N
N

N

HAL

open science

Scientific Workflow Scheduling with Provenance Data in
a Multisite Cloud
Ji Liu, Esther Pacitti, Patrick Valduriez, Marta Mattoso

» To cite this version:

Ji Liu, Esther Pacitti, Patrick Valduriez, Marta Mattoso. Scientific Workflow Scheduling with Prove-
nance Data in a Multisite Cloud. Transactions on Large-Scale Data- and Knowledge-Centered Sys-

tems, 2017, 33, pp.80-112. 10.1109/IPDPS.2007.370305 . lirmm-01620224

HAL Id: lirmm-01620224
https://hal-lirmm.ccsd.cnrs.fr /lirmm-01620224
Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620224
https://hal.archives-ouvertes.fr

Scientific Workflow Scheduling with Provenance
Data in a Multisite Cloud

Ji Liu!, Esther Pacitti!, Patrick Valduriez!, and Marta Mattoso?
b b)

! Inria, Microsoft-Inria Joint Centre, LIRMM and University of Montpellier, France
{ji.liu,patrick.valduriez}@inria.fr
{esther.pacitti}@lirmm.fr
2 COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{marta}@cos.ufrj.br

Abstract. Recently, some Scientific Workflow Management Systems
(SWIMSs) with provenance support (e.g. Chiron) have been deployed
in the cloud. However, they typically use a single cloud site. In this
paper, we consider a multisite cloud, where the data and computing
resources are distributed at different sites (possibly in different regions).
Based on a multisite architecture of SWIMS, i.e. multisite Chiron, and
its provenance model, we propose a multisite task scheduling algorithm
that considers the time to generate provenance data. We performed an
extensive experimental evaluation of our algorithm using Microsoft Azure
multisite cloud and two real-life scientific workflows (Buzz and Montage).
The results show that our scheduling algorithm is up to 49.6% better than
baseline algorithms in terms of total execution time.

Keywords: Scientific workflow - Scientific workflow management system -
Scheduling - Parallel execution - Multisite cloud

1 Introduction

Many large-scale in silico scientific experiments take advantage of scientific work-
flows (SWfs) to model data operations such as loading input data, data process-
ing, data analysis, and aggregating output data. SWfs enable scientists to model
the data processing of these experiments as a graph, in which vertices represent
data processing activities and edges represent dependencies between them. An
SWf is the assembly of scientific data processing activities with data dependen-
cies between them [I3]. An activity is a description of a piece of work that forms
a logical step within an SWf representation [23] and a task is the representa-
tion of an activity within a one-time execution of the activity to process a data
chunk. A data chunk is the smallest set of data that can be processed by a pro-
gram in an activity. Since the tasks of the same activity process different data
chunks [23], they are independent. Within one activity, each task processes a
data chunk, which has no dependency with other tasks of this activity. Different
SWis, e.g. Montage [4] and Buzz [16], can be represented this way since there

2 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

are many tasks that exploit the same program to process different data chunks.
As it takes much time to execute a data-intensive SWT, efficient execution is an
important issue.

A Scientific Workflow Management System (SWIMS) is a tool to execute
SWits [23]. Some implementations of SW{MSs are publicly available, e.g. Pegasus
[15] and Chiron [29]. An SWIMS generally supports provenance data, which is
the metadata that captures the derivation history of a dataset, including the
original data sources, intermediate datasets, and the workflow computational
steps that were applied to produce this dataset [23]. Provenance data, which
is used for SWf analysis and SWf reproducibility, may be as important as the
scientifc experiment itself [23]. The provenance data is typically stored in a
database to provide on-line provenance query [28], and contains the information
regarding activities, tasks and files. During the execution of a task, there may
be multiple exchanges of provenance data between the computing node and the
provenance database.

In order to execute a data-intensive SWf within a reasonable time, SWfMSs
generally exploit High Performance Computing (HPC) resources and parallel
computing techniques. The HPC resources are generally obtained from a com-
puter cluster, grid or cloud environment. Most of existing SWfMSs have been
designed for a computer cluster.

Recently, some SWIMSs with provenance support (e.g. Chiron) have been
deployed in the cloud. They typically focus on the execution of an SWf at a
single cloud site or in even a single computing node [19/20]. Although there are
some multisite solutions [I732], they do not support provenance data, which is
important for the analysis of SWf execution. However, the input data necessary
to run an SWf may well be distributed at different sites (possibly in different
regions), which may not be allowed to be transferred to other sites because
of big amounts or proprietary. And it may not be always possible to move all
the computing resources (including programs) to a single site for execution. In
this paper, we consider a multisite cloud that is composed of several sites (or
data centers) of the same cloud provider, each with its own resources and data.
In addition, we also take into consideration of the influence of the functional-
ity of provenance data on the SWf multisite execution. The difference between
multisite cloud and the environment of single-site or supercomputer is that, in
multisite cloud, the data or the computing resources are distributed at different
sites and the network bandwidths among different sites are different. In addition,
the SWf execution in a multisite cloud is different from the query execution in
database and P2P environments because of the programs to execute, security,
and diversity.

To enable SWf execution in a multisite cloud with distributed input data,
the execution of the tasks of each activity should be scheduled to a correspond-
ing cloud site (or site for short). Then, the scheduling problem is to decide at
which sites to execute the tasks in order to achieve a given objective, e.g. reduc-
ing execution time. Since it may take much time to transfer data between two
different sites, the multisite scheduling problem should take into account the re-

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

sources at different sites, e.g. data stored at each site, and different bandwidths
between different sties. This is different from the execution at a single site, where
data can be shared among different computing nodes and the bandwidths are
very big and almost the same for different nodes. In addition, the time to trans-
fer the provenance data cannot be ignored in a multisite cloud environment,
which is different from the execution without provenance data. Compared with
the approach of scheduling activities in a multisite environment [25], the task
scheduling is fine-grained, which enables the execution of the same activity at
different sites to deal with distributed data and programs.

We focus on the task scheduling problem to reduce the makespan, i.e. the
execution time, of executing an SWf in a multisite cloud. We use a distributed
SWIMS architecture with a master site that coordinates the execution of each
site and that stores all the provenance data of the SW{ execution. In this archi-
tecture, the intersite transferred data can be intermediate data or provenance
data produced by the SWf execution. The intermediate data is the data gen-
erated by executing activities and can also be the input data for the tasks of
following activities. In the multisite cloud, the bandwidth between two different
sites (of different regions) may be small. For data-intensive SWfs, there may
be many data, e.g. intermediate data and provenance data, to transfer across
different sites for the execution of a task while the time to execute the task can
be very small, e.g. a few seconds or even less than one second. As a result, the
time to transfer intermediate data and the time to generate the provenance data
cannot be ignored in the scheduling process. Thus, we also consider the time to
transfer both the intermediate data and the provenance data in the scheduling
process in order to better reduce the overall execution time of SWf execution.

The difference between our work and others is multisite execution with prove-
nance support. In the paper, we make the following contributions. First, we
propose multisite Chiron, with a novel architecture to execute SWfs in a multi-
site cloud environment while generating provenance data. Second, an extended
multisite provenance model and global provenance management of distributed
provenance data in a multisite cloud. Third, we propose a novel multisite task
scheduling algorithm, i.e. Data-Intensive Multisite task scheduling (DIM), for
SWf execution with provenance support in multisite Chiron. Fourth, we carry
out an extensive experimental evaluation, based on the implementation of mul-
tisite Chiron in Microsoft Azure, and using two real SWf use cases (Buzz and
Montage). This paper is a major extension of [24], with more details on related
work and problem definition and the adaptation of single site Chiron to multisite
Chiron. The added value compared with [24] is about 40% and the main differ-
ences are in: the model to estimate the time to execute a bag of tasks (Section
; the experiments of Montage and the improvement of the implementation
of scheduling algorithms (Section; the complexity analysis (Section and
the convergence analysis of DIM algorithm (Appendix).

This paper is organized as follows. Section [2| introduces the related work.
Section [3| presents the problems for task scheduling of SWf execution in a multi-
site cloud environment. Section [4 gives the design of a multisite SWEMS. Section

4 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

explains our proposed scheduling algorithm. Section [f] gives our experimental
evaluation. Section [7] concludes the paper.

