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INTRODUCTION

Ontology-mediated query answering (OMQA) is currently at the center of many investigations.

is paradigm for data access is designed to query incomplete databases by taking into account semantic constraints which are usually provided by means of an ontology. OMQA has many applications in data integration, especially with Semantic Web technologies [START_REF]Linking data to ontologies[END_REF]. Indeed, constraints can be used to establish a uni ed view of a collection of heterogenous datasets thereby allowing the user to formulate high-level queries employing a richer vocabulary than that of the single sources.

e paradigm so far has been widely studied for relational and RDF databases. e ontological knowledge is o en expressed using description logics [START_REF]Tractable Reasoning and E cient ery Answering in Description Logics: e DL-Lite Family[END_REF][START_REF]Pushing the EL envelope further[END_REF] which also underpin the OWL 2 QL and EL pro les, or suitable fragments of existential rules (also called Datalog ± ) akin to Tuple Generating Dependencies (TGDs) [START_REF] Patel-Schneider | On Rules with Existential Variables: Walking the Decidability Line[END_REF][START_REF]Towards more expressive ontology languages: e query answering problem[END_REF][START_REF]A proof procedure for data dependencies[END_REF]]. Yet, much less a ention has been devoted to the case where the data to be accessed are JSON records si ing in a NOSQL system such as Key-Value stores like MongoDB [START_REF] Ulliana | [END_REF] or CouchDB [START_REF]Couchdb[END_REF].

To illustrate the OMQA approach to Key-Value stores [START_REF]Ontologymediated query answering for key-value stores[END_REF][START_REF]Obda beyond relational dbs: A study for mongodb[END_REF], consider the JSON record r in Figure 1 which describes a computer science university department with two of its professors, and the MongoDB queries Q 1 and Q 2 . e query Q 1 selects all department records where there exists a professor with a contact, while the query Q 2 selects all computer science departments having a director. It can be easily seen that these two queries have empty answer when evaluated on r . e reason is that they employ a vocabulary which is disjoint from that of r . Indeed, Q 1 asks for the key contact while Q 2 asks for the key director that are both not employed in r .

Here is where semantic constraints can come into play. Indeed, although the key contact is not present in the source r , this can be seen as a high-level key generalizing phone and mail. is is captured by rules σ 1 and σ 2 . Hence, by taking into account the semantic constraints while accessing data, r would satisfy the query Q 1 . Similarly, σ 3 says that whenever a professor is present, then a director exists. Again, if this constraint is considered, then r would also satisfy

Q 2 .
is shows how semantic constraints allow the user to express a high-level query on a collection of data sources and also reason with incomplete information at the record level. Of course, the structure of a record can be enriched by more expressive constraints [START_REF]Ontologymediated query answering for key-value stores[END_REF][START_REF]Ontology-mediated queries for NOSQL databases[END_REF], but in this work we focus on simple constraints built on pairs of keys, as those yet illustrated.

Demo contribution

is demonstration showcases i) a system for accessing Key-Value stores in the presence of semantic constraints based on query rewriting as well as ii) a parallelization technique for optimizing data access.

ery rewriting is an algorithmic approach to account for semantics whose goal is to incorporate the constraints into the query. is process yields a set (or union) of rewritings whose answers set over the input database is exactly the same as the initial query under constraints. is virtual approach to query answering has many advantages. First, it is well suited for accessing legacy databases even with read-only access rights. Second, it is resilient to updates, being the rewritings of a query independent from the data sources.

(r )

{ dept : e alternative approach to query rewriting is materialization. Intuitively speaking, for the constraints we consider of the form k -→ k , materialization means to create fresh copies of all values coupled with a key k and then associating these copies with a new key k . e tree-shape of JSON records may however hinder compact (graph) representations of data thereby making materialization suboptimal. is is exacerbated by the fact that data is voluminous.

