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Ordonnancement Efficace de Workflows Scientifiques en
exploitant les Mé&adonnés Chaudes dans un Cloud Multisite

R&ume

Les applications scientifiques agrande &helle sont souvent exprimées sous forme de workflows scientifiques
(SWfs) qui aident ad€inir les jobs de traitement des données et les dépendances entre les activités des jobs.
Certains SWfs nésessitent une trés grande quantitéde stockage et de calcul, ce qui peut &re obtenu en exploitant
plusieurs data centers dans un cloud. Dans ce contexte, la gestion des méadonnées et ’ordonnancement des
taches entre différents data centers deviennent critiques pour I’exécution efficace de SWf. Dans cet article, nous
proposons une architecture et un modée distribués hybrides, en utilisant les mé&adonnés chaudes (fr&guemment
consultées) pour ’ordonnancement efficace de SWf dans un cloud multisite. Nous utilisons notre modée dans
un systéme de gestion de workflows scientifiques (SWfMS) pour valider et régler son applicabilitéadiffé&ents
workflows scientifiques reels avec difféents algorithmes d’ordonnancement. Nous montrons que la combinaison
d'une gestion efficace des métadonnées chaudes et des algorithmes d’ordonnancement améliore les performances
du SWfMS. En é&vitant les opé&ations inutiles de méadonnés froides, le temps d'exéution des jobs qui
s’exécutent en paralléle est ré&luit jusqu'aa64,1% et celui de lI'ensemble des workflows scientifiques jusqu'a
37,5%.
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ABSTRACT

Large-scale scientific applications are often expressed as scientific
workflows (SW{s) that help defining data processing jobs and de-
pendencies between jobs’ activities. Several SWfs have huge storage
and computation requirements, and so they need to be processed
in multiple (cloud-federated) datacenters. It has been shown that
efficient metadata handling plays a key role in the performance of
computing systems. However, most of this evidence concern only
single-site, HPC systems to date. In addition, the efficient sched-
uling of tasks among different data centers is critical to the SWf
execution. In this paper, we present a hybrid distributed model and
architecture, using hot metadata (frequently accessed metadata)
for efficient SWf scheduling in a multisite cloud. We couple our
model with a scientific workflow management system (SW{MS)
to validate and tune its applicability to different real-life scientific
workflows with different scheduling algorithms. We show that the
combination of efficient management of hot metadata and schedul-
ing algorithms improves the performance of SWfMS, reducing the
execution time of highly parallel jobs up to 64.1% and that of the
whole scientific workflows up to 37.5%, by avoiding unnecessary
cold metadata operations.
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1 INTRODUCTION

Many large-scale scientific applications now process amounts of
data reaching the order of Petabytes; as the size of the data increases,
so do the requirements for computing resources. Clouds stand out
as convenient infrastructures for handling such applications, for
they offer the possibility to lease resources at a large scale and rela-
tively low cost. Very often, requirements of data-intensive scientific
applications exceed the capabilities of a single cloud datacenter
(site), either because the site imposes usage limits for fairness and
security [10], or simply because the dataset is too large. Also, the
application data are often physically stored in different geographic
locations, because they are sourced from different experiments,
sensing devices or laboratories (e.g. the well known ALICE LHC
Collaboration spans over 37 countries [1]). Hence multiple datacen-
ters are needed in order to guarantee both that enough resources
are available and that data are processed as close to its source as
possible. All popular public clouds today account for a range of geo-
distributed datacenters, e.g. Microsoft Azure [8], Amazon EC2 [2],
and Google Cloud [6].

A large number of data-intensive distributed applications are
expressed as Scientific Workflows (SWf). A SWf is an assembly
of scientific data processing activities with data dependencies be-
tween them [16]. The application is modeled as a graph, in which
vertices represent processing jobs, and edges their dependencies.
Such a structure provides a clear view of the application flow and
facilitates the execution of the application in a geo-distributed
environment. Currently, many Scientific Workflow Management
Systems (SW{MS) are publicly available, e.g. Pegasus [17] and Swift
[45]; some of them already support multisite execution [29], [30],
[31].

Metadata have a critical impact on the efficiency of SWMS;
they provide a global view of data location and enable task tracking
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during the execution. Some SWf metadata even need to be persisted
to allow traceability and reproducibility of the SWf’s jobs, these
are part of the so called provenance data. Most notably, we assert
that some metadata are more frequently accessed than others (e.g.
the status of tasks in execution in a multisite SWf is queried more
often than a job’s creation date). We denote such metadata by hot
metadata and argue that it should be handled in a specific, more
quickly accessible way than the rest of the metadata. Metadata are
typically queried to get a global view of data location or to keep
track of the tasks execution; they should be readily available to the
system at any given time. While it has been proven that efficient
metadata handling plays a key role in performance [12, 43], little
research has targeted this issue in multisite clouds.

On multisite infrastructures, inter-site network latency is much
higher than intra-site latency. This aspect must stay at the core
of the design of a multisite metadata management system. As we
explain in Section 4, several design principles have to be taken
into account. Moreover, in most data processing systems (should
they be distributed), metadata are typically stored, managed and
queried at some centralized server (or set of servers) located at
a specific site [17, 22, 39]. However, in a multisite setting, with
high-latency inter-site networks and large amounts of concurrent
metadata operations, centralized approaches are not an optimal
solution.

In addition, in order to enable SWf execution in a multisite cloud
with distributed input data within a reasonable time, the execution
of the tasks of each job should be efficiently scheduled to a cor-
responding site. Then, the multisite scheduling process is to use
scheduling algorithms to decide at which site to execute the tasks
to achieve a given objective, e.g. reducing execution time. During
the scheduling process, the metadata should also be provisioned to
the scheduler to make smart decisions.