2 Related Work

Classic scheduling algorithms, e.g. Opportunistic Load Balancing (OLB) [26],
Minimum Completion Time (MCT) [26], min-min [I8], max-min [I§] and Het-
erogeneous Earliest Finish Time (HEFT) [38], address the scheduling problem
for the objective of reducing execution time within a single site. The OLB al-
gorithm randomly assigns each task to an available computing node without
considering the feature of the task or the computing node. The MCT algorithm
schedules each task to the computing node that can finish the execution first.
HEFT gives the priority to each task according to the dependencies of tasks and
the workload of the task. Then, it schedules the tasks with the highest priority to
the computing node that can finish the execution first. The min-min algorithm
schedules the task, which takes the least time to execute, to the computing node
that can finish the execution first. The max-min algorithm schedules the task,
which takes the biggest time to execute, to the computing node that can fin-
ish the execution first. Since the size of each data chunk of the same activity
is similar and that the tasks of the same activity exploit the same program,
it is reasonable to assume that the tasks of the same activity have the same
workload. We also assume that the tasks of the same activity are independent
since each task processes a data chunk. Thus, the HEFT, min-min and max-min
algorithms degrade to the MCT algorithm for this kind of tasks. Some other
solutions [35I37I39] for SWf scheduling also focus on single site execution. These
techniques do not consider the time to generate provenance data. Dean and Ghe-
mawat [I2] propose to schedule tasks to where the data is. Although this method
focuses on single site, it considers the cost to transfer data among different com-
puting nodes. However, this algorithm depends on the location of data. When
the data is not evenly distributed at each computing node, this algorithm may
lead to unbalanced load at some computing nodes and long execution time of
tasks. De Oliveira et al. [T1] propose a provenance based task scheduling algo-
rithm for single site cloud environments. Some adaptation of SWfMSs [6/9] in
the cloud environment can provide the parallelism in workflow level or activity
level, which is coarse-grained, at a single site cloud. These methods cannot per-
form parallelism of the tasks of the same activities and they cannot handle the
distributed input data at different sites.

A few multisite scheduling approaches are proposed, but they do not con-
sider the distribution of input data at different sites and have no support for
provenance data, which may incur much time for intersite data transfer. Duan
et al. [I7] propose a multisite multi-objective scheduling algorithm with consid-
eration of different bandwidths in a multisite environment. However, they do
not consider the input data distribution at different sites and do not provide
provenance support, which may incur much time for intersite provenance data
transfer. In previous work [2II25], we proposed solutions of multisite activity

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

scheduling of SWfs. However, the activity scheduling method is coarse-grained:
it can schedule the entire execution of each activity to a site but cannot sched-
ule different tasks of one activity to different sites. Thus, it cannot handle the
distributed input data of an SWf in a multisite cloud environment. Luis et al.
[32] propose caching metadata in the memory and replicating the metadata for
SWf execution in a multisite cloud. The metadata is the description information
of files at each site. In this method, data transfer is analyzed in multi-site SWf
execution, stressing the importance of optimizing data provisioning. However,
the metadata is not yet explored on task scheduling and, they just simulated the
SWf execution in the experiments. Their method can be used to optimize the
metadata management in our multisite Chiron in the future.

There is also some work in scheduling tasks for query optimization with
the consideration of data distribution in databases [7I830]. However, the major
difference between SWf scheduling and query optimization lies in the kind of
programs used to process data. The programs used in a query are user-defined
functions and typically run within the database system while the programs in
SWifs are typically black box code managing their own data outside the scope
of the SWIMS. Furthermore, the query execution generates data within the
database while the programs in SWfs generate files, which are processed by 1/0
operations.

Compared with P2P [27I31], a major difference is that multisite cloud does
not have as many sites. Another difference is that the security issue in multisite
cloud is more important than in P2P, e.g. some data cannot be moved to another
site.

2.1 Single Site Chiron

Chiron [29] is an SWIMS for the execution of data-intensive SWis at a single
site, with provenance support. At a single site, Chiron takes one computing node
as a master node and the other nodes as slave nodes, as shown in Figure[l} In a
cloud environment, a computing node is a Virtual Machine (VM). Designed for
HPC environments, Chiron relies on a Shared File System EL e.g. Network File
System (NFS) [33], for managing data. All the computing nodes in the cluster
can read or write the data stored in the shared file system. Chiron exploits a
relational database, i.e. PosgreSQL, to store provenance data.

There are six modules, i.e. textual Ul, activity manager, single site task
scheduler, task executor, provenance data manager and shared file system, in
the single site Chiron. The users can use a textual User Interface (UI) to inter-
act with Chiron, in order to start an instance of Chiron at each computing node.
During the execution of an SW{, each activity and its dependencies are analyzed
by the activity manager to find executable activities, i.e. unexecuted activities,
of which the input data is ready [29]. In order to execute an activity, the cor-
responding tasks are generated by the activity manager. Afterwards, the task

! In a shared file system, all the computing nodes of the cluster share some data
storage that are generally remotely located [22].

6 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

@ Master node
® Slave node

@@ Provenance Database

SFS | Shared File System
y

Fig.1: Architecture of single site Chiron.

scheduler schedules each task to a computing node. During SWf execution, the
tasks of each activity are generated independently and the scheduling of the tasks
of each activity is done independently. The scheduling process is performed at
the beginning of the execution of each activity when the tasks are generated and
to be scheduled at each site. At the beginning of each activity, the corresponding
tasks of this activity are generated and scheduled without interaction with other
activities. In single site Chiron, each time a slave node is available, it requests
new tasks from the master node, which in turn searches for unexecuted tasks
and dispatches them to the slave. This approach is efficient for single site im-
plementations, where communication latency is negligible and there is a shared
file system. Then, the task execution module at each computing node executes
the corresponding scheduled tasks. When all the tasks of the executable activity
are executed, the activity manager analyzes the activities to find new executable
activities to execute. The process of activity analysis, task scheduling and task
execution are repeated until all activities have been executed. Since the input
data, intermediate data and output data of SWfs are stored in a shared file sys-
tem, Chiron does not need to manage data transfer between different computing
nodes. During SWTf execution, the activity manager, the task scheduler and the
task executor generate provenance data, which is gathered by the provenance
data manager. The provenance data manager is located at the master node of
the cluster.

The single site provenance model [29] is shown in Figure [2| In this model,
an SWT is composed of several activities. An activity has an operator, i.e. the
program for this activity. The status of the activity can be ready, running or
finished. The activationCommand of an activity is to execute the activity. The
extractorCommand is to generate provenance data for the corresponding tasks.
The time at which the activity execution starts is executionStart and the time
at which it ends is executionEnd. One activity is related to several tasks, input
relations and output relations. One relation is the input or output parameters
for the activity. Each relation has its own attributes and tuples. The tasks of
an activity are generated based on the input relation of the activity. A task
processes the files associated with the corresponding activity. Each task has
a status, i.e. ready, running or finished. In addition, the start time and end
time of its execution is recorded as ExecutionStart and ExecutionEnd. During

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

dependency

Relation 1. File
1 - name : String | Workflow | :;lsr:?i:ntsmng

1]0.1 ! instrumente: N
0.. 0.*
.| has
input| 0..1 1. 0.1

Activity

- operator : String
- status : String Manipluated
0.1 - activationCommand : String
- extractorCommand : String

outpu N
- executionStart : Date
- executionEnd : Date
1
TupleValues 0.1
0.*
-row :int
1. 4+ |ovalue:Obiect [Task
Attribute [. ~_| - status : String
TupleValues - executionStart : Date
- executionEnd : Date

Fig.2: Single Site Provenance Model [29].

execution, the corresponding information of activities, files and tasks are stored
as provenance data.

3 Problem Definition

This section introduces some important terms, i.e. SWf and multisite cloud, and
formally defines the task scheduling problem we address.

An SWT{ is the assembly of activities and data dependencies where the activi-
ties are connected by data dependencies, i.e there is at least a path between every
pair of activities. The path is a combination of data dependencies without the
consideration of the direction between two activities. An SWf is generally repre-
sented as a Directed Acyclic Graph (DAG). Let us denote an SWf by W(V,E).
V = {v1, va, ..., v, } Tepresents a set of n vertices, which represent the scientific
data processing activities. E = {e; ;: v;,v; € V and Activity v; consumes the
output data of Activity v; } represents a set of edges that correspond to depen-
dencies between activities in V. Activity v; is the parent activity of Activity v;
and Activity v; is the child activity of Activity v;. If it has no parent activity,
an activity is a start activity. If it has no child activity, an activity is an end
activity. If it has both parent activity or child activity, an activity is an interme-
diate activity. Since an activity may process big amount of data, it corresponds
to multiple tasks. Thus, as shown in Figure [3] Activity Ax may have n tasks
{t1, t2, ..., tn}, each consuming a data chunk produced by the tasks of parent
activities of Activity Ay, i.e. Activities A; and A;. For data-intensive SWfs, the
time to transfer data cannot be ignored compared with the time to process data.

8 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

[
N
2

Fig.3: Activity and tasks.

Task [:]Acﬁv:ity B8 Data chunk

G

CEUCET)

A multisite cloud MS(S) = {S, Conf} is a cloud with multiple sites (data
centers) of the same cloud provider, each being explicitly accessible to cloud
users. S = {s1, S2, ..., Sm} represents a set of sites while Conf = {c1, ca, ...,
¢m } represents the cloud configurations of each cloud site for the user. A cloud
configuration ¢; is a combination of parameters of diverse available resources
allocated to the user at a site, which may contain information about quality,
quantity, and types of the resources. A multisite cloud configuration defines the
instances of VMs and storage resources for the users at a multisite cloud. In this
paper, a cloud site corresponds to a combination of resources, e.g. a cluster of
VMs, data and cloud services, which are physically located at a data center. The
cloud services can be database or message queue service. In the cluster of VMs,
each VM is a computing node.