{ name : "CS", prof : [ { name : "Bob" , phone : "5-256" } , { name : "Charles" , mail : "charles@um.fr" } ] } } (Q 1 ) find( { dept : { prof : { contact : { $exists : true } } } } ) (Q 2 ) find( { dept : { $elemMatch : { name : "CS", director : { $exists : true } } } } ) (σ 1 ) phone -→ contact (σ 2 ) mail -→ contact (σ 3 ) prof -→ ∃director
In contrast, queries are usually small. From an OMQA perspective, it is thus interesting to explore query rewriting approaches that can take into account semantic constraints while accessing data without modifying the data sources.

In spite of the many advantages of virtual approaches we already mentioned, query rewriting can still su er from combinatorial explosions, which o en happen in practice. To mitigate this problem, our system features a parallel query rewriting method that can be used to distribute the computing of rewritings over several nodes as well as serve as basis for distributed query evaluation.

Our system currently enables access to MongoDB stores. However, the extension to other Key-Value stores systems is conceptually straightforward. e source of the code used for this demonstration is available at github.com/zuri66/keyval-qrewriting.

PRELIMINARIES

In this section, we present the preliminaries about the data, queries, rules and query rewriting.

Data

A JSON record, or key-value record, is a nite set of key-value pairs of the form r = {(k 1 , e 1 ) . . .

(k n , e n )}. A value is recursively de ned as (i) a constant or a null value (ii) a sequence e = [e 1 . . . e n ]
where each e i is a value and n ≥ 1, or (iii) a record r , where each

k i ∈ K
and each e i is a value, with n ≥ 1 and k i k j whenever i j. A KV-store I is a set of records.

We see a record r as a rooted labeled tree, denoted by tree (r ), in which edges are labeled by keys, leaves are labeled by constant or null values, and all other internal nodes are unlabeled. Of course, a key-value pair (k, [e 1 . . . e n ]) involving a sequence is represented by several edges labeled by k leading to the nodes that represent the elements of e1 . Figure 2 provides a tree representation of the record given in the previous example. 

eries

We focus on the tree pa ern queries that are supported by Mon-goDB [START_REF] Ulliana | [END_REF]. ese are of the form find(ϕ) where ϕ is an expression generated by the following grammar.

ϕ ::= { key : cond } | conj cond ::= ϕ | terminal | { $elemMatch : { conj } } conj ::= ϕ | conj,conj terminal ::= a | null | { $exists : true }
It is easy to see that the set of queries expressible by this grammar corresponds to a form of tree pa ern queries without joins. 2 e grammar should be self explicative, we just comment on the main constructs. e $elemMatch clause is used to specify a conjunction of conditions that the subrecord has to match. 3 e condition $exists : true is used to verify the existence of any value associated with a key, while a to specify the constant that has to be matched like the string "CS" for the query Q 2 in Figure 1. Recall that a KV-store query is always evaluated starting from the root of the record. As for records, we see a query find(ϕ), as a tree. is is denoted by tree (ϕ). Figure 3 provides a tree representation of the queries given in the previous example.

Following the MongoDB semantics, a find query evaluated on a record r yields an answer which is either the record r itself or the emptyset. Accordingly, we say that a record r answers (or satis es) a query find(ϕ) if there exists a (tree-) homomorphism h : tree (ϕ) → tree (r ) mapping the root of tree (ϕ) to the root of tree (r ). With a li le abuse of notation, we denote this by r |= ϕ. 4 For a KV store I , we write I |= ϕ whenever r |= ϕ for some r ∈ I .

Rules

e constraints we are interested in are key inclusions, as introduced in [START_REF]Ontology-mediated queries for NOSQL databases[END_REF][START_REF]Ontologymediated query answering for key-value stores[END_REF]. ese are expressed as rules σ of the form

k -→ k (∀-rule) k -→ ∃k (∃-rule)
and allow to de ne hierarchies of keys (∀-rules) as well as the existence of mandatory keys (∃-rule). e semantics of rules is now described. For the sake of formalization, we li the se ing of trees to that of multi-trees. at is, we consider trees where there can be more than one edge between a pair of nodes. To illustrate, r = {a : {c : "alice"}, b : {c : "alice"}} can be seen either as the tree {(n 0 , n 1 , a),