A centralized strategy is easy to implement and works well with
afew concurrent queries. However, this strategy will be inefficient if
the number of queries is high or the bandwidth is low. Furthermore,
the input data of a SWf may be distributed at different sites so the
tasks of one job may need to be executed at different sites. In this
case, a centralized strategy for metadata management will incur
additional communications. In this paper, we take a different ap-
proach based on the distribution of hot metadata in order to increase
the locality of access by the different computing nodes. Inspired
by [37], we adapt two distributed metadata management strategies,
i.e. Distributed Hash Table (DHT) and replication method (Rep), for
hot metadata management. DHT stores the hot metadata at the site
corresponding to its hash value and Rep stores the hot metadata
to the sites where it is generated and to the site corresponding
to its hash value. We propose a local storage based hot metadata
management strategy, i.e. LOC, which stores the hot metadata at
the site where it is generated. We take the centralized method as a
baseline to show the advantage of the distributed methods.

A major new contribution of this paper is to demonstrate the
pertinence of using hot metadata for SWf execution in a multisite
cloud. In the context of multisite SW{s, where thousands of tasks
are executed across sites, separating hot metadata improves the
SWT execution time, yet at no additional cost. In addition, during
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the SWf execution, some hot metadata may become cold or vice-
versa. We show that metadata monitoring and dynamic hot or cold
metadata classification can address this dynamic variation of the
“temperature” of metadata. We also analyse the limitations of our
approaches.

The paper makes the following contributions:

e Based on the notion of hot metadata, we introduce a dis-
tributed architecture, adapt two strategies to hot metadata
management, and propose a local storage based hot meta-
data management strategy for optimizing the access to hot
metadata and ensuring their availability in a multisite cloud
environment (Section 5).

e We develop a prototype by coupling our proposed archi-
tecture and strategies with a state of the art multisite SWf
execution engine, namely Chiron [36], using an RDBMS to
manage hot metadata (Section 6).

e We combine the hot metadata management strategies and
three scheduling algorithms, i.e. OLB, MCT and DIM, by
enabling the hot metadata management provisioning for
multisite scheduling process (Section 6).

e We demonstrate that efficient management of hot metadata
improves the performance of SWfMS, reducing the execution
time of a SWf by 1) enabling timely data provisioning and
2) avoiding unnecessary cold metadata handling (Section 7).
We also show the advantages of decentralized hot metadata
management strategies with different scheduling algorithms
(Section 7).

e We discuss the related issues raised by the necessity of hot
metadata management and dynamic hot metadata (Section
8).

This paper is organized as follows. Section 2 introduces the re-
lated work. Section 3 presents the SWf model and the hot metadata
and discusses the issues to manage the hot metadata. Section 4
introduces the design principles. Section 5 gives the architecture of
the SWf engine and explains our adapted and proposed hot meta-
data management strategies. Section 6 gives the implementation
of our proposed approaches. Section 7 presents our experimental
results and Section 8 analyzes the implemented system in terms of
the necessity of hot metadata management, dynamic hot metadata
and limitations. Finally, Section 9 concludes.

2 RELATED WORK

Most of the existing SWf engines focus on the optimizations brought
to the data management layer. For instance active research on data
placement techniques try to strategically manage placement of data
before or during the execution of a SW{. In multisite environments,
such solutions privilege starting the SWf only after gathering all the
needed data in a shared-disk file system at one data center, which
is time consuming. Less attention was given to the metadata, often
considered a second class citizen in the SWf life cycle. In addition,
scheduling is important for SWf execution in the multisite cloud
environment. However, few attention was paid to the combination
of hot metadata management strategies and different scheduling
algorithms.

Centralized approaches. Metadata is usually handled by means
of centralized registries implemented on top of relational databases,
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that only hold static information about data locations. Systems like
Pegasus [17], Swift [45] or Chiron [36] leverage such schemes, typi-
cally involving a single server that processes all the requests. In case
of increased client concurrency or high I/O pressure, however, the
single metadata server can quickly become a performance bottle-
neck. Also, the workloads involving many small files, which trans-
late into heavy metadata accesses, are penalized by the overheads
from transactions and locking [41, 42]. A lightweight alternative to
databases is indexing the metadata; although most indexing tech-
niques [44, 46] are designed for data rather than metadata. Even
the dedicated index-based metadata schemes [25] use a centralized
index and are not adequate for large-scale SWfs, nor can they scale
to multisite deployments.

Distributed approaches. Some SWf systems opt to rely on
distributed file-systems that partition the metadata and store it at
each node (e.g. [21], [32]), in a shared-nothing architecture, as a
first step towards complete geographical distribution. Hashing is
the most common technique for uniform partitioning: it consists
of assigning metadata to nodes based on a hash of a file identifier.
Giraffa [5] uses full pathnames as key in the underlying HBase [3]
store. Lustre [7] hashes the tail of the filename and the ID of the
parent directory. Similar hashing schemes are used by [14, 15, 34]
with a low memory footprint, granting access to data in almost
constant time. FusionFS [49] implements a distributed metadata
management based on DHTs as well. Chiron itself has a version
with distributed control using an in-memory distributed DBMS[40].
All these systems are well suited for single-cluster deployments or
SWfs that run on supercomputers. However, they are unable to meet
the practical requirements of SWfs executed on clouds. Similarly to
us, CalvinFS [43] uses hash-partitioned key-value metadata across
geo-distributed datacenters to handle small files, yet it does not
account for SWf semantics.

Hybrid approaches. More recently, Zhao et al. [48] proposed
using both a distributed hash table (FusionFS [49]) and a centralized
database (SPADE [47]) to manage the metadata. Similarly to us,
their metadata model includes both file operations and provenance
information. However, they do not make the distinction between
hot and cold metadata, and they mainly target single site clusters.

Most of the previous work on metadata management comes from
the HPC world, with solutions relying on low-latency networks
for message passing and tiered cluster deployments that separate
compute and storage nodes. On the other hand, cloud computing
seems very different from HPC: high latency networks connect the
datacenters, a much lower degree of (per-object) concurrency, a
more specialized storage interface provided to applications, which
are explicitly aware of the anticipated workloads and access pat-
terns. An important difference to past work is our focus on a whole
SWf application and its interaction with the cloud infrastructure.
Because their target use-cases and interface semantics differ, paral-
lel file systems cannot be used out-of-the-box in the cloud and are
often considered to be mutually inappropriate. Instead, we borrow
ideas from the HPC community and put them in place leveraging
the SWf semantics and the cloud services publicly available.