We assume that the input data of an SWf is distributed at different sites
and cannot be moved across different sites because of the proprietary and the
security of the data stored at the site. In addition, some laws also restrict the
movement of data among different regions. Thus, the tasks of the start activity
should be scheduled at the site where the data is. Moreover, we assume that
the intermediate data can be moved across different sites and that the time
to transfer the input data of tasks between two different sites and the time to
generate provenance data is non-negligible compared with the execution time of
a task. During the execution, the input data of each activity can be distributed
at different sites. Thus, the tasks of the intermediate activities or end activities
can be scheduled at any site. In this paper, we focus on the task scheduling of
intermediate and end activities.

Let T be a bag of tasks corresponding to the same activity. Then, the schedul-
ing process of T is to choose the sites in S to execute the tasks in T, i.e. mapping
each task to an execution site, while the input data of each task is distributed
at different sites. A scheduling plan (SP(T,S)) is a mapping between tasks and

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

sites, which specifies which task is executed at which site. Based on an estima-
tion of execution time (see details in Section , the problem we address is the
following [30]:

min(TotalTime(SP(T, S)))
subject to

distributed input data
The decision variable is SP(T,S), which is defined as a hash table (key-value
pairs): SP(T,S) = {(t1, s2), (t2, 51), .., (tn, Sm)} where t; € T and s; € S.

Thus, the task scheduling problem is how to generate a scheduling plan
SP(T,S) that reduces TotalTime(SP(T,S)) of all the tasks in T" with consid-
eration of distributed input data and provenance data. The distribution of the
input data of each task can be also represented as a hash table, e.g. Dist(t, S)
= {(F1, s2), (F2, $3), .. (Fk, Sm)} (F; is the name of a file and s; € S), which
is known before execution. Dist(t, S) represents the distribution of the input file
of Task ¢ in the multisite S. The key is the name of the corresponding file and
the value is the name of the site where the data of the file is stored.

4 System Design

In this section, we present the distributed architecture of multisite Chiron, with
the modifications to adapt the single site Chiron to a multisite Cloud. Multisite
Chiron can manage the communication of Chiron instances at each site and
automatically take advantage of resources distributed at each site to process the
distributed input data.

@ Master node
@ Slave node

@@ Provenance Database

Shared File System

. N
Site 3

Fig.4: Architecture of multisite Chiron.

10 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

In the execution environment of multisite Chiron, there is a master site (site
1lin Figure and several slave sites (Sites 2 and 3 in Figure . The master site
is similar to the execution environment of a single site Chiron with computing
nodes, shared file system and a provenance database. Moreover, a queuing service
(see Section is deployed at the master site. A slave site is composed of a
cluster of VMs with a deployed shared file system. In addition, the master node
of each site is configured to enable the message communication and data transfer
with other sites. Furthermore, the master node also schedules the tasks at each
site and transfers the provenance data generated by each node to a centralized
database.

| Textual UI

| Activity Manager |

| Multisite Task Scheduler | Provenance
Data

| Single Site Task Scheduler | Manager

| Task Executor |

i Shared File System ; ‘ Multisite File Transfer

Fig.5: Multisite Layered Architecture.

The layered architecture of multisite Chiron is depicted in Figure [5| The
textual Ul is present at each node of each site to start an instance of Chiron.
The activity manager is located at the master node of the master site to analyze
the activities to find executable activities. The multisite task scheduler is located
at the master node of the master site, which schedules the tasks to be executed.
The provenance data manager works at the master node of each site to gather
provenance data for the tasks executed at each site and updates the provenance
data in the provenance database. The task executor is present at each node of
each site to execute tasks. The shared file system is deployed at the master node
of each site and is accessible to all the nodes of the same site. The multisite file
transfer and multisite message communication work at the master node of each
site to enable the communication of different sites. The other modules are the
same as presented in Section [2.1

In a multisite cloud, multisite Chiron analyzes the data dependencies of each
activity. When the input data of an activity is ready [29], it generates tasks.
Then, the tasks of each activity are independently scheduled to each site. All
the previous processes are realized at the master node of the master site. Then,
the data is transferred to the scheduled sites and the tasks are executed at
the scheduled sites. Although the input data of an SWf cannot be moved, the

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud 11

1 lhas
1.
Activil
dependen input 0.1 iy
0.1 . - operator : String "
N 1_]7 - status : String instr File
Relation - activationCommand : String 0.1 p.+| -name: Siring
1 - name : String - extractorCommand : String -size :int
1 0.1 - executionStart : Date .
output ¢..1] - executionEnd : Date 0.* 0.
1 manipulated Stored at
TupleValues 1.+
- row : int 0.* 0.1 Site
1 -value ; Object Task -
" 1.* ' 0. - Scheduledat | ~Port:int
W - status : String - publicIP : String
TupleValues - executionStart : Date | 0.* 1 | - numberOfCPU :int
- executionEnd : Date - provDBBW : int
1 - multisiteBW : int[]
Executed I11y 1
VM

- privatelP : String
- type : String has
- numberOfCPU : int

Fig. 6: Multisite Provenance Model.

intermediate data can be moved. After the execution of tasks, the provenance
data [29] of each site are transferred to the provenance database. When the tasks
of all the activities are executed, the execution of an SWf{ is finished.

In order to extend Chiron to a multisite environment, three key aspects, i.e.
provenance model, multisite communication and multisite scheduling, must be
considered. First, we adapt the provenance model to the multisite environment.
As shown in Figure [6] we add the information about site and computing node
(VM) into the provenance model. A site has its own public IP address, public
ports for the communication with other sites, number of virtual CPUs, band-
width to transfer data to the provenance database and bandwidth to transfer
data to other sites. A site can contain several VMs. Each VM has its private
IP address (which can only be recognized by the devices deployed in the same
Web domain), the type of VM, and the number of virtual CPUs. The type of a
VM is configured by a cloud user. In a multisite environment, the provenance
database is located at a master site while the provenance data is directly stored
in the local file system of the master node, which is not the shared file system,
because of good performance. Since one task is executed at one computing node
of a specific site, a task is related to one computing node and one site. A file can
be stored at several sites. Since the input data of a task may be stored at one
site (Site s1) and processed at another site (Site sz), it is transferred from s; to
so before being processed. As a result, the data ends up being stored at the two
sites. Thus, one file is related to several sites. In addition, the provenance data
can provide data location information for the scheduling process. As a result,
users can also get execution information, i.e. which task is executed at which

12 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

site, from the provenance database. The other objects and relationships remain
the same as in the single site provenance model as presented in Section 2.1}

In multisite environments, the provenance data is stored at each site first and
then transferred to the centralized provenance database asynchronously with the
execution of other tasks. In long running SWfs, provenance data needs to be
queried at runtime for monitoring. Since it is convenient for the users to analyze
the provenance data in a centralized database, we choose a centralized site,
i.e. the master site, to store provenance data. In a multisite environment, the
provenance data transfer may have a major inuence on the data transfer of task
scheduling. Latency hiding techniques can be used to hide the time to transfer
data but it is difficult to hide the time to transfer the real-time provenance data
generated during execution. Overall, the multisite scheduling problem should
take into account the resources at different sites and intersite data transfer,
including intermediate data to be processed by tasks and the provenance data.

Second, to support communication between different sites, we add two mod-
ules, i.e. multisite message communication module and multisite file transfer
module. The multisite message communication module is responsible for the
exchange of control messages among different sites. The control messages are
generated for synchronizing the execution of each site and sharing information
among different sites. The synchronization ensures that the activities are exe-
cuted after their input is ready, i.e. after their parents activities are executed, at
each site. The multisite file transfer module transfers files to be processed by a
task from the site where the files are stored to the site where the task is executed.
In fact, the architecture of Chiron is the combination of master-worker model
and peer-to-peer model. The master-worker model is responsible for the synchro-
nization among different sites by message communication while the peer-to-peer
model is used to share data among sites through multisite file transfer module.
The implementation techniques of the two modules are detailed in Section [6.2

Third, we provide a multisite task scheduling module in multisite Chiron,
which is detailed in Section [5l

5 Task Scheduling

In this section, we present propose a multisite task scheduling algorithm, i.e.
Data-Intensive Multisite task scheduling (DIM). Then, we present the method
to estimate the total time of a bag of tasks at a single site cloud, which is used
in the DIM algorithm. Finally, we analyze the complexity of the DIM algorithm.

5.1 Multisite Task Scheduling

Multisite task scheduling is done with a two Level (2L) approach (see Figure
because of small complexity. The first level performs multisite scheduling, where
each task is scheduled to a site. In this paper, we focus on this level and propose
DIM, which is designed for this level. Then, the second level performs single
site scheduling, where each task is scheduled to a computing node of the site

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud 13

MultiSite
Scheduling L1
I
Single Site Single Site Single Site
Scheduling Scheduling Scheduling L2

I I T

ﬂﬂﬂﬁﬂﬁﬂﬂﬂ

T Task IR . Site |_| Task Queue

Fig. 7. Multisite Scheduling. The master node at the master site schedules
tasks to each site. At each site, the master node schedules tasks to slave nodes.

by the default scheduling strategy (dynamic FAF [29]) of Chiron. A task pro-
cesses an input data chunk within an activity. Different tasks process different
data chunks. When an activity has n input data chunks, n tasks are executed
independently. Synchronization is based on data dependency between activities
as defined at the SWT specification. In the experiments we forced a synchroniza-
tion so that the next activity only starts after all tasks of the previous activity
are executed. Compared with a one Level (1L) approach that schedules tasks
directly to computing nodes at different cloud sites, this 2L approach may well
reduce the multisite scheduling complexity (see Section . According to [34],
2L scheduling also significantly outperforms 1L scheduling in terms of perfor-
mance, i.e. the speedup of execution. In addition, the 2L scheduling approach
can exploit the existing scheduling solutions of single site SWfMSs. In this paper,
we focus on the multisite scheduling part, since we use the default scheduling
solutions of Chiron for single site scheduling. However, even in the 2L scheduling
approach, the solution space of the multisite level scheduling is still very large
and complex.