(n 0 , n 1 , b), (n 1 , n 2 , c), (n 1 , n 2 , c)}
where the root is 2 In passing, note also that ϕ is a JSON record. 3 As a subtlety, MongoDB matches only records that belong to a sequence. 4 is stands for t r ee (r ) |= t r ee (ϕ ).

n 0 and the leaves n 2 , n 2 are labelled with "alice", or as the multitree {(n 0 , n 1 , a), (n 0 , n 1 , b), (n 1 , n 2 , c)}. is allows us to represent in a compact way the fact that a value (i.e., the terminal of the edge) is common to two keys. In the formal development below, we always consider rules of the form k -→ [∃]k (the optional part being between brackets). We say that a multi-tree t satis es a ∀-rule σ : k -→ k if for each edge of the form (u, , k ) belonging to t there exists an edge (u, , k ) also belonging to t. Similarly, a multi-tree t satis es an ∃-rule σ : k -→ ∃k if for each edge of the form (u, , k ) in t there exists an edge (u, , k ) in t, with possibly . 5 We denote this by t |= σ . For a set of constraints Σ we have that t |= Σ if and only if t |= σ for all σ ∈ Σ. en, we say that t is a model of r ∧ Σ when both t |= tree (r ) and t |= Σ hold. Finally, a query ϕ is a certain answer of r and Σ, denoted by r ∧ Σ |= ϕ, if whenever t |= r ∧ Σ then t |= ϕ. We are here interested at computing certain answers.

ery Rewriting

We now present an algorithmic procedure for query rewriting allowing us to take into account the semantics of constraints while accessing data. We say that a query ϕ can be rewri en by a ∀-rule σ (of the form k -→ k ), if there exists an edge (u, , k ) ∈ tree (ϕ). e rewriting process simply replaces the key k with k. We say that a query ϕ can be rewri en by a ∃-rule σ (of the form k -→ ∃k ), if there exists an edge (u, , k ) ∈ tree (ϕ) such that i) is a leaf and ii) is not labelled with a constant or null (that is, an $exists leaf). e rewriting process replaces the edge (u, , k ) with the edge (u, 0 , k ), with 0 a fresh (leaf) node. In both cases, we say that the new obtained query ϕ is a direct rewriting of ϕ with σ . For example the following queries Q 1 and Q 1 are direct rewritings of Q 1 with σ 1 and σ 2 respectively, while Q 2 is a direct rewriting of Q 2 with σ 3 .

(Q 1 ) find( { dept : { prof : { phone : { $exists : true } } } } ) (Q 1 ) find( { dept : { prof : { mail : { $exists : true } } } } ) (Q 2 ) find( { dept : { $elemMatch : { name : "CS", prof : { $exists : true } } } } )
It is easy to see that r in Figure 1 answers all of these rewritings. Note that ∃-rules apply only the leaves of a query that are not associated with a constant. To see why consider the query (Q 3 ) find( { director : "charles" } ) where σ 3 does not apply.

Indeed, the query find( { professor : { $exists : true } } ) is not a valid rewriting, as it does not not imply an answer to Q 3 . en, we de ne breadth-rst query rewriting as Rew 0 (ϕ, Σ) = {ϕ} and Rew i+1 (ϕ, Σ) = Rew i (ϕ, Σ) {ϕ } for all ϕ which is a direct rewriting of ϕ ∈ Rew i (ϕ, Σ) with σ ∈ Σ. In contrast to the general case [START_REF]Ontologymediated query answering for key-value stores[END_REF], this procedure always terminates, that is for all ϕ and Σ there exists an integer k such that Rew k (ϕ, Σ) = Rew k +1 (ϕ, Σ). Hence, we denote by Rew (ϕ, Σ) the set of all rewritings of a query. We say that r answers Rew (ϕ, Σ), denoted by r |= Rew (ϕ, Σ) when r |= ϕ for some ϕ ∈ Rew (ϕ, Σ). Soundness 5 From a rst order logic perspective, these rules correspond to universally quanti ed formulae of the form ∀x, ( k(x, ) -→ k (x, ) ) and existential quanti ed formula ∀x, ( k(x, ) -→ ∃z . k (x, z ) ) and completeness of query rewriting is as follows: r ∧ Σ |= ϕ ⇐⇒ r |= Rew (ϕ, Σ).