Multisite scheduling. There are many algorithms to schedule
tasks in multiple sites. In this paper, we use three existing sched-
uling algorithms, i.e. OLB (Opportunistic Load Balancing), MCT
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(Minimum Completion Time) and DIM (Data-Intensive Multisite
task scheduling) [29]. OLB and MCT are basic algorithms, which
are widely used in diverse SWf execution environments. DIM is the
best in our context since it is designed with a centralized metadata
management strategy, i.e. all the metadata is stored and managed
at a single site, for SW{f execution in a geographically distributed
multisite cloud environment. Although we propose decentralized
hot metadata management strategies, the cold metadata is always
stored in a centralized database, which fits well with the assump-
tion of DIM. OLB randomly selects a site for a task while MCT
schedules a task to the site that can finish the execution first with
the consideration of the time to transfer intermediate data. DIM
first schedules the tasks to the site where the input data is located.
Then, it manages the workload at each site in order to achieve load
balancing and reduce the overall execution. In order to reduce the
time to transfer intermediate data, both MCT and DIM are data
location aware, ie. they schedule many tasks to where the input
data is. Since it may take much time to transfer intermediate data
between sites, MCT has better performance than OLB. In addition,
since it may also take much time to transfer metadata, DIM out-
performs both MCT and OLB. In this paper, we also evaluate the
performance of different hot metadata management strategies in
combination with different scheduling algorithms.

3 THE CORE OF OUR APPROACH: HOT
METADATA

Metadata management significantly impacts the performance of
computing systems dealing with thousands or millions of individual
files. This is recurrently the case of SWfs. In this section, we present
the SWf model, and discuss the limitations of centralized metadata
management and scalability in a multisite cloud. Then, we introduce
hot metadata and the challenges for hot metadata management.

3.1 SWf Model

A SWTf is modeled as a graph, in which vertices represent data
processing jobs and edges represent dependencies between them
(Figure 1). A job (J) is a description of a piece of work that forms
a logical step within a SWf representation. Since SW{ jobs may
process multiple data chunks, one job can actually correspond to
several executable tasks for different parts of input data during
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execution. A task (T) is the representation of a job within a one-
time execution of this job, which processes a data chunk (D) [27],
i.e. there is a task for each unit of data to be processed.

3.2 Why Centralized Metadata Management is
an Issue?

SW{MSs handle more than file-specific metadata; running the SWf
itself generates a significant amount of execution-specific metadata,
e.g. scheduling metadata (i.e. which task is executed where) and
data-to-task mappings. Most of today’s SWfMS handle metadata
in a centralized way. File-specific metadata is stored in a central-
ized server, either own-managed or through an underlying file
system, while execution-specific metadata is normally kept in the
execution’s master entity.

Controlling and combining all these sorts of metadata trans-
late into a critical workload as scientific datasets get larger. The
CyberShake SWf [18], for instance, runs more than 800,000 tasks,
handling an equal number of individual data pieces, processing
and aggregating over 80,000 input files (which translates into 200
TB of data read), and requiring all of these files to be tracked and
annotated with metadata [18, 24]. Tasks’ runtime is in the order
of milliseconds, e.g., in a Montage SWf of 0.5 degree (see Section
7.2), out of 80 tasks, 36 tasks execute under 500 milliseconds. With
many tasks, the load of parallel metadata operations becomes very
heavy, and handling it in a centralized fashion represents a serious
performance bottleneck.

3.3 Multisite Clouds: How to Scale?

Often enough, scientific data are so huge and widespread that they
can not be processed/stored in a single cloud datacenter. On the one
hand, the data size or the computing requirements might exceed
the capacity of the site or the limits imposed by a cloud provider.
On the other hand, data might be widely distributed, and due to
their size it is more efficient to process them closer to where they
reside than to bring them together; for instance, the US Earthquake
Hazard Program monitors more than 7,000 sensors systems across
the country reporting to the minute [11]. In either case, multisite
clouds are progressively being used for executing large-scale SWfs.

Managing metadata in a centralized way for such scenarios is
not appropriate. On top of the congestion generated by concur-
rent metadata operations, remote inter-site operations cause severe
delays in the execution. To address this issue, some approaches
propose the use of decentralized metadata servers [43]. In our pre-
vious work [37], we also implemented a decentralized management
architecture that proved to handle metadata up to twice as fast as a
centralized solution. In this paper we make one step further.

Our focus is on the metadata access frequency, particularly on
identifying fractions of metadata that do not require multiple up-
dates. The goal is to enable a more efficient decentralized metadata
management, reducing the number of inter-site metadata opera-
tions by favoring the operations on frequently accessed metadata,
which we call Hot Metadata.

3.4 Whatis “Hot” Metadata?

The term hot data refers to data that need to be frequently ac-
cessed [26]. Hot data are usually critical for the application and
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must be placed in a fast and easy-to-query storage [23]. We apply
this concept to the context of SWf management and we define hot
metadata as the metadata that is frequently accessed during the
execution of a SWf. Conversely, less frequently accessed metadata
will be denoted cold metadata. We distinguish two types of hot
metadata: task metadata and file metadata.

Task metadata is the metadata for the execution of tasks, which
is composed of the command, parameters, start time, end time,
status and execution site. Hot task metadata enables the SWfMS
to search and generate executable tasks. During the execution, the
status and the execution site of tasks are queried many times by
each site to search new tasks to execute and to determine if a job is
finished. In addition, the status of a task may be updated several
times. As a result, it is important to get this metadata quickly.