In our layered architecture (see Section , the multisite scheduling is per-
formed at the master node of the master site. For the tasks of data-intensive
SWifs, the time to transfer task input data and the time to generate provenance
data should not be ignored, in particular in case of low bandwidth of intersite
connection and big amounts of data in the files to be transferred between dif-
ferent sites. This is why we consider the time to transfer task input data and
provenance data in the scheduling process. The method to estimate the total
time of a bag of tasks at a single site is detailed in Section In addition,

14 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

Algorithm 1 Data-Intensive Multisite task scheduling (DIM)

Input: T a bag of tasks to be scheduled; S: a set of cloud sites
Output: SP(T,S): the scheduling plan for T in S

1: SP(T,S)« 0

2: for each t € T do

3: s < GetDataSite(Dist(t, S))

4: SP(T,S) « SP(T,S)u{(t,s)}

5: TotalTime(SP(T,S))

6: while MaxunbalanceTime(SP(T,S)) is reduced in the last loop do
T: sMin + MinTime(S)

8: sMazx < MaxTime(S)

9: SP(T,S) < TaskReschedule(sMin, sMaz, SP(T, S))
end

during the scheduling, if the data cannot be moved, the associated tasks are
scheduled at the site where the data is stored. As explained in Section the
tasks of each activity are generated and scheduled independently.

The DIM algorithm schedules a bag of tasks onto multiple sites (see Algo-
rithm. Since it takes much time to transfer data among different sites, we first
schedule the tasks to where their input data is stored in DIM. However, after
this first step, when the data is evenly distributed, workload at each site may be
unbalanced, which leads to bigger execution. Thus, at the second step, we adjust
the scheduling of tasks until load balance is achieved among different sites so as
to reduce the execution time. The details are explained as follow. First, the tasks
are scheduled according to the location of input data, i.e. the site that stores the
biggest amount of input data (Lines 2-5), which is similar to the scheduling al-
gorithm of MapReduce [12]. Line 3 searches the site that stores the biggest part
of input data corresponding to Task t. Line 4 schedules Task t at Site s. The
scheduling order (the same for Algorithm [2)) is based on the id of each task. Line
5 estimates the total time of all the tasks scheduled at Site s with consideration
of generating provenance data and intersite data transfer according to Formula
Then, the total time at each site is balanced by adjusting the whole bag of
tasks scheduled at that site (lines 6-9). Line 6 checks if the maximum difference
of the estimated total time of tasks at each site can be reduced by verifying if
the difference is reduced in the previous loop or if this is the first loop. While the
maximum difference of total time can be reduced, the tasks of the two sites are
rescheduled as described in Lines 7-9. Lines 7 and 8 choose the site that has the
minimal total time and the site that has the maximum total time, respectively.
Then, the scheduler calls the function TaskReschedule to reschedule the tasks
scheduled at the two selected sites to reduce the maximum difference of total
time.

In order to achieve load balancing of two sites, we propose TaskReschedule
algorithm. Let us assume that there are two sites, i.e. Sites s; and s;. For the
tasks scheduled at each site, we assume that the total time of Site s; is bigger
than Site s;. In order to balance the total time at Sites s; and s;, some of the

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

Algorithm 2 Tasks Rescheduling

Input: s;: a site that has bigger total time for its scheduled tasks; s;: a site that has
smaller total time for its scheduled tasks; SP(T, S): original scheduling plan for a
bag of tasks T" in multisite S

Output: SP(T,S): modified scheduling plan

1: Diff « CalculateExecTimeDif f(ss,s;, SP(T,S)) > Absolute value
2: T; + GetScheduledTasks(s;, SP(T, S))
3: for each ¢t € T; do

4: SP'(T,S) + ModifySchedule(SP(T, S),{(t,s;)}
5: Diff' + CalculateExecTimeDif f(si, sj, SP'(T, S)) > Absolute value
6: if Diff < Diff then
7. SP(T, S) « SP'(T, 5)
8: Diff « Diff’
end

tasks scheduled at Site s; should be rescheduled at Site s;. Algorithm [2] gives
the method to reschedule a bag of tasks from Site s; to Site s; in order to bal-
ance the load between the two sites. Line 1 calculates the difference of the total
time of two sites according to Formula [3| with a scheduling plan. In the func-
tion CalculateExecTimeDif f(s;,s;, SP(T,S)), based on the scheduling plan
(SP(T,S)) and the method to estimate the total execution of tasks at a single
site (see Section, the total execution time of Site s; and s; can be calculated.
Then, the difference (Dif f) of the total execution between the two sites can also
be calculated. Line 2 gets all the tasks scheduled at Site s;. For each Task ¢ in
T; (line 3), it is rescheduled at Site s; if the difference of total time of the two
sites can be reduced (lines 4-8). The task that has no input data at Site s; is
rescheduled first. Line 4 reschedules Task ¢ at Site s;. Line 5 calculates the total
time at Sites s; and s;. Lines 6-7 updates the scheduling plan if it can reduce the
difference of total time of the two sites by rescheduling Task ¢ and if the total
time of Site s; is still bigger than or equal to that of Site s;.

5.2 Estimation of Execution Time

In this section, we propose the model to estimate the time to execute a bag of
tasks in multiple sites and the time to execute the scheduled tasks at each site.
The time to execute a bag of tasks in multiple sites can be expressed as the
maximum time to execute all the tasks scheduled among each site as shown in
Formula [Il

TotalTime(SP(T,S)) = L TotalTime(T;, s;) (1)
T; represents the bag of tasks scheduled at Site s; according to the scheduling
plan SP(T,S) and m represents the number of sites.

We now give the method to estimate the total time to execute a bag of tasks
at a single site, which is used in both the DIM algorithm and the MCT algorithm

15

16 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

to achieve load balancing of different sites. Formula[2]gives the estimation of total
time without considering the time to generate provenance data, which is used in
the MCT algorithm.

TotalTime(T, s) =ExecTime(T, s) @)

+ InputTransTime(T, s)
T represents the bag of tasks scheduled at Site s. Execlime is the time to
execute the bag of Tasks T at Site s, i.e. the time to run the corresponding
programs. InputTransTime is the time to transfer the input data of the tasks
from other sites to Site s. In the DIM algorithm, we use Formula [3| to estimate
the total time with consideration of the time to generate provenance data.

TotalTime(T, s) =ExecTime(T, s)
+ InputTransTime(T, s) (3)
+ ProvTransTime(T, s)

ProvTransTime is the time to generate provenance data in the provenance
database.

We assume that the workload of each task of the same activity is similar. The
average workload (in GFLOP) of the tasks of each activity and the computing
capacity of each VM at Site s is known to the system. The computing capacity
(in GFLOPS) indicates the workload that can be realized per second. Then, the
time to execute the tasks can be estimated by dividing the total workload by
the total computing capacity of site s, as shown in Formula [4]

T| *x AvgWorkload(T
ExecTime(T, s) = |71+ Avg .or oa () 4 (4)
> v, es ComputingCapacity(V M;)

|T'| represents the number of tasks in Bag T'. AvgWorkload is the average work-
load of the bag of tasks.

The time to transfer input data can be estimated as the sum of the time to
transfer the input data from other sites to Site s of each task as in Formula [5

InDataSize(t;, s;)
DataRate(s;, s) (5)

InTransTime(T, s) = Z Z

t, €T s; €S

InDataSize(t;, s;) represents the size of input data of Task t;, which is stored

at Site s;. The size can be measured at runtime. DataRate(s;, s) represents the

data transfer rate, which can be configured by users. S represents the set of sites.
Finally, the time to generate provenance data is estimated by Formula [6]

ProvTransTime(T, s) =|T| * TransactionTimes(T)

x AvgTransactionTime(s)

(6)

|T| represents the number of tasks in Bag T'. We can estimate AvgTransactionTime
by counting the time to perform a transaction to update the provenance data

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

of a task at the provenance database from Site s. TransactionTimes(T) repre-
sents the number of transactions to perform for generating the provenance data
of each task in Bag T. It can be configured according to the features of the

SWIMS.

5.3 Method Analysis

In this section, we analyze the complexity of the 2L scheduling and the DIM
algorithm. Let us assume that N (N >> 2) tasks are scheduled to M (M > 2)
sites, each of which has K (K > 2) computing nodes. The complexity of the 2L
approach is MY + KV where MY is the complexity of the multisite level and
K" is the complexity of the single site level. Assume that there are N; tasks
scheduled at site s; while Zi\il N; = N. Thus, the complexity of single site
scheduling is:

M
HKNi :Kzfl\il N;
i1 (7)

=KN
Thus, the complexity of the single site scheduling of the 2L approach is K.