PARALLELIZATION

We now present a parallel method for computing Rew (ϕ, Σ). e idea is to exploit a set of independent computing units u 1 , . . . , u n being each a local thread or a machine of a computing cluster. Each unit u i will compute a (sub)set of the rewritings of the input query Φ i ⊆ Rew (ϕ, Σ). It is important that every unit computes di erent rewritings, that is for all u i u j we have that Φ i ∩ Φ j = ∅.

For the sake of e ciency, the rewriting load should be well balanced among the computing units. Formally, given a query ϕ, a set of rules Σ, and n computing units, our goal is to nd a balanced partitioning of the set of rewritings [Φ 1 , . . . , Φ n ] making each node u i generating a set Φ i such that

|Φ i | ≈ |Rew (ϕ, Σ) | n
. A er determining the partitions, each unit starts doing the local rewritings for its partition, and the global result is the union of the local results.

Encoding the space of rewritings. Our solution for load balanced rewriting proceeds in two steps. First, we de ne a encoding of the space of rewritings suitable for this task. Second, we partition the space over the computing units.

To encode Rew (ϕ, Σ) we build a decision tree T Rew (ϕ, Σ) such that: i) any path from the root to a leaf of the tree represents a (unique) rewriting of ϕ with Σ; and ii) all rewritings in Rew (ϕ, Σ) have a corresponding path in T Rew (ϕ, Σ) . A balanced partitioning of the rewritings can be obtained by equally partitioning these "rewriting paths" over the n units. We outline the main technical ideas of our approach then generalize it to the whole framework.

Dealing with single rule applications. Consider the query ϕ = {faculty : {contact : {$exists : true}}} and the rules σ 1 : phone → contact and σ 2 : prof → faculty. In this case, Rew (ϕ, {σ 1 , σ 2 }) = {faculty.contact, faculty.prof, prof.contact, prof.phone}. is set can be represented with a binary tree whose depth depends on the number of rewritable edges of the query (in this case 2) and where an edge from level i to level i + 1 has a binary label corresponding to the fact that the edge has been rewri en [START_REF]Couchdb[END_REF] or not (0) by the respective rule. e absolute path of every leaf of the tree corresponds to a rewriting. With this approach we have at most 2 |ϕ | binary codes, one for each rewriting. Note that 0 denotes the original query. Bounded size communication. Note that the encoding and partitioning of the rewritings space is done in one of the computing units u, which is chosen randomly. A er doing the partitioning, u should communicate to each other unit its encoded partition. For the sake of e ciency, it is important to have a bounded communication between u and each other unit.

An important property of our encoding approach is that the obtained codes can be put in bijection with the integers {0, . . . , k -1}.

erefore, the unit u can communicate to each unit u i in a succinct way the interval of rewritings that it has to generate. In fact, u sends to u i only two values (N , N + λ) where N is a positive integer and λ ≈ k/n. For instance, if n = 1 the interval [0, 3] representing the set of (binary) codes {00, 01, 10, 11} will be sent to u 1 . is ensures a O (1) bound the size for communicating the interval to a single computing unit.

Dealing with multiple rule applications. In the general case, the rule application is more complex than what we saw in the previous example, since not only two rules σ 1 and σ 2 can rewrite the same edge of the query, but also the application of σ 1 can enable that of σ 2 . For these cases, the approach yet described must be properly extended. To do so, we look at transitive dependencies between the keys in Σ.

We say that k is (∃)-derivable from k, denoted by k ≤ ∃ k , if there exists a sequence of rules σ 1 , . . . , σ n of the form

σ i = k i -→ [∃]k i such that k i = k i+1 for all 1 ≤ i < n, with k 1 = k and k n = k . When
all rules in the sequence are (∀)-rules we say that k is (∀)-derivable from k, and we denote it by k ≤ ∀ k . It follows that k ≤ ∀ k implies k ≤ ∃ k , but the converse does not hold. It is important to distinguish the two relations because, as we mentioned, (∃)-rules must be applied only on the existential leaves of the query. Finally, note that we can compute the relations ≤ ∀ and ≤ ∃ in a preprocessing step with a single traversal of Σ.