File metadata that we consider as “hot” for the SWf execution
are those relative to the size, location and possible replicas of a given
piece of data. Knowledge of file hot metadata allows the SW{MS to
place the data close to the corresponding task, or vice-versa. This
is especially relevant in multisite settings: timely availability of the
file metadata would permit to move data before they are needed,
hence reducing the impact of low-speed inter-site networks. In
general, other metadata such as file ownership are not critical for
the execution and thus regarded as cold metadata.

3.5 What are the Challenges for Hot Metadata
Management?

There are a number of implications in order to effectively apply
the concept of hot metadata to real systems. At this stage of our
research, we apply simple yet efficient solutions to these challenges.

How to decide which metadata are hot? We have empirically

chosen the aforementioned task and file metadata as hot,
since they have statistically proven to be more frequently
accessed by the SWEMS we use: A sample execution of 1-
degree Montage SWf (Figure 2) as described in section 7.2,
running 820 jobs and 57K metadata operations reveals that
in a centralized execution, 32.6% of them are file metadata
operations (storeFile, getFile) and 32.4% are task metadata
operations (loadTask, storeTask); whereas in a distributed
run, up to 67% are file operations, and task operations rep-
resent 11%. The rest correspond mostly to monitoring and
node/site related operations.
However, a particular SWf might actually use other metadata
more often. Since SWfs are typically defined in structured
formats (e.g. XML files), another way to account for user-
defined hot metadata would be to add a property to each
job definition where the user could specify which metadata
they consider as hot. The next item in our research agenda
is to implement an environment that will allow for both
user-defined and dynamically-identified hot metadata (by
running training executions).

How to assess that such choice of hot metadata is right? Eva-
luating the efficacy of choosing hot metadata is not trivial.
Metadata is much smaller than the application’s data and
handling it over networks with fluctuating throughput may
produce inconsistent results in terms of execution time. Nev-
ertheless, an indicator of the improvement brought by an



Efficient Scheduling of Scientific Workflows using Hot Metadata in a Multisite Cloud

storeFile storeFile
storefﬂg\ tore e
— getFile
loadTask getFile
Centralized Distributed

Figure 2: Relative frequency of metadata operations in Mon-
tage.

adequate choice of hot metadata, and which is not time-
bounded, is the number of metadata operations performed.
In our experimental evaluation (Section 7) we present re-
sults in terms of both execution time and number of tasks
performing such operations.

The next section describes how the concept of hot metadata
translates into architectural design choices for efficient multisite
SWT processing.

4 DESIGN PRINCIPLES

Three key choices set up the foundation of our architecture:

Two-Layer Multisite SWf Management. We propose to use
a two-layer multisite system: (1) The lower intra-site layer operates
as current single-site SW{MS: a site composed of several comput-
ing nodes and a common file system, one of such nodes acts as
master and coordinates communication and task execution. (2) An
additional higher inter-site layer coordinates the interactions at site-
level through a master/slave architecture (one site being the master
site). The master node in each site is in charge of synchronization
and data transfers. In Section 5 we provide a detailed description
of such a system architecture.

Adaptive Placement for Hot Metadata. Job dependencies in
a SWf form common structures (e.g. pipeline, data distribution and
data aggregation) [13]. SW{MSs usually take into account these
dependencies to schedule the job execution in a convenient way
to minimize data movements (e.g. job co-location). Accordingly,
different SWfs will yield different scheduling patterns. In order to
take advantage of these scheduling optimizations, we must also
adapt the SWf’s metadata storage scheme. However, maintaining
an updated version of all metadata across a multisite environment
consumes a significant amount of communication time, incurring
also monetary costs. To reduce this impact, we will evaluate differ-
ent storage strategies for hot metadata during the SWf’s execution,
while keeping cold metadata stored locally and synchronizing such
cold metadata only during the execution of the job. In the next
section we recall our decentralized adaptive strategies.

Eventual Consistency for High-latency Communication.
While cloud datacenters are normally interconnected by high-speed
infrastructure, the latency is ultimately bounded by the physical
distance between sites and communication time might reach the
order of seconds [4]. Under these circumstances it is unreasonable to
aim for a system with a fully consistent state in all of its components

BDA, November 2017, Nancy, France

. Master node
@ Slave node

== i Metadata Store

\\ Shared File System

\
i

Figure 3: Multisite SWf execution architecture w/ decentral-
ized metadata. Dotted lines represent inter-site interactions.

at a given moment without strongly compromising the performance
of the application. SWf semantics allow us the flexibility to opt for
an eventually consistent system: a task processes one or several
specific pieces of data; such task will begin its execution only when
all the pieces it needs are available in the metadata storage; however,
the rest of tasks continue executing independently. Thus, with a
reasonable delay due to the higher latency propagation, the system
is guaranteed to be eventually consistent.

5 ARCHITECTURE

In previous work we explored different strategies for SWf-driven
multisite metadata management, with a focus on file metadata [37].
Our study indicated that a hybrid approach combining decentral-
ized metadata and replication suits better the needs of large-scale
multisite SWf execution. It also showed that the right strategy to
apply depends on the SWf structure. In this section, we elaborate
on top of such observations into two fundamental lines. (1) We
present an architecture for multisite cloud SWf processing which
features decentralized metadata management. (2) We enrich this
architecture with a component specifically dedicated to the man-
agement of hot metadata across multiple sites. (3) We adapt two
metadata management strategies to hot metadata management and
propose a local storage-based hot metadata management strategy.

Two-level Multisite Architecture. In accordance with our de-
sign principles, the basis for our SWf engine is a 2-level multisite
architecture, as shown in Figure 3.

(1) At the inter-site level, all communication and synchroniza-
tion is handled through a set of master nodes (M), one per
site. One site acts as a global coordinator (master site) and is
in charge of scheduling jobs/tasks to each site. Every master
node holds a metadata store which is part of the global meta-
data storage and is directly accessible to all other master
nodes.

(2) At the intra-site level, our system preserves the typical mas-
ter/slave scheme widely-used today on single-site SWfMS:
the master node schedules and coordinates a group of slave
nodes that execute the SWTf tasks. All nodes within a site are
connected to a shared file system to access data resources.
Metadata updates are propagated to other sites through the
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Figure 4: The hot metadata filtering component.

master node, which classifies hot and cold metadata as ex-
plained below.