However, the complexity of the 1L approach is (M * K)N. Let us assume that
N>2 M >2and K > 2.

1 N
MN+KN<(§*M*K) +(§*M*K)

%)(N—l) (M) (8)

< (M« K)N

N

<(

From Formula we can conclude that NM + NK < NM*K j ¢ the complexity
of the 2L scheduling approach is smaller than that of the 1L scheduling approach.

Let us assume that we have n tasks to be scheduled at m sites and n >> m.
The complexity of the first loop (lines 2-5) of the DIM algorithm is O(n). The
complexity of the TaskReschedule algorithm is O(n), since there may be n
tasks scheduled at a site in the first loop (lines 2-5) of the DIM algorithm.
The complexity of MinTime(S) and MaxTime(S) is O(m), which is much
smaller than O(n). Thus, the complexity of Lines 7 — 9 is O(n). Assume that
the difference between the maximum total time and the minimum total time is
Taif . The maximum value of Tyir¢ can be n * avg(T) when all the tasks are
scheduled at one site while there is no task scheduled at other sites. avg(T)
represents the average execution time of each task, which is a constant value.
After m (m?) timesﬂ of rescheduling tasks between the site of maximum total

! When each site has the same computing capacity, this is m. But when not all the
sites have the same computing capacity, this should be m?.

17

18 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

time and the site of minimum total time, the maximum difference of total time
of any two sites should be reduced to less than T‘f/i%f (see Appendix). Thus, the

complexity of the second loop (lines 6-9) of the DIM algorithm is O(m-n-logn)
(O(m?-n-logn)). Therefore, the complexity of the DIM algorithm is O(m-n-log n)
(O(m? - n -logn)). The complexity indicates that when the number of tasks or
sites are small, the scheduling problem is simple. Since m is much smaller than
n, it is only a little bit higher than those of OLB and MCT, which is O(m - n),
but yields high reduction in SWf execution (see Section .

6 Experimental Evaluation

In this section, we present an experimental evaluation of our DIM scheduling
algorithm using Microsoft Azure multisite cloud [3]. First, we present two real-
life SWfs, i.e. Buzz and Montage, as use cases. Then, we explain the techniques
for the implementation of intersite communication of multisite Chiron in Azure.
Afterwards, we show the experimental results of executing the two SWifs in Azure
with different multisite scheduling algorithms.

6.1 SWIf Use Cases

In this section, we present two SWfs, i.e. Buzz and Montage, to evaluate our
proposed algorithms. The two SWfs have different structures, which can show
that our proposed algorithm is suitable for different SWfs.

Buzz Workflow Buzz workflow is a data-intensive SWf that searches for trends
and measures correlations in scientific publications. It analyses data collected
from bibliography databases such as the DBLP Computer Science Bibliogra-
phy (DBLP) [2] or the U.S. National Institutes of Health’s National Library
of Medicine (PubMed) during the last 20 years. Buzz workflow is composed of
thirteen activities, which are shown in Figure [8} Boxes in the figure represent
SWf activities and arrows represent the data dependencies. The FileSplit activity
gathers the information of scientific publications from a bibliography databases.
The Buzz activity uses the gathered information to identify buzzwords, i.e. a
word or phrase that can become popular for a specific period of time. The Wor-
dReduce activity organizes these publications according to buzzword and publi-
cation year, and it also computes occurrences of the buzzwords. Furthermore, the
YearFilter activity selects buzzwords that appeared in the publications after a
specific time. The BuzzHistory activity creates a history for each buzzword. The
FrequencySort activity computes the frequency of each buzzword. With this in-
formation, the HistogramCreator activity generates some histograms with word
frequency varying the year. On the other hand, the Topl0 activity selects ten
of the most frequent words in recent years, whilst the ZipfFilter activity selects
terms according to a Zipf curve that is specified by word frequency values [36].
In addition, the CrossJoin activity merges results from the Topl0 activity and

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

{ FileSplit } { GatherResults }(—
v T
[Buzz } [TopCorrelations }
)\ i)
[WordReduce ‘ [Correlate ‘
v T
[YearFilter ‘ [CrossJoin }<7
!
{ BuzzHistory]
Q,—)[Topl0]7
[FrequencySort]
v
{ HistogramCreator H ZipfFilter]—

Fig. 8: Buzz Workflow.

the ZipfFilter activity. The Correlate activity computes correlations between the
words from the Topl0 activity and buzzwords from the ZipfFilter activity. Using
these correlations, the TopCorrelations activity takes the terms that have a cor-
relation greater than a threshold. Finally, the GatherResults activity presents
these selected words with the histograms.

There are five activities, i.e. FileSplit, Buzz, BuzzHistory, HistogramCreator
and Correlate, which correspond to multiple tasks. In our experiment, the tasks
of the five activities are scheduled by the multisite scheduling algorithm. The
other activities exploit a database management system to process data at the
master site.

Montage Workflow Montage is a data-intensive SW{ for computing mosaics
of input images [I4]. The input data and the intermediate data are of con-
siderable size and require significant storage resources. However, the execution
time of each task is relatively small, which can be at most a few minutes. The
structure of the Montage SWf is shown in Figure 0] Activity 1, mProjectPP,
reprojects single images to a specific scale. The mDiffFit activity performs a
simple image difference between a single pair of overlapping images, which is
generate by the mProjectPP activity. Then, the mConcatFit activity merges
multiple parameter files into one file. Afterwards, mBgModel uses the image-to-
image difference parameter table to interactively determine a set of corrections
to apply to each image to achieve a “best” global fit. The mBackground activity
removes a background from a single image. This activity takes the output data
of the mProjectPP activity and that of the mBgModel activity. The mImgTbl

19

20 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

mBghodel

Fig.9: Montage Workflow.

activity prepares the information for putting the images together. The mAdd
activity generates an output mosaic and the binning of the mosaic is changed by
the mShrink activity. Finally, the mJPEG activity creates a JPEG image from
the mosaic. In addition, Montage can correspond to different square degrees [14]
(or degree for short), which represents the size of the mosaics image. Each degree
represents a certain configuration of the input data and the parameters and the
lower degree corresponds to fewer input data.

There are three activities, i.e. mProjectPP, mDiffFit, mBackground, which
correspond to multiple tasks in the Montage SWf of 0.5, 1 and 2 degree. Montage
has fewer activities of multiple tasks than Buzz. However, DIM is designed for
scheduling a bag of multiple tasks. Thus, the advantage of DIM is less obvious
in executing Montage than Buzz, which is shown in Section [6.3

6.2 Intersite Communication

In this section, we present the detailed techniques for the multisite file transfer
module and multisite message communication module. We choose Azure Service
Bus [I] to realize the functionality of message communication module. Azure
Service Bus is a generic, cloud-based messaging system for the communication
among different devices. The communication can be based on the HT'TP proto-
col, which does not need to maintain connection information (HTTP is stateless).
Although this may bring more overhead for each message, the amount of control
messages is low and this cost is negligible. The file transfer module is realized by
Java TCP connections between two master nodes of two different sites. Since the
idle intersite TCP connections may be cut down by the cloud operator, e.g. every
5 — 10 minutes in Azure, the connections are maintained by sending keepalive
messages. For instance, two messages per time period. Before execution, a task
is scheduled at a site by the multisite task scheduler. If they are not stored at
the scheduled site, the input files of the task are transferred to the scheduled
site by the multisite file transfer module.

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

6.3 Experiments

: ; : 15
Execution Time 1

80 | Data-transfer Size
—_ —)
= 2
= L 4
E 60 10 §
Q
£ g
= 40 | 5
2 e
8 ls &
g 2
» <
=20 ¢ s

0 0

Fig.10: Buzz Execution time. The amount of data is 60MB.

This section gives our experimental evaluation of the DIM algorithm, within
Microsoft Azure. Azure [3] has multiple cloud sites, e.g. Central US (CUS), West
Europe (WEU) and North Europe (NEU). We instantiated three A4 [5] (8 CPU
cores) VMs at each of the three site, i.e. CUS, WEU and NEU. We take WEU as
master site. We deploy an A2 (2 CPU cores) VM at WEU and install PostgreSQL
database as provenance data. We assume that the input data of the SWfs are
distributed at the three sites. We compare our proposed algorithm with two
representative baseline scheduling algorithms, i.e. Opportunistic Load Balancing
(OLB) and Minimum Completion Time (MCT). In the experiment, we assume
the input data of SWfs cannot be moved. Thus, we schedule the tasks of start
activities, e.g. FileSplit and mProjectPP, to where the data is while exploiting
DIM, OLB or MCT to schedule tasks of the other activities. In the multisite
environment, OLB randomly selects a site for a task while MCT schedules a
task to the site that can finish the execution first. In the following figures, the
execution time is the absolute time for SWf execution and the data-transfer size
refers to the input data of tasks, i.e. the intermediate data transferred across
different sites, which does not include the provenance data. In addition, since
the resource utilization also depends on the programs used in different SWfs and
that each SWTf exploits various programs, we did not measure it.

