
HAL Id: lirmm-01620207
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620207

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Querying Key-Value Stores Under Simple Semantic
Constraints : Rewriting and Parallelization

Olivier Rodriguez, Corentin Colomier, Cecilie Rivière, Reza Akbarinia,
Federico Ulliana

To cite this version:
Olivier Rodriguez, Corentin Colomier, Cecilie Rivière, Reza Akbarinia, Federico Ulliana. Querying
Key-Value Stores Under Simple Semantic Constraints : Rewriting and Parallelization. BDA: Gestion
de Données - Principes, Technologies et Applications, Nov 2017, Nancy, France. �lirmm-01620207�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620207
https://hal.archives-ouvertes.fr

�erying Key-Value Stores Under Simple Semantic Constraints :
Rewriting and Parallelization

Olivier Rodriguez

Université de Montpellier

olivier.rodriguez@etu.umontpellier.fr

Corentin Colomier

Université de Montpellier

corentin.colomier@etu.umontpellier.fr

Cecilie Rivière

Université de Montpellier

cecilie.riviere@etu.umontpellier.fr

Reza Akbarinia

INRIA Sophia Antipolis

reza.akbarinia@inria.fr

Federico Ulliana

Université de Montpellier

ulliana@lirmm.fr

ABSTRACT
We demonstrate a system for accessing Key-Value stores in the

presence of semantic constraints, as considered in the se�ing of

ontology-mediated query answering. �e constraints we study

are expressed in a native rule language for JSON records and their

purpose is to establish a high level view over a collection of legacy

Key-Value stores. To ensure correct and complete data access,

constraints are taken into account via query rewriting techniques

tailored for MongoDB queries. �e considered se�ing also enable

the deployment of parallelization techniques for optimizing query

rewriting thereby accelerating the whole data access task.

During the demonstration, a�endees will be able �rst to query

JSON datasets enriched with semantic constraints. �en, it will be

possible to make a detailed analysis of query rewriting algorithm

and compare the parallel version with the baseline centralized one.

1 INTRODUCTION
Ontology-mediated query answering (OMQA) is currently at the

center of many investigations. �is paradigm for data access is

designed to query incomplete databases by taking into account

semantic constraints which are usually provided by means of an

ontology. OMQA has many applications in data integration, espe-

cially with Semantic Web technologies [11]. Indeed, constraints can

be used to establish a uni�ed view of a collection of heterogenous

datasets thereby allowing the user to formulate high-level queries

employing a richer vocabulary than that of the single sources.

�e paradigm so far has been widely studied for relational and

RDF databases. �e ontological knowledge is o�en expressed using

description logics [9, 3] which also underpin the OWL 2 QL and

EL pro�les, or suitable fragments of existential rules (also called

Datalog
±

) akin to Tuple Generating Dependencies (TGDs) [4, 8, 5].

Yet, much less a�ention has been devoted to the case where the

data to be accessed are JSON records si�ing in a NOSQL system

such as Key-Value stores like MongoDB [2] or CouchDB [1].

To illustrate the OMQA approach to Key-Value stores [6, 7],

consider the JSON record r in Figure 1 which describes a computer

science university department with two of its professors, and the

MongoDB queries Q1 and Q2. �e query Q1 selects all department

records where there exists a professor with a contact, while the

queryQ2 selects all computer science departments having a director.

It can be easily seen that these two queries have empty answer

when evaluated on r . �e reason is that they employ a vocabulary

which is disjoint from that of r . Indeed, Q1 asks for the key contact
while Q2 asks for the key director that are both not employed in r .

Here is where semantic constraints can come into play. Indeed,

although the key contact is not present in the source r , this can

be seen as a high-level key generalizing phone and mail. �is is

captured by rules σ1 and σ2. Hence, by taking into account the

semantic constraints while accessing data, r would satisfy the query

Q1. Similarly, σ3 says that whenever a professor is present, then a

director exists. Again, if this constraint is considered, then r would

also satisfy Q2. �is shows how semantic constraints allow the

user to express a high-level query on a collection of data sources

and also reason with incomplete information at the record level. Of

course, the structure of a record can be enriched by more expressive

constraints [6, 10], but in this work we focus on simple constraints

built on pairs of keys, as those yet illustrated.