Separate Management of Hot and Cold Metadata. Follow-
ing our characterization of hot metadata from Section 3.4, we incor-
porate an intermediate component which filters out cold metadata
operations. This model ensures that: a) hot metadata operations
are managed with high priority over the network, and b) cold meta-
data updates are propagated only during periods of low network
congestion.

The filter is located in the master node of each site (Figure 4). It
separates hot and cold metadata, favoring the propagation of hot
metadata and thus alleviating congestion during metadata-intensive
periods. The storage location of the hot metadata is then selected
based on some metadata management strategies, as developed be-
low.

Decentralized Hot Metadata Management Strategies. We
consider two different alternatives for decentralized metadata man-
agement (explored in previous work [37]). Here, we study their
application to hot metadata and propose a local storage based hot
metadata management strategy, i.e. LOC. They all include a meta-
data server in each of the datacenters where execution nodes are
deployed. The two strategies differ in the way hot metadata is stored
and replicated. We explain the specificities of the three strategies
below.

Local without replication (LOC) Every new hot metadata entry
is stored at the site where it has been created. For read op-
erations, metadata is queried at each site and the site that
stores the data will give the response. If no reply is received
within a time threshold, the request is resent. This strategy
will typically benefit pipeline-like SWf structures, where
consecutive tasks are usually co-located at the same site.

Hashed without replication (DHT) Hot metadata is queried and
updated following the principle of a distributed hash table
(DHT). The site location of a metadata entry will be deter-
mined by a simple hash function applied to its key attribute,
file-name in case of file metadata, and task-id for task meta-
data. We assume that the impact of inter-site updates will be
compensated by the linear complexity of read operations.

Hashed with local replication (REP) We combine the two pre-
vious strategies by keeping both a local record of the hot
metadata and a hashed copy. Intuitively, this would reduce
the number of inter-site reading requests. We expect this hy-
brid approach to highlight the trade-offs between metadata
locality and DHT linear operations.
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6 IMPLEMENTATION: DMM-CHIRON

In order to validate our architecture, we developed a multisite
SWIMS prototype that implements hot metadata. It provides sup-
port for decentralized metadata management, with a distinction be-
tween hot and cold metadata. We call our prototype Decentralized-
Metadata Multisite Chiron (DMM-Chiron). In this section, we present
the baseline system, i.e. multisite Chiron, and DMM-Chiron, includ-
ing the hot metadata management strategies implementation in a
multisite cloud and the techniques of provisioning hot metadata
for multisite scheduling.

6.1 Baseline: Multisite Chiron

This work builds on Multisite Chiron [29], a SWIMS specifically
designed for multisite clouds. Its layered architecture is presented in
Figure 5; it is composed of nine modules. Multisite Chiron exploits
a textual UI to interact with users. The SWT is analyzed by the
Job Manager to identify executable activities, i.e. unexecuted jobs,
for which the input data is ready. The same module generates the
executable tasks at the beginning of job execution at the coordinator
site.

Scheduling is done in two phases: the Multisite Task Scheduler
at the coordinator site schedules each task to a site, following one
of three scheduling algorithms, i.e. OLB, MCT and DIM. The users
of Multisite Chiron can choose the multisite scheduling algorithm.
While the Single Site Task Scheduler applies the default dynamic
FAF (First job First) approach used by Chiron [36] to schedule tasks
to computing nodes. Some jobs (query jobs) can be expressed as
queries, which exploit the DBMS to be executed. In order to syn-
chronize the execution, the query jobs are executed at a master site.
It is worth to clarify that optimizations to the scheduling algorithms
are out of the scope of this paper.

Afterwards, it is the Task Executor at each computing node which
runs the tasks. Along the execution, metadata is handled by the
Metadata Manager at the master site. Since the metadata structure
is well defined, we use a relational database, namely PostgreSQL,
to store it. All data (input, intermediate and output) are stored in a
Shared File System at each site in order to reduce time. The location
of the output data has no impact on the OLB scheduling but it has
impact on the MCT or DIM scheduling. The file transfer between
two different sites is performed by the Multisite File Transfer module.
The Multisite Message Communication module of the master node
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Figure 6: Metadata Protocols.

at each site is in charge of synchronization through a master/slave
architecture while the Multisite File Transfer module exploits a
peer-to-peer model for data transfers.

6.2 Combining Multisite and Hot Metadata
Management

To implement and evaluate our approach to decentralized meta-
data management, we further extended Multisite Chiron by adding
multisite metadata protocols. We mainly modified two modules as
described in the next sections: the Job Manager and the Metadata
Manager.

From Single- to Multisite Job Manager. The Job Manager is
the process that verifies if the execution of a job is finished, in order
to launch the next jobs. Originally, this verification was done on
the metadata stored at the coordinator site. In DMM-Chiron we
implement an optimization to each of the hot metadata management
strategies (Section 5): for LOC, the local DMM-Chiron instance
verifies only the tasks scheduled at that site and the coordinator
site confirms that the execution of a job is finished when all the
sites finish their corresponding tasks. For DHT and REP, the master
DMM-Chiron instance of the coordinator site checks each task of
the job.

RDBMS & NoSQL. Since metadata has a model [35], which is
equivalent to a data structure, it is convenient to store the metadata
in a structured database. A data item represents a set of values
corresponding to different attributes as defined in the metadata
model. An RDBMS is very efficient to query structured data by
comparing the value of different attributes of each data item in a
structured database. Thus, we choose the PostgreSQL RDBMS to
manage the hot metadata.

Introducing Protocols for Multisite Hot Metadata. The fol-
lowing protocols illustrate our system’s metadata operations. We
recall that metadata operations are triggered by the slave nodes at
each site, which are the actual executors of the SWf tasks.