First, we used a DBLP 2013 XML file of 60MB as input data for Buzz SWf
in our experiments. The input data is evenly partitioned into three parts, which
have almost the same amount of data. Each part is distributed and stored at
a site while configuration files of Buzz SWf are present at all the three sites.
We take WE as a master site to execute the Buzz workflow. The provenance
database and Azure Service Bus are also located at the WE site. The execution

21

22 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

result corresponding to each scheduling algorithm is shown in Figure The
execution time in Figures [I0} [T1] [I2] and [I3] represents the total execution time
including data transfer and scheduling time. Table [1| shows the execution time,
the time to transfer input data and the time to generate provenance data in one
task of Buzz activity. This table shows that the time to transfer input data and
provenance data should not be ignored compared with the time to execute the
task.

Table 1: Various time. The unit of data is KB and the unit of time is sec-
ond. “Input” and “Provenance” represent the corresponding data. The task is
executed at the CUS site.

Execution Time|Input size|Input transfer time|Provenance transfer time

1.12 40 1.945 0.78

Figure shows that DIM is much better than MCT and OLB in terms
of both execution time and transferred data size. The execution time of DIM
is 9.6% smaller than that of MCT and 49.6% smaller than that of OLB. The
size of the data transferred between different sites with MCT is 38.7% bigger
than that with DIM and the size of OLB is 108.6% bigger than that with DIM.
Although OLB is a random algorithm, it distributes the tasks to each site with
the same probability and the transferred data remains the same for the same
configuration of the SWf and cloud environment. As a result, the size of intersite
transferred data can represent the average results, i.e. which are calculated from
the execution of multiple tasks.

Second, we performed an experiment using a DBLP 2013 XML file of 1.29GB
as input data for Buzz SWf while configuration files of Buzz SWf are present
at all the three sites. The other configuration is the same as the first one. The
execution result corresponding to each scheduling algorithm is shown in Figure
!

Figure [T1] shows that the advantage of DIM in terms of both execution time
and transferred data size compared with MCT and OLB increases with big-
ger amounts of input data. The execution time corresponding to DIM is 24.3%
smaller than that with MCT and 45.9% smaller than that with OLB. The size of
the data transferred between different sites with MCT is 7.19 times bigger than
that with DIM and the size with OLB is 7.67 times bigger than that with DIM.

Since the DIM algorithm considers the time to transfer intersite provenance
data and makes optimization for a bag of tasks, i.e. global optimization, it can
reduce the total time. Since DIM schedules the tasks to where the input data
is located at the beginning, DIM can reduce the amount of intersite transferred
data compared with other algorithms. MCT only optimizes the load balancing
for each individual task, i.e. local optimization, among different sites without
consideration of the time to transfer intersite provenance data. It is a greedy
algorithm that can reduce the execution time by balancing the total time of

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

1000 T — T 2000
Execution Time 1
Data-transfer Size &oaicd
—~ 800 | =a
Lé 1 1500 \2/
o— Q
E 600} 5
o 8
£ 1 1000 &
= =
g 400 &
% 1500 E
= 200 | =
0 0

DIM MCT OLB

Fig. 11: Buzz SWf Execution time. The amount of data is 1.29GB.

each site while scheduling each task. However, it cannot optimize the scheduling
for the whole execution of all the tasks of an activity. In addition, compared
with OLB, MCT cannot reduce much the transferred data among different sites.
Since OLB simply tries to keep all the sites working on arbitrary tasks, it has
the worst performance.

Furthermore, we executed the Montage SWf with 0.5 degree with three sites,
i.e. CUS, WEU and NEU. The size of input data is 5.5GB. The input data is
evenly partitioned to three parts stored at the corresponding sites with config-
uration files stored at all the three sites. The execution time and amount of
intersite transferred data corresponding to each scheduling algorithm are shown
in Figure

The execution results of Montage with 0.5 degree reveals that the execution
time of DIM is 21.7% smaller than that of MCT and 37.1% smaller than that of
OLB. This is expected since DIM makes optimization for a bag of tasks in order
to reduce intersite transferred data with consideration of the time to transfer
intersite intermediate data and provenance data. MCT is optimized for load
balancing only with consideration of intermediate data. OLB has no optimization
for load balancing. In addition, the intersite transferred data of DIM is 42.3%
bigger than that of MCT. Since DIM is designed to achieve load balancing of
each site to reduce total time, it may yield more intersite transferred data in
order to achieve load balance. However, the amount of intersite transferred data
of DIM is 28.6% smaller than that of OLB. This shows the efficiency of the
optimization for the data transfer of DIM. Moreover, when the degree (0.5) is
low, there is less data to be processed by Montage, and the number of tasks to
schedule is small. Since DIM is designed for high numbers of tasks, the amounts
of intersite transferred data are not reduced very much in this situation.

In addition, we executed Montage SWf of 1 degree in the multisite cloud.
We used the same input data as in the previous experiment, i.e. 5.5GB input

23

24 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

' Executioﬁ Time ——
800 Data-transfer Size 1 600

= /m
E z
g 600 9
o 4400 &
£ ™ g
= 400 | 3

el
g 1200 2
=200 s

0 54 Podel 0

DIM MCT OLB
Fig.12: Montage SWTf Execution time. 0.5 degree.

data evenly distributed at three sites. The execution time and the amount of
intersite transferred data corresponding to each scheduling algorithm are shown

in Figure

Execution Time - { 2400
1500 f Data-transfer Size 5CE03

=) o 12000 &
g 1200 2
2 M 1 1600 8§
2 900t g
b 1 1200 =
E 7
§ 600 1 800 2
=

300 | 1 400

O e 2ol S 0

DIM MCT OLB

Fig. 13: Montage SW{ Execution time. 1 degree.

The execution results of Montage with 1 degree reveals that the execution
time of DIM is 16.4% smaller than that of MCT and 17.8% smaller than that of
OLB. As explained before, this is expected since DIM can reduce the execution
time by balancing the load among different sites compared with MCT and OLB.
In addition, the intersite transferred data of DIM is 10.7% bigger than that of
MCT. This is much smaller than the value for 0.5 degree (42.3%), since there are

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

more tasks to schedule when the degree is 1 and DIM reduces intersite transferred
data for a big amount of tasks. However, the amount of intersite transferred data
is bigger than that of MCT. This happens since the main objective of DIM is to
reduce execution time instead of reducing intersite transferred data. In addition,
the amount of intersite transferred data of DIM is 33.4% smaller than that of
OLB, which shows the efficiency of the optimization for the data transfer of
DIM.

We also executed the Montage SWT of 2 degree in the multisite cloud. The
configuration is the same as in the previous execution of Montage. The results
in Figure [L4] show that, although the total execution time of DIM is higher than
those of MCT and OLB, the execution time without scheduling time is still
smaller than those of MCT (7.0%) and OLB (12.8%). The amount of intersite
transferred data of DIM is 29.2% and 61.8% smaller than those of MCT and
OLB, which shows that DIM can greatly reduce intersite transferred data for
scheduling big numbers of tasks. Since the cost to get information from the
provenance database is expensive, the scheduling time is high when the SWf has
many tasks. However, we could simply load the provenance data once in memory
for scheduling and use the in-memory data to run the scheduling algorithms,
which largely reduces the scheduling time. We improved the implementation of
the scheduling algorithms based on this method, and executed the Montage SWf
of 2 degree with the optimized version of multisite Chiron. The results are shown
in Figure[15] The total execution time of DIM is 12.7% and 17.6% smaller than
those of MCT and OLB.

60 w T 10000
Execution Time, —
Execution Time™ ! X
_ 50 — Data-transfer Size ¢ 1 8000 2
E =
g 407 = g
% % 1 6000 'z
£ 3¢ 3
= =
g 1 4000 g8
=] L 5}
§ 20 ‘g
a5} =
10 L 4 2000 =
0 0

DIM MCT OLB

Fig. 14: Montage Execution time. 2 degree. Execution time! represents the
total execution including the scheduling time and data transfer. Execution time!
represents the execution time without scheduling time.

25

26 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

60 : ‘ ‘
Execution Time1 —
Execution Time 1 10000
50 Data-transfer Size _
z /m
E {8000 =
£ 40t 2
,ié 30 & 1600 2
g 3
2 20 14000 5
2 =
= g
10 | 12000 F
0 0

DIM MCT OLB

Fig. 15: Montage Execution time. 2 degree. Execution time' represents the
total execution including the scheduling time and data transfer. Execution time'
represents the execution time without scheduling time.

100 | 1 gglsj
—31 WEU
E s0f]
51
g
g 60} 1
>
@]
a
S 40t 1
S
N
o
B 20]
0

DIM MCT OLB

Fig. 16: Distribution of provenance during the execution of Buzz work-
flow. The size of input data is 1.2GB.

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

Table 2: Scheduling Time. The time unit is second. The size of the input data
of Buzz®® SWf is 60MB and that of Buzz'-?? is 1.29GB. The degree of Montage®-®
is 0.5, that of Montage® is 1 and that of Montage? is 2. “(O)” represents the
scheduling time corresponding to the optimized implementation of scheduling
algorithms.