Demo contribution
�is demonstration showcases i) a system for accessing Key-Value
stores in the presence of semantic constraints based on query rewriting
as well as ii) a parallelization technique for optimizing data access.
�ery rewriting is an algorithmic approach to account for seman-

tics whose goal is to incorporate the constraints into the query. �is

process yields a set (or union) of rewritings whose answers set over

the input database is exactly the same as the initial query under

constraints. �is virtual approach to query answering has many

advantages. First, it is well suited for accessing legacy databases

even with read-only access rights. Second, it is resilient to updates,

being the rewritings of a query independent from the data sources.

(r) { dept :

{ name : “CS”,

prof : [{ name : “Bob” , phone : “5-256” } ,

{ name : “Charles” , mail : “charles@um.fr” }]

} }

(Q1) find({ dept : { prof : { contact : { $exists : true } } } })

(Q2) find({ dept : {

$elemMatch : { name : “CS”, director : { $exists : true } }

} })

(σ1) phone −→ contact (σ2) mail −→ contact (σ3) prof −→ ∃director

Figure 1: Record example

1

“CS”

name

“Bob”

name

“5-256”

phone

prof

“Charles”

name

“charles@um.fr”

mail

prof

dept

Figure 2: Tree representation of a record

�e alternative approach to query rewriting is materialization.

Intuitively speaking, for the constraints we consider of the form

k −→ k ′, materialization means to create fresh copies of all values

coupled with a key k and then associating these copies with a

new key k ′. �e tree-shape of JSON records may however hinder

compact (graph) representations of data thereby making materi-

alization suboptimal. �is is exacerbated by the fact that data is

voluminous.

In contrast, queries are usually small. From an OMQA perspec-

tive, it is thus interesting to explore query rewriting approaches

that can take into account semantic constraints while accessing

data without modifying the data sources.

In spite of the many advantages of virtual approaches we already

mentioned, query rewriting can still su�er from combinatorial ex-

plosions, which o�en happen in practice. To mitigate this problem,

our system features a parallel query rewriting method that can be

used to distribute the computing of rewritings over several nodes

as well as serve as basis for distributed query evaluation.

Our system currently enables access to MongoDB stores. How-

ever, the extension to other Key-Value stores systems is conceptu-

ally straightforward. �e source of the code used for this demon-

stration is available at github.com/zuri66/keyval-qrewriting.

2 PRELIMINARIES
In this section, we present the preliminaries about the data, queries,

rules and query rewriting.

2.1 Data
A JSON record, or key-value record, is a �nite set of key-value pairs

of the form r = {(k1, e1) . . . (kn , en)}. A value is recursively de�ned

as (i) a constant or a null value (ii) a sequence e = [e1 . . . en]

where each ei is a value and n ≥ 1, or (iii) a record r , where each

ki ∈ Keys and each ei is a value, with n ≥ 1 and ki , kj whenever

i , j. A KV-store I is a set of records.

We see a record r as a rooted labeled tree, denoted by tree (r), in

which edges are labeled by keys, leaves are labeled by constant or

null values, and all other internal nodes are unlabeled. Of course, a

key-value pair (k, [e1 . . . en]) involving a sequence is represented

by several edges labeled by k leading to the nodes that represent

the elements of e 1
. Figure 2 provides a tree representation of the

record given in the previous example.

1
We do not represent the ordering on the elements of a sequence, since the considered

queries will not exploit this order. Moreover, a sequence nested in a sequence is seen

as a constant as core queries will not go through them either.

root

$exists : true

contact

prof

dept

root

“CS”

name

$exists : true

director

dept

Figure 3: Tree representation of queries

2.2 �eries
We focus on the tree pa�ern queries that are supported by Mon-

goDB [2]. �ese are of the form find(ϕ) where ϕ is an expression

generated by the following grammar.

ϕ ::= { key : cond } | conj
cond ::= ϕ | terminal | { $elemMatch : { conj } }
conj ::= ϕ | conj,conj

terminal ::= a | null | { $exists : true }

It is easy to see that the set of queries expressible by this grammar

corresponds to a form of tree pa�ern queries without joins.
2

�e

grammar should be self explicative, we just comment on the main

constructs. �e $elemMatch clause is used to specify a conjunction
of conditions that the subrecord has to match.

3

�e condition

$exists : true is used to verify the existence of any value asso-

ciated with a key, while a to specify the constant that has to be

matched like the string “CS” for the query Q2 in Figure 1. Recall

that a KV-store query is always evaluated starting from the root of

the record. As for records, we see a query find(ϕ), as a tree. �is

is denoted by tree (ϕ). Figure 3 provides a tree representation of

the queries given in the previous example.