Metadata Write As shown in figure 6a, a new metadata record
is passed on from the slave to the master node at each site
(1). Upon reception, the master filters the record as either
hot or cold (2). The hot metadata is assigned by the master
node to the metadata storage pool at the corresponding site(s)
according to one metadata strategy, cf. Section 5 (3a). Created
cold metadata is kept locally and propagated asynchronously
to the coordinator site during the execution of the job (3b).
Metadata Read Each master node has access to the entire pool
of metadata stores so that it can get hot metadata from any
site. Figure 6b shows the process. When a read operation
is requested by a slave (1), a master node sends a request
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to each metadata store (2) and it processes the response
that come first (3), provided such response is not an empty
set. This mechanism ensures that the master node gets the
required metadata in the shortest time without waiting for
other late responses. During the execution, DMM-Chiron
gathers all the task metadata stored at each site to verify if
the execution of a job is finished.

6.3 Hot Metadata Provisioning for Multisite

Scheduling

In order to efficiently schedule the tasks at different sites, the sched-
uling process of MCT and DIM needs to get the information about
where the input data of each task is located. This information is
available in the hot metadata, i.e. file metadata. Thus, the hot meta-
data is provisioned to the multisite task scheduler. Since the job
manager generates tasks for job execution at the coordinator site,
the file metadata is also available at the coordinator. Thus, we di-
rectly load the file metadata at the coordinator site for multisite
scheduling. In addition, we use the same technique by loading the
file metadata in the memory once and then use the data for the
whole scheduling process in order to reduce scheduling as explained
in [28].

7 EXPERIMENTAL EVALUATION

Along the following experiments we compare our results to a mul-
tisite SWEMS with centralized metadata management, which we
recall being the state-of-the-art configuration. We use Multisite Ch-
iron as an example of such architecture. In this section, we present
the experimental setup and the use cases. Then, we explain the
experimental results by executing real life SWfs in a multisite cloud
while using different hot metadata management strategies, i.e. the
centralized strategies & LOC, DHT and REP. Finally, we evaluate
the performance of different hot metadata management strategies
using different scheduling algorithms.

7.1 Experimental Setup

DMM-Chiron was deployed on the Microsoft Azure cloud [8] us-
ing a total of 27 nodes of A4 standard virtual machines (8 cores,
14 GB memory). The VMs were evenly distributed among three
datacenters: West Europe (WEU, Netherlands), North Europe (NEU,
Ireland) and Central US (CUS, Iowa). Control messages between
master nodes are delivered through the Azure Bus [9].

7.2 Use Cases

Montage is a toolkit created by the NASA/IPAC Infrared Science
Archive and used to generate custom mosaics of the sky from a
set of images [19]. Additional input for the workflow includes the
desired region of the sky, as well as the size of the mosaic in terms
of square degrees. We model the Montage SWf using the proposal
of Juve et al. [24].

BuzzFlow is a data-intensive SWT that searches for trends and
measures correlations in scientific publications [20]. It analyses data
collected from bibliography databases such as DBLP or PubMed.
Buzz is composed of thirteen jobs.
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7.3 Different Strategies for Different SWf
Structures

Our hypothesis is that no single decentralized strategy can well fit
all SWT structures: a highly parallel task would exhibit different
metadata access patterns than a concurrent data gathering task.
Thus, the improvements brought to one type of SWf by either of
the strategies might turn to be detrimental for another. To evaluate
this hypothesis, we ran several combinations of our strategies with
the featured SWfs and the OLB scheduling algorithm.

Figure 7 shows the average completion time for the Montage
SWI generating 0.5-, 1-, and 2-degree mosaics of the sky, using in
all the cases a 5.5 GB image database distributed across the three
datacenters. With a larger degree, a larger volume of intermediate
data is handled and a mosaic of higher resolution is produced.
Table 1 summarizes the volumes of intermediate data generated
per execution.

2-degree
17.1 (6.0, 6.4, 4.7
16.2 (8.4, 4.6, 3.2

0.5-degree
CEN | 1.4(0.5, 0.5, 0.4)
LOC | 1.3(0.7, 0.2, 0.4)
DHT | 1.5 (0.6, 0.6, 0.4) | 4.9 (1.9, 1.3, 1.8) | 16.6 (5.4, 4.9, 6.2
REP | 1.4(0.5,0.5,0.4) | 4.9 (1.5, 1.9, 1.5) | 16.8 (6.6, 3.8, 6.4
Table 1: Intermediate data in GB for different degrees of
Montage executions. Per-site breakdown is expressed as: Ag-
gregated (size WEU, size NEU, size CUS).

1-degree
49 (17,15, 1.7)
48 (2.1, 1.0, 1.7)

T = —

In the chart we note in the first place a clear time gain of up to
28% by using a local distribution strategy instead of a centralized
one, for all the degrees. This result was expected since the hot
metadata is now managed in parallel by three instances instead
of one, and it is only the cold metadata that is forwarded to the
coordinator site for scheduling purposes (and used at most one
time).

We observe that for mosaics of degree 1 and under, the use of
distributed hashed storage also outperforms the centralized version.
Since the metadata is distributed at different sites when using DHT,
the read operations are also processed at different sites. This distri-
bution can achieve better load balancing for the read operations,
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Figure 8: Buzz SWf completion time. Left Y-axis scale corre-
sponds to 60 MB execution, right Y-axis to 1.2 GB.

which is faster compared with the centralized method [37]. How-
ever, we note a performance degradation in the hashed strategies,
starting at 1-degree and getting more evident at 2-degree. We at-
tribute this to the fact that there is a larger number of long-distance
hot metadata operations compared to the centralized approach:
with hashed strategies, 1 out of 3 operations are carried out on aver-
age between CUS and NEU. In the centralized approach, NEU only
performs operations in the WEU site, thus such long latency oper-
ations are reduced. We also associate this performance drop with
the size of intermediate data being handled by the system: while
we try to minimize inter-site data transfers, with larger volumes
of data such transfers affect the completion time up to a certain
degree and independently of the metadata management scheme.
We conclude that while the DHT method might seem efficient due
to linear read and write operations, it is not well suited for geo-
distributed executions, which favor locality and penalize remote
operations.