Algorithm |DIM MCT|OLB
Buzz® 7141 98 [1.3
Buzz'?® | 633 | 109 | 17
Montage®® | 8.4 | 3.7 | 1.1
Montage® |29.2]28.8| 1.5
Montage® |855.4/178.7|10.9
Montage?(0)| 15.5 | 15.1 | 10.9

We also measured the time to execute the scheduling algorithms to gener-
ate scheduling plans while executing Buzz and Montage. The scheduling time is
shown in Table [2| The complexity of MCT is the same as that of OLB, which
is O(m - n). However, the scheduling time of MCT is much bigger than OLB
(without the optimization of the implementation of scheduling algorithms). The
reason is that MCT needs to interact with the provenance database to get the
information of the files in order to estimate the time to transfer the files among
different sites. The table shows that the time to execute DIM is much higher
than OLB for both Buzz and Montage (without the optimization of the imple-
mentation of scheduling algorithms) since the complexity of DIM is higher than
that of OLB and that DIM has more interactions with the provenance database
in order to estimate the total time to execute the tasks at a site. When there is
significant number of tasks to schedule (for the Buzz!'-2Y SWf), the time to exe-
cute DIM is much bigger than that of MCT because of higher complexity and the
frequent interaction with the provenance database. However, when the number
of tasks is not very big, the time to execute DIM is similar to that of MCT, both
of which are much bigger than that of OLB, since it takes much time to com-
municate with the provenance database to get the data location information for
the estimation of the total time to execute tasks at each site. This overhead can
be calculated according to Formula |§|, where |T'| represents the number of tasks
and AvgTransactionTime is the average time for one transaction (see Formula
@. We improved the implementation of the scheduling algorithms by loading the
provenance data into the memory once and using the in-memory provenance data
for the scheduling algorithms. We measured the scheduling time for executing
Montage of 2 degree. The results show a major improvement, i.e. the scheduling
time of DIM is almost the same as those of MCT and OLB. The scheduling time
of the three scheduling algorithms is always small compared with the total exe-
cution time, which is acceptable for task scheduling during SWf execution time.
In addition, based on the measured scheduling time, we estimate that when the
number of tasks is less than one million, the scheduling time of DIM with the
improved implementation is less than 10% of the total execution time, which is

27

28 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

acceptable. According to [10], an SWT of a million tasks is already much bigger
than a very large SWf (1000 tasks). Although the scheduling time of DIM may
be higher than those of MCT and OLB, the execution time of SWfs corresponds
to DIM is much smaller than those of MCT and OLB as explained in the exper-
iments. This means that DIM generates better scheduling plans compared with
MCT and OLB.

EstimationOver Head(T) = |T| * AvgTransactionTime (9)

Table 3: Size of Provenance Data. The unit of the data is MB. The size of
the input data of Buzz SWf is 1.2GB and the degree of Montage is 1.
Algorithm|DIM|MCT|OLB
Buzz 301 | 280 | 279
Montage | 10 | 10 | 10

100 t 1 CUS
NEU
C— WEU
L]
3
=1
<
5 60 1
>
]
&
S 40 ¢ 1
2
[y
© N
&2 20 + E— i
0

DIM MCT OLB

Fig.17: Distribution of provenance during the execution of Montage
workflow. The degree is 1.

Furthermore, we measured the size of provenance data and the distribution
of the provenance data. As shown in Table [3] the amount of the provenance
data corresponding to the three scheduling algorithms are similar (the difference
is less than 8%). However, the distribution of the provenance data is different.
In fact, the bandwidth between the provenance database and the site is in the

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

following order: WEU > NEU > CUS [[] As shown in Figures [16] and the
provenance data generated at the CUS site is much bigger than those generated
at the NEU site and the WEU site for the DIM algorithm. In addition, the
percentage of provenance data at WEU corresponding to DIM is much bigger
than MCT (up to 95% bigger) and OLB (up to 97% bigger). This indicates
that DIM can schedule tasks to the site (WEU) that has bigger bandwidth with
the provenance database (the database is at the WEU site), which yields bigger
percentage of provenance data generated at the site. This can reduce the time to
generate provenance data in order to reduce the overall multisite execution time
of SWfs. However, MCT and OLB are not aware of the provenance data transfer
costs, which correspond to bigger multisite execution time. In the algorithm, we
used the predefined bandwidth and execution time, which depends largely on if
the user is familiar with the environment and the SWf. We leave study of the
preciseness of the cost estimation as future work.

From the experiments, we can see that DIM performs better than MCT (up
to 24.3%) and OLB (up to 49.6%) in terms of execution time although it takes
more time to generate scheduling plans. DIM can reduce the intersite transferred
data compared with MCT (up to 719%) and OLB (up to 767%). As the amount
of input data increases, the advantage of DIM becomes more important.

7 Conclusion

In this paper, we proposed a solution based on multisite Chiron to execute a
SWf using provenance data and process distributed data in a multisite cloud.

Multisite Chiron is able to execute SWfs in a multisite cloud with geograph-
ically distributed input data. We proposed the architecture of multisite Chiron,
defined a new provenance model for multisite SWf execution and a global method
to gather the distributed provenance data in a centralized database. Based on
this architecture, we proposed a new scheduling algorithm, i.e. DIM, which con-
siders the latency to transfer data and to generate provenance data in multisite
cloud. We analyzed the complexity of DIM (O(m - n - logn)), which is quite
acceptable for scheduling bags of tasks. We used two real-life SWfs, i.e. Buzz
and Montage to evaluate the DIM algorithm in Microsoft Azure with three sites.
The experiments show that although its complexity is higher than those of OLB
and MCT, DIM is much better than two representative baseline algorithms, i.e.
MCT (up to 24.3%) and OLB (up to 49.6%), in terms of execution time. In ad-
dition, DIM can also reduce significantly data transfer between sites, compared
with MCT (up to 719%) and OLB (up to 767%). The advantage of DIM becomes
important with high numbers of tasks.

! For instance, the time to execute “SELECT count(*) from eactivity” at the prove-
nance database from each site: 0.0027s from the WEU site, 0.0253s from the NEU
site and 0.1117s from the CUS site.

29

30 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

Acknowledgment

Work partially funded by EU H2020 Programme and MCTI/RNP-Brazil (HPC4E
grant agreement number 689772), CNPq, FAPERJ, and INRIA (SciDISC project),
Microsoft (ZcloudFlow project) and performed in the context of the Computa-
tional Biology Institute (www.ibc-montpellier.fr). We would like to thank Wei-
wei Chen and the Pegasus project for their help in modeling and executing the
Montage SWH{.

Appendix

In this section, we analyze the convergence of the DIM algorithm. Since there
are finite tasks in the bag of tasks scheduled at Site s;, Algorithm [2| always
converges. Next, let us analyze the convergence of Algorithm [1} In order to
make the problem simple, we assume that the total time at the two sites are
the same after executing Algorithm [2] and we denote the time to transfer data,
including input data and provenance data, as a * ExecTime(T, s) in Formula
Thus, we have:

TotalTime(T, s) =(1 4+ a) * ExecTime(T,s) = C C|CI'1(|8)
C =(1+ «) x AvgWorkload(T) (10)
CC(s) = Z ComputingCapacity(V M;)
VM;es

TotalTime(T, s), |T|, AvgWorkload(T) and ComputingCapacity(V M;) repre-
sent the same values as those in Formula 3] CC(s) represents the computing
capacity at each site. C' and C'C(s) are constant values. We denote the total ex-
ecution time at each site by T,,, when all the sites are in the optimal situation,
i.e. each site has the same total execution time. We denote a cost function in
Formula [11| to measure the distance of current scheduling plan (SP) and the
optimal scheduling plan.

m m

J(SP) = "(J(s;)) = Y _(TotalTime(T;, s;) — Top)” (11)

i=1 =1

Where J(s;) represents the cost function of Site s;. T; and s; are defined by the
scheduling plan SP.

First, let us analyze the situation when all the sites have the same computing
capacity. In each iteration of Algorithm [1} we choose two sites (s;, s;) with the
maximum total execution time and minimum total execution time. That means
that we choose at least one site s;, which has the biggest distance between
the current situation and the optimal situation among all the sites as shown in
Formula[T2} In addition, the total execution time of the maximum total execution
time should be bigger than or equal to T5,: and the total execution time of the

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud 31

minimum total execution time should be smaller than or equal to Topt as shown
in Formula

J(s;) = rﬁgti((TotalTime(Tj7 57) — Topt)? (12)
=
(TotalTime(T;, s;) — Topt) * (Topt — TotalTime(T}, s;)) > 0 (13)

We denote the other site by s;. Since the two sites have the same computing
capacity, we denote the total execution time of each site by TotalTime (T, s;;)
after executing Algorithm [2| Since the two sites have the same execution time,
according to Formula they should have the same number of tasks, which is
denoted by T'. Thus, we have Formula [T4]

TotalTime(T}, s;) =C x Clcj}(IS)
TotalTime(T;, s;) =C + -]
CC(s) (14)
ime’ 7]
TotalTime' (T, s;;) =C * o)

2x|T| =|Ts| + |T;]
According this formula, we can get Formula [T5

TotalTime! (T, s5;) TotalTime(T;, s;) —gTotaszme(Tj, 55) (15)

Thus, the cost function of the two selected sites after one iteration can be ex-
pressed as Formula [T6]

J(SP',s;,sj) =(TotalTime' (T, s;) — Tom)2 + (TotalTime' (T, s;) — Topt)2
=2 % (TotalTime (T, sij) — Topt)*
TotalTime(T;, s;) + TotalTime(T}, s;) 9
- To t)
2 D
o ((TotalTime(E, i) — Topt) — (Topt — TotalTime(T;, s;)
2
(TotalTime(T;, s;) — Topt)? + (Topt — TotalTime(T}, s5)?
2

— (TotalTime(T;, s;) — Topt) * (Topt — TotalTime(T}, s;)
_J(SP7 Si,Sj)
B 2

— (TotalTime(T;, s;) — Topt) * (Lopt — TotalTime(T}, s;)

(16)

=2 % (

)’

32 Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

Where we denote the scheduling plan after the iteration by SP’. We denote
the cost function of the two selected sites before the iteration as J(SP,s;, s;).
According to Formula[13] we get the Formula

J(S-Pa Si7sj)

: an)

J,(SPI, Si, Sj)<

Thus, after m iterations, J(SP) becomes less than @. The minimum mod-

ification in one iteration should be bigger than %(S) Thus, after at most

m * logy(J(SP) — %(S)) iterations, Algorithm (1| terminates.