Following the MongoDB semantics, a find query evaluated on

a record r yields an answer which is either the record r itself or

the emptyset. Accordingly, we say that a record r answers (or

satis�es) a query find(ϕ) if there exists a (tree-) homomorphism

h : tree (ϕ) → tree (r) mapping the root of tree (ϕ) to the root of

tree (r). With a li�le abuse of notation, we denote this by r |= ϕ.
4

For a KV store I , we write I |= ϕ whenever r |= ϕ for some r ∈ I .

2.3 Rules
�e constraints we are interested in are key inclusions, as intro-

duced in [10, 6]. �ese are expressed as rules σ of the form

k −→ k ′ (∀-rule) k −→ ∃k ′ (∃-rule)

and allow to de�ne hierarchies of keys (∀-rules) as well as the

existence of mandatory keys (∃-rule). �e semantics of rules is

now described. For the sake of formalization, we li� the se�ing of

trees to that of multi-trees. �at is, we consider trees where there

can be more than one edge between a pair of nodes. To illustrate,

r = {a : {c : “alice”}, b : {c : “alice”}} can be seen either as the

tree {(n0,n1, a), (n0,n
′
1
, b), (n1,n2, c), (n′

1
,n′

2
, c)} where the root is

2
In passing, note also that ϕ is a JSON record.

3
As a subtlety, MongoDB matches only records that belong to a sequence.

4
�is stands for tr ee (r) |= tr ee (ϕ).

2

n0 and the leaves n2,n
′
2

are labelled with “alice”, or as the multi-

tree {(n0,n1, a), (n0,n1, b), (n1,n2, c)}. �is allows us to represent

in a compact way the fact that a value (i.e., the terminal of the

edge) is common to two keys. In the formal development below,

we always consider rules of the form k −→ [∃]k ′ (the optional part

being between brackets).

We say that a multi-tree t satis�es a ∀-rule σ : k −→ k ′ if for

each edge of the form (u,v,k) belonging to t there exists an edge

(u,v,k ′) also belonging to t . Similarly, a multi-tree t satis�es an

∃-rule σ : k −→ ∃k ′ if for each edge of the form (u,v,k) in t there

exists an edge (u,v ′,k ′) in t , with possibly v , v ′. 5
We denote

this by t |= σ . For a set of constraints Σ we have that t |= Σ if

and only if t |= σ for all σ ∈ Σ. �en, we say that t is a model of

r ∧ Σ when both t |= tree (r) and t |= Σ hold. Finally, a query ϕ
is a certain answer of r and Σ, denoted by r ∧ Σ |= ϕ, if whenever

t |= r ∧ Σ then t |= ϕ. We are here interested at computing certain

answers.

2.4 �ery Rewriting
We now present an algorithmic procedure for query rewriting

allowing us to take into account the semantics of constraints while

accessing data. We say that a queryϕ can be rewri�en by a∀-rule σ
(of the form k −→ k ′), if there exists an edge (u,v,k ′) ∈ tree (ϕ).
�e rewriting process simply replaces the keyk ′withk . We say that

a query ϕ can be rewri�en by a ∃-rule σ (of the form k −→ ∃k ′),
if there exists an edge (u,v,k ′) ∈ tree (ϕ) such that i) v is a leaf

and ii) v is not labelled with a constant or null (that is, an $exists
leaf). �e rewriting process replaces the edge (u,v,k ′) with the

edge (u,v0,k), with v0 a fresh (leaf) node. In both cases, we say

that the new obtained query ϕ ′ is a direct rewriting of ϕ with σ .

For example the following queries Q ′
1

and Q ′′
1

are direct rewritings

of Q1 with σ1 and σ2 respectively, while Q ′
2

is a direct rewriting of

Q2 with σ3.

(Q ′
1
) find({ dept : { prof : { phone : { $exists : true } } } })

(Q ′′
1
) find({ dept : { prof : { mail : { $exists : true } } } })

(Q ′
2
) find({ dept : {

$elemMatch : { name : “CS”, prof : { $exists : true } }
} })

It is easy to see that r in Figure 1 answers all of these rewrit-

ings. Note that ∃-rules apply only the leaves of a query that are

not associated with a constant. To see why consider the query

(Q3) find({ director : “charles” }) where σ3 does not apply.