In a similar experiment, we validated DMM-Chiron using the
Buzz SW{, which is rather data intensive, with two DBLP database
dumps of 60 MB and 1.2 GB. The results are shown in Figure 8;
note that the left and right Y-axes differ by one order of magnitude.
This is why it seems that the maximum gain is closer to a constant
gain without considering the different scale of axes. But the real
maximum gain is different and increases according to the overall
execution time of SWfs. We observe again that DMM-Chiron brings
a general improvement in the completion time with respect to the
centralized implementation: 10% for LOC in the 60 MB dataset and
6% for 1.2 GB, while for DHT and REP the time improvement was
of less than 5%.

In order to better understand the performance improvements
brought by DMM-Chiron, and also to identify the reason of the low
runtime gain for the Buzz SWf, we evaluated Montage and Buzz in
a per-job granularity. The results are presented in the next section.
Albeit the time gains perceived in the experiments might not seem
significant at first glance, two important aspects must be taken into
consideration:

Optimization at no cost Our proposed solutions are implemented

using exactly the same number of resources as their coun-
terpart centralized approaches: the decentralized metadata
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Figure 10: Execution time of multi-task jobs on the Buzz SWf
with 60 MB input data.

stores are deployed within the master nodes of each site
and the control messages are sent through the same existing
channels. This means that such gains come at no additional
cost for the user.

Actual monetary savings Our longest experiment (Buzz 1.2 GB)
runs in the order of hundreds of minutes. With today’s sci-
entific experiments running at this scale and beyond, a gain
of 10% actually implies savings of hours of cloud computing
resources.

7.4 Zoom on Multi-task Jobs

We call a job multi-task when its execution consists of more than
a single task. In DMM-Chiron, the various tasks of such jobs are
evenly distributed to the available sites and thus can be executed
in parallel. We argue that it is precisely in these kind of jobs that
DMM-Chiron yields its best performance.

Figure 9 shows a breakdown of Buzz and Montage SWfs with
the proportional size of each of their jobs from two different per-
spectives: tasks count and average execution time. Our goal is to
characterize the most relevant jobs in each SWf by number of tasks
and confirm their relevance by looking at their relative execution
time. In Buzz, we notice that both metrics are highly dominated
by three jobs: Buzz (676 tasks), BuzzHistory (2134) and Histogram-
Creator (2134), while the rest are so small that they are barely
noticeable. FileSplit comes fourth in terms of execution time and it
is indeed the only remaining multi-task job (3 tasks). Likewise, we
identify for Montage the only four multi-task jobs: mProject (45
tasks), prepare (45), mDiff (107) and mBackground (45).
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Figure 11: Execution time of multi-task jobs on the Montage
SWT of 0.5 degree.

In Figures 10 and 11 we look into the execution time of the
multi-task jobs of Buzz and Montage, respectively. In Figure 10, we
observe that except for one case, namely Buzz job with REP, the
decentralized strategies outperform considerably the baseline (up
to 20.3% for LOC, 16.2% for DHT and 14.4% for REP). In the case
of FileSplit, we argue that the execution time is too short and the
number of tasks too small to reveal a clear improvement. However,
the other three jobs confirm that DMM-Chiron performs better for
highly parallel jobs. It is important to note that these gains are much
larger than those of the overall completion time (Figure 8) since
there are still a number of workloads executed sequentially, which
have not been optimized by the current release of DMM-Chiron.

Correspondingly, Figure 11 shows the execution of each multi-
task job for the Montage SWf of 0.5 degree. The figure reveals
that, on average, hot metadata distribution substantially improves
centralized management in most cases (up to 39.5% for LOC, 52.8%
for DHT and 64.1% for REP). However, we notice some unexpected
peaks and drops specifically in the hashed approaches. After a
number of executions, we believe that such cases are due to common
network latency variations of the cloud environment added to the
fact that the execution time for the jobs is rather short (in the order
of seconds).

7.5 Different Strategies for Different
scheduling algorithms

There is no single decentralized strategy that can fit all scheduling
algorithms: some scheduling algorithms may be optimized for a
certain metadata management strategy. Thus, the improvements
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brought to one scheduling algorithm by either of the strategies
might turn to be not so good or even detrimental for another. To
better understand this relationship between strategy and schedul-
ing algorithm, we ran several combinations of our strategies with
Montage and two other scheduling algorithms, i.e. MCT and DIM.
We use the same configuration except for the scheduling algorithm
as explained in Section 7.3.

Figures 12 and 13 show that LOC is always better (up to 28.2%)
than the centralized strategy in terms of overall SWf completion
time with MCT and DIM, which perform better than OLB. However,
the centralized strategy outperforms DHT and REP when using
MCT and DIM scheduling algorithms. DMM-Chiron may gather
the data to the master site (WEU) for some jobs (query jobs), which
exploit the RDBMS to process the data. The input data of the follow-
ing jobs of the query is centralized at the master site. In addition,
MCT and DIM are data location aware and schedule most of the
tasks where the input data is. In this case, the centralized strategy
stores the hot metadata at the master site, which is read many times
by the same site during execution, while DHT and REP distribute
the hot metadata to other sites. As a result, the centralized strategy
outperforms DHT and REP. However, in this case, similar to the
centralized strategy, the LOC strategy always stores the metadata
at the site where the metadata is produced, i.e. the master site. As a
result, LOC can always outperform the centralized strategy in terms
of overall SWf completion time. Figures 14 and 15 show that LOC is
generally better (up to 31.1% for MCT and 33.7% for DIM) than the
centralized strategy while DHT and REP may be worse than the
centralized strategy in terms of execution time of multi-task jobs. In
addition, the combination of LOC and DIM can reduce the overall
SWT execution time up to 37.5%, which is much better than the best
result (28%) presented in [38], of the execution time of Montage
compared with the combination of the centralized strategy and
OLB.

