher precision. Parallel algorithms (RadiusSketch and F-RadiusSketch) are run on a cluster of 32 nodes. Sequential
algorithms (iSAX2+ and Sketch) are run on a single node.



increases linearly, which illustrates that our approaches are
able to scale on massively distributed environments. We also
observe a very similar shuffling cost between F-RadiusSketch
and RadiusSketch. This result is mainly due to the shuffling
optimization presented in Section III-D2.

C. Query Performance

Given a query q, let TP , TN , FP and FN be the
true positive/negative and false positive/negative results of an
index, respectively. To evaluate the retrieval capacity of an
index, we consider two measures:

• Recall: we search for the 20 most similar series to q
according to the index. Then, we compare the result to
a linear search with q on the whole dataset, where the
top 10 similar series are returned. The number of true
positive candidate series returned by the index is counted
among the top 20 series given by the index.

• Precision: here, the same principle is applied but re-
stricted to the top 10 series returned by the index.

In both cases, we set precision = V P/(V P + FP ) and
recall = V P/(V P +FN). In the following experiments, for
the seismic dataset the queries are time series randomly picked
from the dataset. For the random walk dataset, we generate
random queries with the same distribution. For each time series
t in the query, the goal is: i) to check if the approach is able
to retrieve t (if it exists in the case of random walk); and ii)
to find the nine other time series that are considered to be the
most similar to t in the dataset.

Figures 8a and 8b compare the search time of the sketch
approaches to that of iSAX2+ for answering queries with
a varying size of query batch. These figures show that, in
our experiments, the search time of RadiusSketch and F-
RadiusSketch is better than that of the iSAX2+ by a factor
of 13, e.g., the search time for 10 million queries is 2700s for
iSAX2+ and 200s for F-RadiusSketch.

Figures 9a and 9b illustrate the impact of the number
of combinations (i.e number of groups) on the recall of F-
RadiusSketch. We observe that the recall increases with the
number of groups. For instance, when the number of groups
is 256, we observe a recall of 0.80 for the random walk dataset
and 0.55 for the seismic dataset. This shows the trend of the
recall as a function of the number of combinations. The effect
is roughly logarithmic and monotonically increasing.

Figures 10a and 10b illustrate the recall of different
tested approaches, with varying parameters for the sketch
approaches. For all the settings, the recall performance
of sketches is higher than iSAX2+. We observe that F-
RadiusSketch outperforms all the other approaches when the
number of combinations is maximum. For instance, with 256
groups, the recall of F-RadiusSketch is up to 80%, while that
of iSAX2+ is 26%.

The same experiment has been done to study precision, with
very similar results as reported in Figures 11a and 11b.

V. CONCLUSION

RadiusSketch is a simple-to-implement high performance
method to perform similarity search at scale. It achieves better
runtime performance and better quality than its state-of-the-
art competitor iSAX2+ in a sequential environment. Further,
RadiusSketch parallelizes naturally and nearly linearly. In
future work, we will extend this work to data streams.

REFERENCES

[1] D. Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. J. Comput. Syst. Sci., 2003.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In Proc. of the 4th Int. Conf. on FODO, 1993.

[3] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient
time series search and retrieval. In 11th Inter. Conf. on EDBT), 2008.

[4] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with chebyshev
polynomials. In SIGMOD, 2004.

[5] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J. Keogh.
Beyond one billion time series: indexing and mining very large time
series collections with i SAX2+. Knowl. Inf. Syst., 39(1):123–151, 2014.

[6] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive
dimensionality reduction for indexing large time series databases. ACM
Trans. Database Syst., 2002.

[7] K. Chan and A. W. Fu. Efficient time series matching by wavelets. In
Proc. of the ICDE, 1999.

[8] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the Thiry-fourth Annual ACM STOC, 2002.

[9] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over
uncooperative time series. In Proc. of the Elev. ACM SIGKDD, 2005.

[10] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining of
massive tabular data via approximate distance computations. In Proc.of
the 18th ICDE, 2002.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In Proc. of the SIGMOD, 1994.

[13] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing
wavelets on streams: One-pass summaries for approximate aggregate
queries. In Proc. of the 27th VLDB, 2001.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In Proc. of 25th VLDB, 1999.

[15] P. Indyk. Stable distributions, pseudorandom generators, embeddings
and data stream computation. In 41st An. Symp. on FOCS, 2000.

[16] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative
trends in massive time series data sets using sketches. In Proc. of the
26th VLDB, 2000.

[17] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mapping
into Hilbert space. In Conf. in MAP, 1984.

[18] J. Kenney and E. Keeping. Mathematics of Statistics. van Nostrand,
1963.

[19] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimension-
ality reduction for fast similarity search in large time series databases.
Knowl. Inf. Syst., 3(3):263–286, 2001.

[20] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for
approximate nearest neighbor in high dimensional spaces. In Proc. of
the 30th Annual ACMSTOC, 1998.

[21] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: A novel
symbolic representation of time series. Data Min. Knowl. Discov., 2007.

[22] J. Shafer, S. Rixner, and A. L. Cox. The hadoop distributed filesystem:
Balancing portability and performance. In IEEE ISPASS, 2010.

[23] D. Shasha and Y. Zhu. High Performance Discovery in Time series,
Techniques and Case Studies. Springer, 2004.

[24] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized time
series. In Proc. of the ACM SIGKDD, 2008.

[25] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional
histograms. In Proc. of the SIGMOD, 2002.

[26] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, 2010.

[27] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for interactive
exploration of big data series. In Proc. of the SIGMOD, 2014.