Then, let us consider a situation where some sites (pm, > 1p > 0) have
much bigger computing capacity than other sites ((1 — p)m). We assume that
after executing Algorithm [2] between two sites of different computing capacity,
the total execution time of the two sites becomes the original total execution
time of the site, which has bigger computing capacity. In this situation, in order
to reduce J(SP) to J(‘;P), we need at most p * (1 — p) * m?. Thus, after at
most p * (1 — p) * m? * logy(J(SP) — %(S)) iterations, Algorithm |1| terminates.
Furthermore, the other situations are between the first situation where all the
sites have the same computing capacity and this situation.

References

1. Azure service bus. http://azure.microsoft.com/en-us/services/

service-bus/.

DBLP Computer Science Bibliography. http://dblp.uni-trier.de/k

Microsoft Azure. http://azure.microsoft.com.

Montage. http://montage.ipac.caltech.edu/docs/gridtools.html.

Parameters of different types of vms in microsoft Azure. |https://azure.

microsoft.com/en-us/pricing/details/virtual-machines/|

6. K. Bhuvaneshwar, D. Sulakhe, R. Gauba, A. Rodriguez, R. Madduri, U. Dave,
L. Lacinski, I. Foster, Y. Gusev, and S. Madhavan. A case study for cloud based
high throughput analysis of {NGS} data using the globus genomics system. Com-
putational and Structural Biotechnology Journal, 13:64 — 74, 2015.

7. L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez. Dynamic query schedul-
ing in data integration systems. In Proceedings of the 16th Int. Conf. on Data
Engineering, pages 425-434, 2000.

8. L. Bouganim, O. Kapitskaia, and P. Valduriez. Memory-adaptive scheduling for
large query execution. In Proceedings of the 1998 ACM CIKM Int. Conf. on
Information and Knowledge Management, pages 105-115, 1998.

9. J. Cala, Y. Xu, E.A. Wijaya, and P. Missier. From scripted hpc-based NGS
pipelines to workflows on the cloud. In 14th IEEE/ACM Int. Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pages 694-700, 2014.

10. R. N. Calheiros and R. Buyya. Meeting deadlines of scientific workflows in pub-
lic clouds with tasks replication. IFEE Transactions on Parallel and Distributed
Systems, 25(7):1787-1796, 2014.

11. D. de Oliveira, K. A. C. S. Ocaifia, F. Baido, and M. Mattoso. A provenance-based
adaptive scheduling heuristic for parallel scientific workflows in clouds. Journal of
Grid Computing, 10(3):521-552, 2012.

SN

http://azure.microsoft.com/en-us/services/service-bus/
http://azure.microsoft.com/en-us/services/service-bus/
http://dblp.uni-trier.de/
http://azure.microsoft.com
http://montage.ipac.caltech.edu/docs/gridtools.html
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In 6th Symposium on Operating System Design and Implementation (OSDI), pages
137-150, 2004.

E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-science: An
overview of workflow system features and capabilities. Future Generation Computer
Systems, 25(5):528-540, 2009.

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing
science on the cloud: The montage example. In Int. Conf. for High Performance
Computing, Networking, Storage and Analysis., pages 1-12, 2008.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pegasus:
A framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming, 13(3):219-237, 2005.

J. Dias, E. S. Ogasawara, D. de Oliveira, F. Porto, P. Valduriez, and M. Mattoso.
Algebraic dataflows for big data analysis. In IEEE Int. Conf. on Big Data, pages
150-155, 2013.

R. Duan, R. Prodan, and X. Li. Multi-objective game theoretic schedulingof bag-
of-tasks workflows on hybrid clouds. IEEE Transactions on Cloud Computing,
2(1):29-42, 2014.

K. Etminani and M. Naghibzadeh. A min-min max-min selective algorihtm for grid
task scheduling. In The Third IEEE/IFIP Int. Conf. in Central Asia on Internet
(ICI 2007), pages 1-7, 2007.

H. Hiden, P. Watson, S. Woodman, and D. Leahy. e-science central: cloud-based
e-science and its application to chemical property modelling. Tchnical Report
CS-TR-1227, 2010.

H. Hiden, S. Woodman, P. Watson, and J. Cala. Developing cloud applications us-
ing the e-science central platform. Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 371(1983), 2012.
J. Liu, E. Pacitti, P. Valduriez, D. de Oliveira, and M. Mattoso. Multi-objective
scheduling of scientific workflows in multisite clouds. Future Generation Computer
Systems, 63:76-95, 2016.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. Parallelization of scientific work-
flows in the cloud. Research Report RR-8565, 2014.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. A survey of data-intensive scien-
tific workflow management. Journal of Grid Computing, pages 1-37, 2015.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. Scientific Workflow Schedul-
ing with Provenance Support in Multisite Cloud. In 12th Int. Meeting on High
Performance Computing for Computational Science VECPAR, page 8, 2016.

J. Liu, V. Silva, E. Pacitti, P. Valduriez, and M. Mattoso. Scientific workflow
partitioning in multi-site clouds. In BigDataCloud’2014: 3rd Workshop on Big
Data Management in Clouds in conjunction with Euro-Par 2014, page 12, 2014.
M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous com-
puting systems. In 8th Heterogeneous Computing Workshop, page 30, 1999.

V. Martins, E. Pacitti, M. E. Dick, and R. Jiménez-Peris. Scalable and topology-
aware reconciliation on P2P networks. Distributed and Parallel Databases, 24(1-
3):1-43, 2008.

M. Mattoso, J. Dias, K. A. C. S. Oca na, E. Ogasawara, F. Costa, F. Horta,
V. Silva, and D. de Oliveira. Dynamic steering of HPC scientific workflows: A
survey. Future Generation Computer Systems, 2014.

33

34

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Scientific Workflow Scheduling with Provenance Data in Multisite Cloud

E. S. Ogasawara, J. Dias, V. Silva, F. S. Chirigati, D. de Oliveira, F. Porto, P. Val-
duriez, and M. Mattoso. Chiron: a parallel engine for algebraic scientific workflows.
Concurrency and Computation: Practice and Experience, 25(16):2327-2341, 2013.
M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Springer,
2011.

E. Pacitti, R. Akbarinia, and M. E. Dick. P2P Techniques for Decentralized Appli-
cations. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2012.

L. Pineda-Morales, A. Costan, and G. Antoniu. Towards multi-site metadata man-
agement for geographically distributed cloud workflows. In 2015 IEEE Int. Conf.
on Cluster Computing, CLUSTER, pages 294-303, 2015.

R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Innovations in in-
ternetworking. chapter Design and Implementation of the Sun Network Filesystem,
pages 379-390. 1988.

O. Schenk and K. Géartner. Two-level dynamic scheduling in PARDISO: im-
proved scalability on shared memory multiprocessing systems. Parallel Computing,
28(2):187-197, 2002.

S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson. Scheduling
multiple parameter sweep workflow instances on the grid. In 5th IEEE Int. Conf.
on e-Science, pages 300-306, 2009.

K. Tarapanoff, L. Quoniam, R. H. de Aradjo Junior, and L. Alvares. Intelligence
obtained by applying data mining to a database of french theses on the subject of
brazil. Information Research, 7(1), 2001.

H. Topcuouglu, S. Hariri, and M. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. on Parallel and Dis-
tributed Systems, 13(3):260-274, 2002.

M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific workflows in
the askalon grid environment. SIGMOD Record, 34(3):56-62, 2005.

Z.Yu and W. Shi. An adaptive rescheduling strategy for grid workflow applications.
In IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), pages 1-8,
2007.

	Scientific Workflow Scheduling with Provenance Data in Multisite Cloud
	Introduction
	Related Work
	Single Site Chiron

	Problem Definition
	System Design
	Task Scheduling
	Multisite Task Scheduling
	Estimation of Execution Time
	Method Analysis

	Experimental Evaluation
	SWf Use Cases
	Buzz Workflow
	Montage Workflow

	Intersite Communication
	Experiments

	Conclusion