Indeed, the query find({ professor : { $exists : true } }) is not a

valid rewriting, as it does not not imply an answer to Q3.

�en, we de�ne breadth-�rst query rewriting as Rew0 (ϕ, Σ) =
{ϕ} and Rewi+1 (ϕ, Σ) = Rewi (ϕ, Σ)

⋃
{ϕ ′} for all ϕ ′ which is a di-

rect rewriting of ϕ ′′ ∈ Rewi (ϕ, Σ) with σ ∈ Σ. In contrast to

the general case [6], this procedure always terminates, that is

for all ϕ and Σ there exists an integer k such that Rewk (ϕ, Σ) =
Rewk+1

(ϕ, Σ). Hence, we denote by Rew (ϕ, Σ) the set of all rewrit-

ings of a query. We say that r answers Rew (ϕ, Σ), denoted by

r |= Rew (ϕ, Σ) when r |= ϕ for some ϕ ∈ Rew (ϕ, Σ). Soundness

5
From a �rst order logic perspective, these rules correspond to universally quanti�ed

formulae of the form ∀x, y (k(x, y) −→ k′ (x, y)) and existential quanti�ed formula

∀x, y (k(x, y) −→ ∃z . k′ (x, z))

and completeness of query rewriting is as follows: r ∧ Σ |= ϕ ⇐⇒
r |= Rew (ϕ, Σ).

3 PARALLELIZATION
We now present a parallel method for computing Rew (ϕ, Σ). �e

idea is to exploit a set of independent computing units u1, . . . ,un
being each a local thread or a machine of a computing cluster. Each

unit ui will compute a (sub)set of the rewritings of the input query

Φi ⊆ Rew (ϕ, Σ). It is important that every unit computes di�erent

rewritings, that is for all ui , uj we have that Φi ∩ Φj = ∅.
For the sake of e�ciency, the rewriting load should be well

balanced among the computing units. Formally, given a query

ϕ, a set of rules Σ, and n computing units, our goal is to �nd a

balanced partitioning of the set of rewritings [Φ1, . . . ,Φn] making

each node ui generating a set Φi such that |Φi | ≈
|Rew (ϕ,Σ) |

n .

A�er determining the partitions, each unit starts doing the local

rewritings for its partition, and the global result is the union of the

local results.

Encoding the space of rewritings. Our solution for load balanced

rewriting proceeds in two steps. First, we de�ne a encoding of the

space of rewritings suitable for this task. Second, we partition the

space over the computing units.

To encode Rew (ϕ, Σ) we build a decision tree TRew (ϕ,Σ) such

that: i) any path from the root to a leaf of the tree represents a

(unique) rewriting of ϕ with Σ; and ii) all rewritings in Rew (ϕ, Σ)
have a corresponding path in TRew (ϕ,Σ) . A balanced partitioning

of the rewritings can be obtained by equally partitioning these

“rewriting paths” over the n units. We outline the main technical

ideas of our approach then generalize it to the whole framework.

Dealing with single rule applications. Consider the query ϕ =
{faculty : {contact : {$exists : true}}} and the rules σ1 : phone →
contact and σ2 : prof → faculty. In this case, Rew (ϕ, {σ1,σ2}) =
{faculty.contact, faculty.prof, prof.contact, prof.phone}. �is set can

be represented with a binary tree whose depth ` depends on the

number of rewritable edges of the query (in this case 2) and where

an edge from level i to level i + 1 has a binary label corresponding

to the fact that the edge has been rewri�en (1) or not (0) by the

respective rule. �e absolute path of every leaf of the tree corre-

sponds to a rewriting. With this approach we have at most 2
|ϕ |

binary codes, one for each rewriting. Note that 0
`

denotes the

original query.

00

faculty.contact

0

01

faculty.phone

1

0

10

prof.contact

0

11

prof.phone
rewrite contact

rewrite faculty

1

1

Bounded size communication. Note that the encoding and par-

titioning of the rewritings space is done in one of the computing

units u, which is chosen randomly. A�er doing the partitioning, u
should communicate to each other unit its encoded partition. For

3

the sake of e�ciency, it is important to have a bounded communi-

cation between u and each other unit.

An important property of our encoding approach is that the

obtained codes can be put in bijection with the integers {0, . . . ,k −
1}. �erefore, the unit u can communicate to each unit ui in a

succinct way the interval of rewritings that it has to generate. In

fact, u sends to ui only two values (N ,N +λ) where N is a positive

integer and λ ≈ k/n. For instance, if n = 1 the interval [0, 3]

representing the set of (binary) codes {00, 01, 10, 11} will be sent

to u1. �is ensures a O (1) bound the size for communicating the

interval to a single computing unit.

