=. Val-calcweartear, filter(x => Process

=. Val-compressres and . Jresults, reduceByKey((x,y) => Process

M. Armbrust, M. Zaharia, T. Das, A. Davidson, A. Ghodsi et al., Scaling spark in the real world, Proceedings of the VLDB Endowment, vol.8, issue.12, pp.12-1840, 2015.
DOI : 10.14778/2824032.2824080

M. Atkinson, S. Gesing, J. Montagnat, and I. Taylor, Scientific workflows: Past, present and future, Future Generation Computer Systems, vol.75, pp.75-216, 2017.
DOI : 10.1016/j.future.2017.05.041

URL : https://hal.archives-ouvertes.fr/hal-01544818

F. Da-silva, R. Filgueira, R. Pietri, I. Jiang, M. Sakellariou et al., A characterization of workflow management systems for extreme-scale applications, FGCS, pp.75-228, 2017.

. Github, . Rfa-spark, and . Repository, Available on: github.com/hpcdb

A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt et al., Matrix factorizations at scale: A comparison of scientific data analytics in spark and C+MPI using three case studies, 2016 IEEE International Conference on Big Data (Big Data), pp.204-213, 2016.
DOI : 10.1109/BigData.2016.7840606

D. Oliveira, C. Boeres, A. Neto, and F. Porto, Avaliação da localidade de dados intermediários na execução paralela de workflows bigdata, pp.29-40, 2015.

M. T. Özsu and P. Valduriez, Principles of distributed database systems, 2011.

I. Raicu, I. T. Foster, and Y. Zhao, Many-task computing for grids and supercomputers, 2008 Workshop on Many-Task Computing on Grids and Supercomputers, pp.1-11, 2008.
DOI : 10.1109/MTAGS.2008.4777912

J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang et al., Clash of the titans, Proceedings of the VLDB Endowment, vol.8, issue.13, pp.2110-2121, 2015.
DOI : 10.14778/2831360.2831365

R. Souza, V. Silva, A. L. Coutinho, P. Valduriez, and M. Mattoso, Online input data reduction in scientific workflows, pp.44-53, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01400538

Z. Zhang, K. Barbary, F. A. Nothaft, E. R. Sparks, O. Zahn et al., Kira: Processing Astronomy Imagery Using Big Data Technology, IEEE Transactions on Big Data, pp.99-100, 2017.
DOI : 10.1109/TBDATA.2016.2599926