K. Bhuvaneshwar, D. Sulakhe, R. Gauba, A. Rodriguez, R. Madduri et al., A case study for cloud based high throughput analysis of NGS data using the globus genomics system, Computational and Structural Biotechnology Journal, vol.13, pp.64-74, 2015.
DOI : 10.1016/j.csbj.2014.11.001

L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez, Dynamic query scheduling in data integration systems, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073), pp.425-434, 2000.
DOI : 10.1109/ICDE.2000.839442

L. Bouganim, O. Kapitskaia, and P. Valduriez, Memory-adaptive scheduling for large query execution, Proceedings of the seventh international conference on Information and knowledge management , CIKM '98, pp.105-115, 1998.
DOI : 10.1145/288627.288646

J. Cala, Y. Xu, E. A. Wijaya, and P. Missier, From Scripted HPC-Based NGS Pipelines to Workflows on the Cloud, 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.694-700, 2014.
DOI : 10.1109/CCGrid.2014.128

R. N. Calheiros and R. Buyya, Meeting Deadlines of Scientific Workflows in Public Clouds with Tasks Replication, IEEE Transactions on Parallel and Distributed Systems, vol.25, issue.7, pp.1787-1796, 2014.
DOI : 10.1109/TPDS.2013.238

D. De-oliveira, K. A. Ocaña, F. Baião, and M. Mattoso, A Provenance-based Adaptive Scheduling Heuristic for Parallel Scientific Workflows in Clouds, Journal of Grid Computing, vol.37, issue.Database issue, pp.521-552, 2012.
DOI : 10.1093/nar/gkn721

J. Dean and S. Ghemawat, MapReduce, 6th Symposium on Operating System Design and Implementation (OSDI), pp.137-150, 2004.
DOI : 10.1145/1327452.1327492

E. Deelman, D. Gannon, M. Shields, and I. Taylor, Workflows and e-Science: An overview of workflow system features and capabilities, Future Generation Computer Systems, vol.25, issue.5, pp.528-540, 2009.
DOI : 10.1016/j.future.2008.06.012

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, The cost of doing science on the cloud: The Montage example, 2008 SC, International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-12, 2008.
DOI : 10.1109/SC.2008.5217932

E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil et al., Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Scientific Programming, pp.219-237, 2005.
DOI : 10.1155/2005/128026

J. Dias, E. S. Ogasawara, D. De-oliveira, F. Porto, P. Valduriez et al., Algebraic dataflows for big data analysis, 2013 IEEE International Conference on Big Data, pp.150-155, 2013.
DOI : 10.1109/BigData.2013.6691567

R. Duan, R. Prodan, and X. Li, Multi-Objective Game Theoretic Schedulingof Bag-of-Tasks Workflows on Hybrid Clouds, IEEE Transactions on Cloud Computing, vol.2, issue.1, pp.29-42, 2014.
DOI : 10.1109/TCC.2014.2303077

K. Etminani and M. Naghibzadeh, A Min-Min Max-Min selective algorihtm for grid task scheduling, 2007 3rd IEEE/IFIP International Conference in Central Asia on Internet, pp.1-7, 2007.
DOI : 10.1109/CANET.2007.4401694

H. Hiden, P. Watson, S. Woodman, and D. Leahy, e-science central: cloud-based e-science and its application to chemical property modelling, 2010.

H. Hiden, S. Woodman, P. Watson, and J. Cala, Developing cloud applications using the e-Science Central platform, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.19, issue.1983, pp.371-2012, 1983.
DOI : 10.1007/s10822-005-9029-8

J. Liu, E. Pacitti, P. Valduriez, D. De-oliveira, and M. Mattoso, Multi-objective scheduling of Scientific Workflows in multisite clouds, Future Generation Computer Systems, vol.63, pp.76-95, 2016.
DOI : 10.1016/j.future.2016.04.014

URL : https://hal.archives-ouvertes.fr/lirmm-01342203

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, Parallelization of scientific workflows in the cloud, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024101

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, A Survey of Data-Intensive Scientific Workflow Management, Journal of Grid Computing, vol.1, issue.Webserver-Issue, pp.1-37, 2015.
DOI : 10.1109/SERVICES-1.2008.79

URL : https://hal.archives-ouvertes.fr/lirmm-01144760

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, Scientific Workflow Scheduling with Provenance Support in Multisite Cloud, 12th Int. Meeting on High Performance Computing for Computational Science VECPAR, p.8, 2016.
DOI : 10.1145/1084805.1084816

URL : https://hal.archives-ouvertes.fr/lirmm-01342190

J. Liu, V. Silva, E. Pacitti, P. Valduriez, and M. Mattoso, Scientific workflow partitioning in multi-site clouds, BigDataCloud'2014: 3rd Workshop on Big Data Management in Clouds in conjunction with Euro-Par 2014, p.12, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01073613

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems, Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99), p.30, 1999.
DOI : 10.1109/HCW.1999.765094

V. Martins, E. Pacitti, M. E. Dick, and R. Jiménez-peris, Scalable and topologyaware reconciliation on P2P networks. Distributed and Parallel Databases, pp.1-43, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00418711

M. Mattoso, J. Dias, K. A. Oca-na, E. Ogasawara, F. Costa et al., Dynamic steering of HPC scientific workflows: A survey, Future Generation Computer Systems, vol.46, 2014.
DOI : 10.1016/j.future.2014.11.017

E. S. Ogasawara, J. Dias, V. Silva, F. S. Chirigati, D. De-oliveira et al., Chiron: a parallel engine for algebraic scientific workflows. Concurrency and Computation: Practice and Experience, pp.2327-2341, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00806557

E. Pacitti, R. Akbarinia, and M. E. Dick, P2P Techniques for Decentralized Applications . Synthesis Lectures on Data Management, 2012.
URL : https://hal.archives-ouvertes.fr/lirmm-00748635

L. Pineda-morales, A. Costan, and G. Antoniu, Towards Multi-site Metadata Management for Geographically Distributed Cloud Workflows, 2015 IEEE International Conference on Cluster Computing, pp.294-303, 2015.
DOI : 10.1109/CLUSTER.2015.49

URL : https://hal.archives-ouvertes.fr/hal-01239150

O. Schenk and K. Gärtner, Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems, Parallel Computing, vol.28, issue.2, pp.187-197, 2002.
DOI : 10.1016/S0167-8191(01)00135-1

S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson, Scheduling Multiple Parameter Sweep Workflow Instances on the Grid, 2009 Fifth IEEE International Conference on e-Science, pp.300-306, 2009.
DOI : 10.1109/e-Science.2009.49

K. Tarapanoff, L. Quoniam, R. H. De-araújo-júnior, and L. Alvares, Intelligence obtained by applying data mining to a database of french theses on the subject of brazil, Information Research, vol.7, issue.1, 2001.

H. Topcuouglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems, vol.13, issue.3, pp.260-274, 2002.
DOI : 10.1109/71.993206

M. Wieczorek, R. Prodan, and T. Fahringer, Scheduling of scientific workflows in the ASKALON grid environment, ACM SIGMOD Record, vol.34, issue.3, pp.56-62, 2005.
DOI : 10.1145/1084805.1084816

Z. Yu and W. Shi, An Adaptive Rescheduling Strategy for Grid Workflow Applications, 2007 IEEE International Parallel and Distributed Processing Symposium, pp.1-8, 2007.
DOI : 10.1109/IPDPS.2007.370305