Dealing with multiple rule applications. In the general case, the

rule application is more complex than what we saw in the previous

example, since not only two rules σ1 and σ2 can rewrite the same

edge of the query, but also the application of σ1 can enable that of

σ2. For these cases, the approach yet described must be properly

extended. To do so, we look at transitive dependencies between the

keys in Σ.

We say that k ′ is (∃)−derivable from k , denoted by k ≤∃ k
′
, if

there exists a sequence of rules σ1, . . . ,σn of the form σi = ki −→
[∃]ki

′
such that k ′i = ki+1 for all 1 ≤ i < n, with k1 = k and

k ′n = k ′. When all rules in the sequence are (∀)−rules we say

that k ′ is (∀)−derivable from k , and we denote it by k ≤∀ k ′. It

follows that k ≤∀ k
′

implies k ≤∃ k ′, but the converse does not

hold. It is important to distinguish the two relations because, as

we mentioned, (∃)−rules must be applied only on the existential

leaves of the query. Finally, note that we can compute the relations

≤∀ and ≤∃ in a preprocessing step with a single traversal of Σ.

Let us denote by the integers {1, . . . , ρ} the edges of the query

ϕ that can be rewri�en by a rule of Σ. �en, each edge j labelled

with k ′, is rewri�en with a key k such that i) k ≤∃ k ′ if the

edge is incident to an existential leaf and ii) k ≤∀ k ′ otherwise.

Importantly, we denote by bj the number of ways that the edge j
of the query can be rewri�en. For instance, from the example of

Figure 1 we have phone ≤∀ contact and mail ≤∀ contact and thus

for an edge j of the query labelled with contact we have bj = 2.

�e set Rew (ϕ, Σ) can therefore be represented by an unranked
decision tree where i) each level j corresponds to the rewritings of

the edge j of the query, and ii) the degree of all of nodes at level j
is exactly (bj + 1), that is, there exists an outgoing edge from the

node for each possible rewriting of the edge (plus one denoting

that the edge is not rewri�en). As before, the leaves of the decision

tree are labelled with their absolute path c1c2 . . . cρ which describe

a unique rewriting of ϕ. Note that c j ≤ (bj + 1) for all 1 ≤ j ≤ ρ.

00

fac.contact

0

01

fac.phone

1

02

fac.mail

2

0

10

prof.contact

0

11

prof.phone

1

12

prof.mail

2

1

To preserve the bounded-size communication when moving from

binary to unranked trees, we need to put again the set of k codes

we obtained in bijection with the integers {0, . . . ,k − 1}, in order

Parsing

�ery Rules

Code generator

Rewriter1
· · · Rewritern

Rewriting Collection

Data Access

Figure 4: System architecture

to easily compute the partitioning of the rewritings over the n
computing units. To do so, we see a code as a number in a multiple

base (bρ , . . . ,b1) where as before each bj denotes the number of

elements of the base (corresponding to the number of possible

rewritings of the edge j in the query). A code (c1 . . . cρ) in the base

(bρ , . . . ,b1) is equivalent to the integer p where

p = cρ ∗ B1 + cρ−1 ∗ B2 + . . . + c1 ∗ Bρ

where B1 = 1 and for all i ≥ 2 it holds that Bi = bi−1 ∗ Bi−1. In

the above example, the codes {00, 01, 02, 10, 11, 12} will correspond

to the interval [0, 5]. Indeed, we consider each code in the base
6

(b2,b1) = (2, 3) we have B1 = 1 (by de�nition) and B2 = b1∗B1 = 3.

For example, the code (c1c2) = (12) stands for c2 ∗B1 + c1 ∗B2 = 5.

At this point, by knowing the base (bn , . . . ,b1) it is possible to

determine the number of rewritings k = bρ ∗ B1 + · · · + b1 ∗ Bρ ,

and then assign to each of the n units an interval of size k/n.

4 SYSTEM ARCHITECTURE
In this section, we describe the global functioning of our system,

whose architecture is depicted in Figure 4.

Our solution can be implemented in any shared nothing parallel

framework. In our demo, we use di�erent cores of a machine and

parallelize our solution by executing threads in the cores. However,

the threads can also be executed in the nodes of a distributed cluster,

if such a cluster is available.