Since DIM is optimized for the centralized metadata management
strategy, it is reasonable that the centralized strategy outperforms
DHT and REP and that the gain brought by LOC is less obvious
compared with MCT. The LOC strategy only stores the hot metadata
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at the site where it is produced. The hot metadata is read many
times by the same site during the execution of the tasks. Thus,
LOC can always reduce the time to manage metadata. Thus, LOC
always outperforms the centralized strategy even when the DIM
scheduling algorithm is used.

8 DISCUSSION

In this section, we analyze DMM-Chiron from three perspectives.
First, we address the question of whether hot metadata management
is actually necessary. Then, we discuss the issues about dynamic
hot metadata. Afterwards, we consider some technical limitations
of our system.

8.1 Is “regular” metadata management really a
problem?

Along this paper, we do not argue that handling metadata as a
whole (i.e. without distinction between hot and cold) is inefficient.
Actually, as presented in Section 2, many of today’s file systems do
not make any distinction when processing metadata, and some have
very good performance. However, such systems are rather general
purpose and deployed in a single site. We proved that in the context
of multisite SWfs, where thousands of tasks are executed across
datacenters, separating hot metadata improves the SWf execution
time, yet at no additional cost.

8.2 Towards Dynamic Hot Metadata

Scientific applications evolve during execution. This means that at a
given point, some data might no longer be as relevant as they were
initially; in other words, hot data become cold, or vice-versa. In the
case of hot to cold data, SWfMSs might remove them from the fast-
access storage or even delete them; conversely, data that become
relevant can be promoted to fast storage. Some frameworks assess
the data “temperature” offline, i.e. they perform a later analysis on a
frequency-of-access log to avoid overhead during the operation [26],
however, this method is only useful when there are subsequent
runs. More interestingly for us, online approaches maintain a rank
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on the frequency of access to the data alongside the execution, for
example in adaptive replacement cache [33]. This phenomenon
certainly occurs also at the metadata level; so, how could we handle
these “temperature” changes in a multisite SWfMS? We look into
the two situations.

Promoting Cold to Hot Metadata. User-defined hot metadata
as discussed above would not allow metadata to be dynami-
cally promoted, since an XML SWT definition file is rather
static. However, we can build on this idea and integrate the
described online ranking: given a SWf defined through an
XML file (or any other definition language), a list of meta-
data attributes could be passed to the execution engine in
the same file; then, the engine would monitor the access fre-
quency of each of such attributes and periodically produce
a ranking to verify whether an attribute is required more
often, and thus promote it to hot metadata. The maximum
number of attributes allowed as hot metadata could be also
dynamically calculated according to the aggregated size of
the metadata stores.

Downgrading Hot to Cold Metadata. Less frequently accessed
metadata could also be identified using the same attribute
ranking approach as above. Upon identification, degrading
some metadata to cold would also require a collection mech-
anism that ensures that metadata previously considered hot
are removed from fast-access storage. Moreover, this action
should take place during not-congested periods, or at the end
of the execution so that it does not incur overhead. Taking
one step further, we can consider an algorithm that deter-
mines the probability that metadata could become hot again
later in the execution based on historical data; such metadata
could be left in the storage, preventing I/O congestion.

To avoid interfering with the SWf scheduling and execution
processes, these scenarios should ideally be implemented transpar-
ently within the metadata storage system. We consider them as a
potential extension to our work, but we do not implement them.

8.3 Limitations

Our focus in this paper was on handling metadata in a smart dis-
tributed way so that this improves job/task execution time when
processing a large number of data pieces. While our techniques
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show an improvement with respect to a centralized management,
we also notice that when the scale of the SWf and the size of data
become larger, there is a degradation in the performance of DMM-
Chiron when using OLB (see Figure 7) due to the increase of inter-
mediate data transfers. To mitigate this degradation, the in-memory
caching techniques can be used in order to reduce the time to read
or write data. In addition, we can also use DIM to reduce inter-site
data transfer. The gain of LOC is even more obvious when we pro-
cess bigger data set using DIM (see Figure 13) compared with the
centralized method.

In addition, we have only considered the case of a homogeneous
multisite environment, where each site has the same amount of
VMs of the same type. While this configuration is often utilized, in
several cases multisite clouds are heterogeneous (different number
of resources, different VMs sizes). A next step in this path would be
to account for these variations in order to balance the hot metadata
load according to the site’s computing capacity.

9 CONCLUSION

In this paper, we introduced the concept of hot metadata for SWfs
running in large, geographically distributed and highly dynamic
environments. Based on it, we designed a hybrid decentralized and
distributed model for handling metadata in multisite clouds. The
model includes a distributed architecture and two adapted and one
proposed hot metadata management strategies. The two adapted
strategies are DHT and REP and our proposed strategy is LOC,
which stores the hot metadata at the site where it is generated. We
choose a RDBMS to manage the metadata and coupled the architec-
tures and hot metadata management strategies with a SWf engine.
We also enable three scheduling algorithms, i.e. OLB, MCT and
DIM, to perform multisite scheduling by provisioning hot meta-
data. Our proposal is able to optimize the access to and ensure the
availability of hot metadata, while effectively hiding the inter-site
network latencies and remaining non-intrusive and easy to deploy.
We validated metadata management strategies by executing real life
SWfs with different scheduling algorithms in a multisite cloud. Our
experimental results showed an improvement of up to 37.5% for the
whole SWf’s execution time and 64.1% for specific highly-parallel
jobs, compared to state-of-the-art centralized and OLB solutions, at
no additional cost. In addition, our experiments show that, although
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no single decentralized strategy can well fit all SW{ structure, our
proposed hot metadata strategy, i.e. LOC, always outperforms other
strategies with different SWf structures and scheduling algorithms
in terms of overall SWf execution time.

Encouraged by these results, we plan to broaden the scope of our
work and consider the impact of heterogeneous multisite environ-
ments on the hot metadata strategies. Another interesting direction
to explore is integrating real-time monitoring information about
the executed jobs in order to dynamically balance the hot metadata
load according to each site’s live capacity and performance.
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