Let us denote by the integers {1, . . . , ρ} the edges of the query ϕ that can be rewri en by a rule of Σ. en, each edge j labelled with k , is rewri en with a key k such that i) k ≤ ∃ k if the edge is incident to an existential leaf and ii) k ≤ ∀ k otherwise. Importantly, we denote by b j the number of ways that the edge j of the query can be rewri en. For instance, from the example of Figure 1 we have phone ≤ ∀ contact and mail ≤ ∀ contact and thus for an edge j of the query labelled with contact we have b j = 2.

e set Rew (ϕ, Σ) can therefore be represented by an unranked decision tree where i) each level j corresponds to the rewritings of the edge j of the query, and ii) the degree of all of nodes at level j is exactly (b j + 1), that is, there exists an outgoing edge from the node for each possible rewriting of the edge (plus one denoting that the edge is not rewri en). As before, the leaves of the decision tree are labelled with their absolute path c 1 c 2 . . . c ρ which describe a unique rewriting of ϕ. Note that c j ≤ (b j + 1) for all 1 ≤ j ≤ ρ. 

SYSTEM ARCHITECTURE

In this section, we describe the global functioning of our system, whose architecture is depicted in Figure 4.

Our solution can be implemented in any shared nothing parallel framework. In our demo, we use di erent cores of a machine and parallelize our solution by executing threads in the cores. However, the threads can also be executed in the nodes of a distributed cluster, if such a cluster is available.

e rst component of our system is a Parser of the queries and the rules. A er that, the Code Generator is in charge of computing the encoding of the rewritings.

e Code Generator associates to every edge of the query, which can be rewri en, all of the possible keys and their associated codes for the rewriting. is module is also in charge of properly taking into account the (∃-rule) constraints which, as said before, must apply only to existential leaves. e set of codings is then partitioned into intervals. Each task (in a unit) takes its interval, and generates the corresponding rewriting results. When all parallel rewriting tasks are completed, the results are combined in order to obtain the nal rewriting set. Finally, the Data Access module is in charge of evaluating the whole query set on the available MongoDB instances.

DEMO OVERVIEW

e goal of our demonstration is i) to showcase the bene ts of accessing data under semantic constraints as well as ii) to show the e ciency of the parallelization for the query rewriting system. e demonstration scenario is constituted of two JSON datasets. e rst, University, has been manually built and concerns university employees, faculty members, and students,.

e second, XMark [START_REF]Xmark: A benchmark for xml data management[END_REF], is a standard benchmark for semi-structured data that we used to generate JSON records. Both datasets are associated with queries of di erent complexities ranging from path queries to tree-pa ern queries. Similarly semantic constraints adapted to the structure of the datasets have been devised. e demonstration will start by showing how thanks to semantic constraints we can bring novel and pertinent answer to users queries as well as formulate high-level queries over heterogenous records. en, it will be possible to analyze the functioning of the query rewriting module of the system, by exploring the rewriting set generated for a given input query and constraint set. Finally, it will be shown how, for cases where the number of rewriting is huge, the rewriting taks can be parallellized across multiple threads so as to optimise the overall data access.

e demonstration will take place on a graphical interface allowing the a endees to choose prede ned queries and rules, but also to write their own queries and constraints. Similarly, the number of rewriting threads can be con gured so as to compare the e ectiveness of parallelized version of the algorithm with the baseline centralized one.
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 2 To preserve the bounded-size communication when moving from binary to unranked trees, we need to put again the set of k codes we obtained in bijection with the integers {0, . . . , k -1}, in order
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We do not represent the ordering on the elements of a sequence, since the considered queries will not exploit this order. Moreover, a sequence nested in a sequence is seen as a constant as core queries will not go through them either.

we have two possibilities for c 1 (i.e., 0,1) and tree for c 2 (i.e., 0,1,2)