�e �rst component of our system is a Parser of the queries and

the rules. A�er that, the Code Generator is in charge of computing

the encoding of the rewritings. �e Code Generator associates

to every edge of the query, which can be rewri�en, all of the

possible keys and their associated codes for the rewriting. �is

module is also in charge of properly taking into account the (∃-rule)
constraints which, as said before, must apply only to existential

leaves. �e set of codings is then partitioned into intervals. Each

6
we have two possibilities for c1 (i.e., 0,1) and tree for c2 (i.e., 0,1,2)

4

task (in a unit) takes its interval, and generates the corresponding

rewriting results. When all parallel rewriting tasks are completed,

the results are combined in order to obtain the �nal rewriting set.

Finally, the Data Access module is in charge of evaluating the whole

query set on the available MongoDB instances.

5 DEMO OVERVIEW
�e goal of our demonstration is i) to showcase the bene�ts of

accessing data under semantic constraints as well as ii) to show

the e�ciency of the parallelization for the query rewriting system.

�e demonstration scenario is constituted of two JSON datasets.

�e �rst, University, has been manually built and concerns uni-

versity employees, faculty members, and students,. �e second,

XMark [12], is a standard benchmark for semi-structured data that

we used to generate JSON records. Both datasets are associated

with queries of di�erent complexities ranging from path queries to

tree-pa�ern queries. Similarly semantic constraints adapted to the

structure of the datasets have been devised.

�e demonstration will start by showing how thanks to seman-

tic constraints we can bring novel and pertinent answer to users

queries as well as formulate high-level queries over heterogenous

records. �en, it will be possible to analyze the functioning of the

query rewriting module of the system, by exploring the rewriting

set generated for a given input query and constraint set. Finally,

it will be shown how, for cases where the number of rewriting is

huge, the rewriting taks can be parallellized across multiple threads

so as to optimise the overall data access.

�e demonstration will take place on a graphical interface al-

lowing the a�endees to choose prede�ned queries and rules, but

also to write their own queries and constraints. Similarly, the num-

ber of rewriting threads can be con�gured so as to compare the

e�ectiveness of the parallelized version of the algorithm with the

baseline centralized one.

REFERENCES
[1] Couchdb.

[2] MongoDB.

[3] Baader, F., Lutz, C., and Brandt, S. Pushing the EL envelope further. In

OWLED (Spring) (2008), K. Clark and P. F. Patel-Schneider, Eds., vol. 496 of CEUR
Workshop Proceedings, CEUR-WS.org.

[4] Baget, J.-F., Leclère, M., Mugnier, M.-L., and Salvat, E. On Rules with Exis-

tential Variables: Walking the Decidability Line. Arti�cial Intelligence 175, 9-10

(2011), 1620–1654.

[5] Beeri, C., and Vardi, M. Y. A proof procedure for data dependencies. J. ACM 31,

4 (Sept. 1984), 718–741.

[6] Bienvenu, M., Bourhis, P., Mugnier, M., Tison, S., and Ulliana, F. Ontology-

mediated query answering for key-value stores. In International Joint Conference
on Arti�cial Intelligence (2017).

[7] Botoeva, E., Calvanese, D., Cogrel, B., Rezk, M., and Xiao, G. Obda beyond

relational dbs: A study for mongodb. birth 1926, 08–27.

[8] Calì, A., Gottlob, G., and Pieris, A. Towards more expressive ontology lan-

guages: �e query answering problem. Arti�cial Intelligence 193 (2012), 87–128.

[9] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R.

Tractable Reasoning and E�cient �ery Answering in Description Logics: �e

DL-Lite Family. J. Autom. Reasoning 39, 3 (2007), 385–429.

[10] Mugnier, M., Rousset, M., and Ulliana, F. Ontology-mediated queries for

NOSQL databases. In Proceedings of the �irtieth AAAI Conference on Arti�cial
Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. (2016).

[11] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and

Rosati, R. Linking data to ontologies. J. Data Semantics 10 (2008), 133–173.

[12] Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I., and Busse,

R. Xmark: A benchmark for xml data management. In Proceedings of the 28th
international conference on Very Large Data Bases (2002), VLDB Endowment,

pp. 974–985.

5

	Introduction
	Preliminaries
	Data
	Queries
	Rules
	Query Rewriting

	Parallelization
	System architecture
	Demo overview

